Priyam05 commited on
Commit
27f077d
·
verified ·
1 Parent(s): c0930e3

Upload folder using huggingface_hub

Browse files
.summary/0/events.out.tfevents.1756512588.5b240b05f395 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a4bde4e30845d2a645a3cf0f76f47a0408a6a89659bd2d6b9f08bcddf74c163
3
+ size 218586
README.md CHANGED
@@ -15,7 +15,7 @@ model-index:
15
  type: doom_health_gathering_supreme
16
  metrics:
17
  - type: mean_reward
18
- value: 4.00 +/- 0.50
19
  name: mean_reward
20
  verified: false
21
  ---
 
15
  type: doom_health_gathering_supreme
16
  metrics:
17
  - type: mean_reward
18
+ value: 4.44 +/- 1.93
19
  name: mean_reward
20
  verified: false
21
  ---
checkpoint_p0/best_000000241_987136_reward_8.004.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e2b3abbd3f202746bb3e4701ea5ef79646944fb7ec891253a39d7b99dd236c47
3
+ size 34929516
checkpoint_p0/checkpoint_000000210_860160.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae71cc8d09a5811c617e87228169f91afd6bc7fe87147168ff032d1545919c0c
3
+ size 34929954
checkpoint_p0/checkpoint_000000246_1007616.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e3252ed55019ae81621a6060a8fc612a1c2968b555798de8c7f3186b6eee9ed8
3
+ size 34929954
config.json CHANGED
@@ -65,7 +65,7 @@
65
  "summaries_use_frameskip": true,
66
  "heartbeat_interval": 20,
67
  "heartbeat_reporting_interval": 600,
68
- "train_for_env_steps": 100000,
69
  "train_for_seconds": 10000000000,
70
  "save_every_sec": 120,
71
  "keep_checkpoints": 2,
 
65
  "summaries_use_frameskip": true,
66
  "heartbeat_interval": 20,
67
  "heartbeat_reporting_interval": 600,
68
+ "train_for_env_steps": 1000000,
69
  "train_for_seconds": 10000000000,
70
  "save_every_sec": 120,
71
  "keep_checkpoints": 2,
replay.mp4 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:89edb3c2cb0f3e40d436213a570e5b0d41a4d8329a4110add7f169fe88c05708
3
- size 6110498
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d3e0bfbacf838ff96bf029cbbfbdc40680e09e95c64f961e4ee0a195e746aed
3
+ size 7311680
sf_log.txt CHANGED
@@ -395,3 +395,767 @@ Check the documentation of torch.load to learn more about types accepted by defa
395
  [2025-08-30 00:08:21,387][02133] Avg episode rewards: #0: 4.400, true rewards: #0: 4.000
396
  [2025-08-30 00:08:21,388][02133] Avg episode reward: 4.400, avg true_objective: 4.000
397
  [2025-08-30 00:08:41,723][02133] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
395
  [2025-08-30 00:08:21,387][02133] Avg episode rewards: #0: 4.400, true rewards: #0: 4.000
396
  [2025-08-30 00:08:21,388][02133] Avg episode reward: 4.400, avg true_objective: 4.000
397
  [2025-08-30 00:08:41,723][02133] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
398
+ [2025-08-30 00:08:47,004][02133] The model has been pushed to https://huggingface.co/Priyam05/rl_course_vizdoom_health_gathering_supreme
399
+ [2025-08-30 00:09:48,409][02133] Environment doom_basic already registered, overwriting...
400
+ [2025-08-30 00:09:48,410][02133] Environment doom_two_colors_easy already registered, overwriting...
401
+ [2025-08-30 00:09:48,411][02133] Environment doom_two_colors_hard already registered, overwriting...
402
+ [2025-08-30 00:09:48,412][02133] Environment doom_dm already registered, overwriting...
403
+ [2025-08-30 00:09:48,413][02133] Environment doom_dwango5 already registered, overwriting...
404
+ [2025-08-30 00:09:48,415][02133] Environment doom_my_way_home_flat_actions already registered, overwriting...
405
+ [2025-08-30 00:09:48,416][02133] Environment doom_defend_the_center_flat_actions already registered, overwriting...
406
+ [2025-08-30 00:09:48,417][02133] Environment doom_my_way_home already registered, overwriting...
407
+ [2025-08-30 00:09:48,418][02133] Environment doom_deadly_corridor already registered, overwriting...
408
+ [2025-08-30 00:09:48,420][02133] Environment doom_defend_the_center already registered, overwriting...
409
+ [2025-08-30 00:09:48,421][02133] Environment doom_defend_the_line already registered, overwriting...
410
+ [2025-08-30 00:09:48,422][02133] Environment doom_health_gathering already registered, overwriting...
411
+ [2025-08-30 00:09:48,423][02133] Environment doom_health_gathering_supreme already registered, overwriting...
412
+ [2025-08-30 00:09:48,423][02133] Environment doom_battle already registered, overwriting...
413
+ [2025-08-30 00:09:48,424][02133] Environment doom_battle2 already registered, overwriting...
414
+ [2025-08-30 00:09:48,425][02133] Environment doom_duel_bots already registered, overwriting...
415
+ [2025-08-30 00:09:48,426][02133] Environment doom_deathmatch_bots already registered, overwriting...
416
+ [2025-08-30 00:09:48,426][02133] Environment doom_duel already registered, overwriting...
417
+ [2025-08-30 00:09:48,427][02133] Environment doom_deathmatch_full already registered, overwriting...
418
+ [2025-08-30 00:09:48,428][02133] Environment doom_benchmark already registered, overwriting...
419
+ [2025-08-30 00:09:48,431][02133] register_encoder_factory: <function make_vizdoom_encoder at 0x7850c852dc60>
420
+ [2025-08-30 00:09:48,445][02133] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
421
+ [2025-08-30 00:09:48,449][02133] Overriding arg 'train_for_env_steps' with value 1000000 passed from command line
422
+ [2025-08-30 00:09:48,454][02133] Experiment dir /content/train_dir/default_experiment already exists!
423
+ [2025-08-30 00:09:48,455][02133] Resuming existing experiment from /content/train_dir/default_experiment...
424
+ [2025-08-30 00:09:48,456][02133] Weights and Biases integration disabled
425
+ [2025-08-30 00:09:48,459][02133] Environment var CUDA_VISIBLE_DEVICES is 0
426
+
427
+ [2025-08-30 00:09:50,778][02133] Starting experiment with the following configuration:
428
+ help=False
429
+ algo=APPO
430
+ env=doom_health_gathering_supreme
431
+ experiment=default_experiment
432
+ train_dir=/content/train_dir
433
+ restart_behavior=resume
434
+ device=gpu
435
+ seed=None
436
+ num_policies=1
437
+ async_rl=True
438
+ serial_mode=False
439
+ batched_sampling=False
440
+ num_batches_to_accumulate=2
441
+ worker_num_splits=2
442
+ policy_workers_per_policy=1
443
+ max_policy_lag=1000
444
+ num_workers=8
445
+ num_envs_per_worker=4
446
+ batch_size=1024
447
+ num_batches_per_epoch=1
448
+ num_epochs=1
449
+ rollout=32
450
+ recurrence=32
451
+ shuffle_minibatches=False
452
+ gamma=0.99
453
+ reward_scale=1.0
454
+ reward_clip=1000.0
455
+ value_bootstrap=False
456
+ normalize_returns=True
457
+ exploration_loss_coeff=0.001
458
+ value_loss_coeff=0.5
459
+ kl_loss_coeff=0.0
460
+ exploration_loss=symmetric_kl
461
+ gae_lambda=0.95
462
+ ppo_clip_ratio=0.1
463
+ ppo_clip_value=0.2
464
+ with_vtrace=False
465
+ vtrace_rho=1.0
466
+ vtrace_c=1.0
467
+ optimizer=adam
468
+ adam_eps=1e-06
469
+ adam_beta1=0.9
470
+ adam_beta2=0.999
471
+ max_grad_norm=4.0
472
+ learning_rate=0.0001
473
+ lr_schedule=constant
474
+ lr_schedule_kl_threshold=0.008
475
+ lr_adaptive_min=1e-06
476
+ lr_adaptive_max=0.01
477
+ obs_subtract_mean=0.0
478
+ obs_scale=255.0
479
+ normalize_input=True
480
+ normalize_input_keys=None
481
+ decorrelate_experience_max_seconds=0
482
+ decorrelate_envs_on_one_worker=True
483
+ actor_worker_gpus=[]
484
+ set_workers_cpu_affinity=True
485
+ force_envs_single_thread=False
486
+ default_niceness=0
487
+ log_to_file=True
488
+ experiment_summaries_interval=10
489
+ flush_summaries_interval=30
490
+ stats_avg=100
491
+ summaries_use_frameskip=True
492
+ heartbeat_interval=20
493
+ heartbeat_reporting_interval=600
494
+ train_for_env_steps=1000000
495
+ train_for_seconds=10000000000
496
+ save_every_sec=120
497
+ keep_checkpoints=2
498
+ load_checkpoint_kind=latest
499
+ save_milestones_sec=-1
500
+ save_best_every_sec=5
501
+ save_best_metric=reward
502
+ save_best_after=100000
503
+ benchmark=False
504
+ encoder_mlp_layers=[512, 512]
505
+ encoder_conv_architecture=convnet_simple
506
+ encoder_conv_mlp_layers=[512]
507
+ use_rnn=True
508
+ rnn_size=512
509
+ rnn_type=gru
510
+ rnn_num_layers=1
511
+ decoder_mlp_layers=[]
512
+ nonlinearity=elu
513
+ policy_initialization=orthogonal
514
+ policy_init_gain=1.0
515
+ actor_critic_share_weights=True
516
+ adaptive_stddev=True
517
+ continuous_tanh_scale=0.0
518
+ initial_stddev=1.0
519
+ use_env_info_cache=False
520
+ env_gpu_actions=False
521
+ env_gpu_observations=True
522
+ env_frameskip=4
523
+ env_framestack=1
524
+ pixel_format=CHW
525
+ use_record_episode_statistics=False
526
+ with_wandb=False
527
+ wandb_user=None
528
+ wandb_project=sample_factory
529
+ wandb_group=None
530
+ wandb_job_type=SF
531
+ wandb_tags=[]
532
+ with_pbt=False
533
+ pbt_mix_policies_in_one_env=True
534
+ pbt_period_env_steps=5000000
535
+ pbt_start_mutation=20000000
536
+ pbt_replace_fraction=0.3
537
+ pbt_mutation_rate=0.15
538
+ pbt_replace_reward_gap=0.1
539
+ pbt_replace_reward_gap_absolute=1e-06
540
+ pbt_optimize_gamma=False
541
+ pbt_target_objective=true_objective
542
+ pbt_perturb_min=1.1
543
+ pbt_perturb_max=1.5
544
+ num_agents=-1
545
+ num_humans=0
546
+ num_bots=-1
547
+ start_bot_difficulty=None
548
+ timelimit=None
549
+ res_w=128
550
+ res_h=72
551
+ wide_aspect_ratio=False
552
+ eval_env_frameskip=1
553
+ fps=35
554
+ command_line=--env=doom_health_gathering_supreme --num_workers=8 --num_envs_per_worker=4 --train_for_env_steps=100000
555
+ cli_args={'env': 'doom_health_gathering_supreme', 'num_workers': 8, 'num_envs_per_worker': 4, 'train_for_env_steps': 100000}
556
+ git_hash=unknown
557
+ git_repo_name=not a git repository
558
+ [2025-08-30 00:09:50,779][02133] Saving configuration to /content/train_dir/default_experiment/config.json...
559
+ [2025-08-30 00:09:50,781][02133] Rollout worker 0 uses device cpu
560
+ [2025-08-30 00:09:50,782][02133] Rollout worker 1 uses device cpu
561
+ [2025-08-30 00:09:50,783][02133] Rollout worker 2 uses device cpu
562
+ [2025-08-30 00:09:50,784][02133] Rollout worker 3 uses device cpu
563
+ [2025-08-30 00:09:50,784][02133] Rollout worker 4 uses device cpu
564
+ [2025-08-30 00:09:50,785][02133] Rollout worker 5 uses device cpu
565
+ [2025-08-30 00:09:50,786][02133] Rollout worker 6 uses device cpu
566
+ [2025-08-30 00:09:50,787][02133] Rollout worker 7 uses device cpu
567
+ [2025-08-30 00:09:50,853][02133] Using GPUs [0] for process 0 (actually maps to GPUs [0])
568
+ [2025-08-30 00:09:50,854][02133] InferenceWorker_p0-w0: min num requests: 2
569
+ [2025-08-30 00:09:50,881][02133] Starting all processes...
570
+ [2025-08-30 00:09:50,882][02133] Starting process learner_proc0
571
+ [2025-08-30 00:09:50,943][02133] Starting all processes...
572
+ [2025-08-30 00:09:50,947][02133] Starting process inference_proc0-0
573
+ [2025-08-30 00:09:50,948][02133] Starting process rollout_proc0
574
+ [2025-08-30 00:09:50,948][02133] Starting process rollout_proc1
575
+ [2025-08-30 00:09:50,948][02133] Starting process rollout_proc2
576
+ [2025-08-30 00:09:50,948][02133] Starting process rollout_proc3
577
+ [2025-08-30 00:09:50,948][02133] Starting process rollout_proc4
578
+ [2025-08-30 00:09:50,948][02133] Starting process rollout_proc5
579
+ [2025-08-30 00:09:50,948][02133] Starting process rollout_proc6
580
+ [2025-08-30 00:09:50,948][02133] Starting process rollout_proc7
581
+ [2025-08-30 00:10:06,001][07555] Using GPUs [0] for process 0 (actually maps to GPUs [0])
582
+ [2025-08-30 00:10:06,001][07555] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
583
+ [2025-08-30 00:10:06,064][07555] Num visible devices: 1
584
+ [2025-08-30 00:10:06,076][07555] Starting seed is not provided
585
+ [2025-08-30 00:10:06,077][07555] Using GPUs [0] for process 0 (actually maps to GPUs [0])
586
+ [2025-08-30 00:10:06,077][07555] Initializing actor-critic model on device cuda:0
587
+ [2025-08-30 00:10:06,078][07555] RunningMeanStd input shape: (3, 72, 128)
588
+ [2025-08-30 00:10:06,080][07555] RunningMeanStd input shape: (1,)
589
+ [2025-08-30 00:10:06,140][07568] Worker 2 uses CPU cores [0]
590
+ [2025-08-30 00:10:06,157][07555] ConvEncoder: input_channels=3
591
+ [2025-08-30 00:10:06,257][07573] Worker 6 uses CPU cores [0]
592
+ [2025-08-30 00:10:06,432][07570] Worker 5 uses CPU cores [1]
593
+ [2025-08-30 00:10:06,480][07569] Worker 4 uses CPU cores [0]
594
+ [2025-08-30 00:10:06,489][07574] Worker 0 uses CPU cores [0]
595
+ [2025-08-30 00:10:06,602][07572] Worker 7 uses CPU cores [1]
596
+ [2025-08-30 00:10:06,626][07555] Conv encoder output size: 512
597
+ [2025-08-30 00:10:06,627][07555] Policy head output size: 512
598
+ [2025-08-30 00:10:06,648][07555] Created Actor Critic model with architecture:
599
+ [2025-08-30 00:10:06,648][07555] ActorCriticSharedWeights(
600
+ (obs_normalizer): ObservationNormalizer(
601
+ (running_mean_std): RunningMeanStdDictInPlace(
602
+ (running_mean_std): ModuleDict(
603
+ (obs): RunningMeanStdInPlace()
604
+ )
605
+ )
606
+ )
607
+ (returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
608
+ (encoder): VizdoomEncoder(
609
+ (basic_encoder): ConvEncoder(
610
+ (enc): RecursiveScriptModule(
611
+ original_name=ConvEncoderImpl
612
+ (conv_head): RecursiveScriptModule(
613
+ original_name=Sequential
614
+ (0): RecursiveScriptModule(original_name=Conv2d)
615
+ (1): RecursiveScriptModule(original_name=ELU)
616
+ (2): RecursiveScriptModule(original_name=Conv2d)
617
+ (3): RecursiveScriptModule(original_name=ELU)
618
+ (4): RecursiveScriptModule(original_name=Conv2d)
619
+ (5): RecursiveScriptModule(original_name=ELU)
620
+ )
621
+ (mlp_layers): RecursiveScriptModule(
622
+ original_name=Sequential
623
+ (0): RecursiveScriptModule(original_name=Linear)
624
+ (1): RecursiveScriptModule(original_name=ELU)
625
+ )
626
+ )
627
+ )
628
+ )
629
+ (core): ModelCoreRNN(
630
+ (core): GRU(512, 512)
631
+ )
632
+ (decoder): MlpDecoder(
633
+ (mlp): Identity()
634
+ )
635
+ (critic_linear): Linear(in_features=512, out_features=1, bias=True)
636
+ (action_parameterization): ActionParameterizationDefault(
637
+ (distribution_linear): Linear(in_features=512, out_features=5, bias=True)
638
+ )
639
+ )
640
+ [2025-08-30 00:10:06,785][07571] Worker 1 uses CPU cores [1]
641
+ [2025-08-30 00:10:06,800][07575] Worker 3 uses CPU cores [1]
642
+ [2025-08-30 00:10:06,871][07576] Using GPUs [0] for process 0 (actually maps to GPUs [0])
643
+ [2025-08-30 00:10:06,872][07576] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
644
+ [2025-08-30 00:10:06,890][07576] Num visible devices: 1
645
+ [2025-08-30 00:10:06,899][07555] Using optimizer <class 'torch.optim.adam.Adam'>
646
+ [2025-08-30 00:10:07,835][07555] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000026_106496.pth...
647
+ [2025-08-30 00:10:07,838][07555] Could not load from checkpoint, attempt 0
648
+ Traceback (most recent call last):
649
+ File "/usr/local/lib/python3.12/dist-packages/sample_factory/algo/learning/learner.py", line 281, in load_checkpoint
650
+ checkpoint_dict = torch.load(latest_checkpoint, map_location=device)
651
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
652
+ File "/usr/local/lib/python3.12/dist-packages/torch/serialization.py", line 1529, in load
653
+ raise pickle.UnpicklingError(_get_wo_message(str(e))) from None
654
+ _pickle.UnpicklingError: Weights only load failed. This file can still be loaded, to do so you have two options, do those steps only if you trust the source of the checkpoint.
655
+ (1) In PyTorch 2.6, we changed the default value of the `weights_only` argument in `torch.load` from `False` to `True`. Re-running `torch.load` with `weights_only` set to `False` will likely succeed, but it can result in arbitrary code execution. Do it only if you got the file from a trusted source.
656
+ (2) Alternatively, to load with `weights_only=True` please check the recommended steps in the following error message.
657
+ WeightsUnpickler error: Unsupported global: GLOBAL numpy.core.multiarray.scalar was not an allowed global by default. Please use `torch.serialization.add_safe_globals([numpy.core.multiarray.scalar])` or the `torch.serialization.safe_globals([numpy.core.multiarray.scalar])` context manager to allowlist this global if you trust this class/function.
658
+
659
+ Check the documentation of torch.load to learn more about types accepted by default with weights_only https://pytorch.org/docs/stable/generated/torch.load.html.
660
+ [2025-08-30 00:10:07,839][07555] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000026_106496.pth...
661
+ [2025-08-30 00:10:07,840][07555] Could not load from checkpoint, attempt 1
662
+ Traceback (most recent call last):
663
+ File "/usr/local/lib/python3.12/dist-packages/sample_factory/algo/learning/learner.py", line 281, in load_checkpoint
664
+ checkpoint_dict = torch.load(latest_checkpoint, map_location=device)
665
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
666
+ File "/usr/local/lib/python3.12/dist-packages/torch/serialization.py", line 1529, in load
667
+ raise pickle.UnpicklingError(_get_wo_message(str(e))) from None
668
+ _pickle.UnpicklingError: Weights only load failed. This file can still be loaded, to do so you have two options, do those steps only if you trust the source of the checkpoint.
669
+ (1) In PyTorch 2.6, we changed the default value of the `weights_only` argument in `torch.load` from `False` to `True`. Re-running `torch.load` with `weights_only` set to `False` will likely succeed, but it can result in arbitrary code execution. Do it only if you got the file from a trusted source.
670
+ (2) Alternatively, to load with `weights_only=True` please check the recommended steps in the following error message.
671
+ WeightsUnpickler error: Unsupported global: GLOBAL numpy.core.multiarray.scalar was not an allowed global by default. Please use `torch.serialization.add_safe_globals([numpy.core.multiarray.scalar])` or the `torch.serialization.safe_globals([numpy.core.multiarray.scalar])` context manager to allowlist this global if you trust this class/function.
672
+
673
+ Check the documentation of torch.load to learn more about types accepted by default with weights_only https://pytorch.org/docs/stable/generated/torch.load.html.
674
+ [2025-08-30 00:10:07,841][07555] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000026_106496.pth...
675
+ [2025-08-30 00:10:07,841][07555] Could not load from checkpoint, attempt 2
676
+ Traceback (most recent call last):
677
+ File "/usr/local/lib/python3.12/dist-packages/sample_factory/algo/learning/learner.py", line 281, in load_checkpoint
678
+ checkpoint_dict = torch.load(latest_checkpoint, map_location=device)
679
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
680
+ File "/usr/local/lib/python3.12/dist-packages/torch/serialization.py", line 1529, in load
681
+ raise pickle.UnpicklingError(_get_wo_message(str(e))) from None
682
+ _pickle.UnpicklingError: Weights only load failed. This file can still be loaded, to do so you have two options, do those steps only if you trust the source of the checkpoint.
683
+ (1) In PyTorch 2.6, we changed the default value of the `weights_only` argument in `torch.load` from `False` to `True`. Re-running `torch.load` with `weights_only` set to `False` will likely succeed, but it can result in arbitrary code execution. Do it only if you got the file from a trusted source.
684
+ (2) Alternatively, to load with `weights_only=True` please check the recommended steps in the following error message.
685
+ WeightsUnpickler error: Unsupported global: GLOBAL numpy.core.multiarray.scalar was not an allowed global by default. Please use `torch.serialization.add_safe_globals([numpy.core.multiarray.scalar])` or the `torch.serialization.safe_globals([numpy.core.multiarray.scalar])` context manager to allowlist this global if you trust this class/function.
686
+
687
+ Check the documentation of torch.load to learn more about types accepted by default with weights_only https://pytorch.org/docs/stable/generated/torch.load.html.
688
+ [2025-08-30 00:10:07,842][07555] Did not load from checkpoint, starting from scratch!
689
+ [2025-08-30 00:10:07,842][07555] Initialized policy 0 weights for model version 0
690
+ [2025-08-30 00:10:07,845][07555] Using GPUs [0] for process 0 (actually maps to GPUs [0])
691
+ [2025-08-30 00:10:07,851][07555] LearnerWorker_p0 finished initialization!
692
+ [2025-08-30 00:10:08,049][07576] RunningMeanStd input shape: (3, 72, 128)
693
+ [2025-08-30 00:10:08,050][07576] RunningMeanStd input shape: (1,)
694
+ [2025-08-30 00:10:08,060][07576] ConvEncoder: input_channels=3
695
+ [2025-08-30 00:10:08,151][07576] Conv encoder output size: 512
696
+ [2025-08-30 00:10:08,151][07576] Policy head output size: 512
697
+ [2025-08-30 00:10:08,187][02133] Inference worker 0-0 is ready!
698
+ [2025-08-30 00:10:08,188][02133] All inference workers are ready! Signal rollout workers to start!
699
+ [2025-08-30 00:10:08,368][07570] Doom resolution: 160x120, resize resolution: (128, 72)
700
+ [2025-08-30 00:10:08,368][07569] Doom resolution: 160x120, resize resolution: (128, 72)
701
+ [2025-08-30 00:10:08,370][07571] Doom resolution: 160x120, resize resolution: (128, 72)
702
+ [2025-08-30 00:10:08,366][07568] Doom resolution: 160x120, resize resolution: (128, 72)
703
+ [2025-08-30 00:10:08,372][07575] Doom resolution: 160x120, resize resolution: (128, 72)
704
+ [2025-08-30 00:10:08,373][07572] Doom resolution: 160x120, resize resolution: (128, 72)
705
+ [2025-08-30 00:10:08,369][07574] Doom resolution: 160x120, resize resolution: (128, 72)
706
+ [2025-08-30 00:10:08,374][07573] Doom resolution: 160x120, resize resolution: (128, 72)
707
+ [2025-08-30 00:10:08,459][02133] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 0. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
708
+ [2025-08-30 00:10:09,706][07572] Decorrelating experience for 0 frames...
709
+ [2025-08-30 00:10:09,708][07571] Decorrelating experience for 0 frames...
710
+ [2025-08-30 00:10:09,711][07575] Decorrelating experience for 0 frames...
711
+ [2025-08-30 00:10:09,995][07568] Decorrelating experience for 0 frames...
712
+ [2025-08-30 00:10:10,006][07573] Decorrelating experience for 0 frames...
713
+ [2025-08-30 00:10:10,004][07569] Decorrelating experience for 0 frames...
714
+ [2025-08-30 00:10:10,007][07574] Decorrelating experience for 0 frames...
715
+ [2025-08-30 00:10:10,846][02133] Heartbeat connected on Batcher_0
716
+ [2025-08-30 00:10:10,850][02133] Heartbeat connected on LearnerWorker_p0
717
+ [2025-08-30 00:10:10,857][07572] Decorrelating experience for 32 frames...
718
+ [2025-08-30 00:10:10,858][07571] Decorrelating experience for 32 frames...
719
+ [2025-08-30 00:10:10,904][02133] Heartbeat connected on InferenceWorker_p0-w0
720
+ [2025-08-30 00:10:11,182][07574] Decorrelating experience for 32 frames...
721
+ [2025-08-30 00:10:11,195][07573] Decorrelating experience for 32 frames...
722
+ [2025-08-30 00:10:11,200][07568] Decorrelating experience for 32 frames...
723
+ [2025-08-30 00:10:11,445][07570] Decorrelating experience for 0 frames...
724
+ [2025-08-30 00:10:11,448][07575] Decorrelating experience for 32 frames...
725
+ [2025-08-30 00:10:12,475][07569] Decorrelating experience for 32 frames...
726
+ [2025-08-30 00:10:12,544][07572] Decorrelating experience for 64 frames...
727
+ [2025-08-30 00:10:12,849][07570] Decorrelating experience for 32 frames...
728
+ [2025-08-30 00:10:13,262][07575] Decorrelating experience for 64 frames...
729
+ [2025-08-30 00:10:13,459][02133] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
730
+ [2025-08-30 00:10:13,483][07574] Decorrelating experience for 64 frames...
731
+ [2025-08-30 00:10:13,494][07568] Decorrelating experience for 64 frames...
732
+ [2025-08-30 00:10:13,501][07573] Decorrelating experience for 64 frames...
733
+ [2025-08-30 00:10:14,544][07571] Decorrelating experience for 64 frames...
734
+ [2025-08-30 00:10:14,673][07569] Decorrelating experience for 64 frames...
735
+ [2025-08-30 00:10:15,469][07573] Decorrelating experience for 96 frames...
736
+ [2025-08-30 00:10:15,839][07575] Decorrelating experience for 96 frames...
737
+ [2025-08-30 00:10:15,883][02133] Heartbeat connected on RolloutWorker_w6
738
+ [2025-08-30 00:10:16,073][07572] Decorrelating experience for 96 frames...
739
+ [2025-08-30 00:10:16,086][07570] Decorrelating experience for 64 frames...
740
+ [2025-08-30 00:10:16,533][02133] Heartbeat connected on RolloutWorker_w3
741
+ [2025-08-30 00:10:16,763][02133] Heartbeat connected on RolloutWorker_w7
742
+ [2025-08-30 00:10:17,156][07571] Decorrelating experience for 96 frames...
743
+ [2025-08-30 00:10:17,742][02133] Heartbeat connected on RolloutWorker_w1
744
+ [2025-08-30 00:10:17,978][07568] Decorrelating experience for 96 frames...
745
+ [2025-08-30 00:10:18,159][07574] Decorrelating experience for 96 frames...
746
+ [2025-08-30 00:10:18,459][02133] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 2.8. Samples: 28. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
747
+ [2025-08-30 00:10:18,461][02133] Avg episode reward: [(0, '1.067')]
748
+ [2025-08-30 00:10:18,473][07569] Decorrelating experience for 96 frames...
749
+ [2025-08-30 00:10:18,495][02133] Heartbeat connected on RolloutWorker_w2
750
+ [2025-08-30 00:10:18,768][02133] Heartbeat connected on RolloutWorker_w0
751
+ [2025-08-30 00:10:18,780][07570] Decorrelating experience for 96 frames...
752
+ [2025-08-30 00:10:19,058][02133] Heartbeat connected on RolloutWorker_w4
753
+ [2025-08-30 00:10:19,079][02133] Heartbeat connected on RolloutWorker_w5
754
+ [2025-08-30 00:10:20,881][07555] Signal inference workers to stop experience collection...
755
+ [2025-08-30 00:10:20,894][07576] InferenceWorker_p0-w0: stopping experience collection
756
+ [2025-08-30 00:10:22,382][07555] Signal inference workers to resume experience collection...
757
+ [2025-08-30 00:10:22,384][07576] InferenceWorker_p0-w0: resuming experience collection
758
+ [2025-08-30 00:10:23,459][02133] Fps is (10 sec: 1228.8, 60 sec: 819.2, 300 sec: 819.2). Total num frames: 12288. Throughput: 0: 220.3. Samples: 3304. Policy #0 lag: (min: 0.0, avg: 0.0, max: 0.0)
759
+ [2025-08-30 00:10:23,462][02133] Avg episode reward: [(0, '2.552')]
760
+ [2025-08-30 00:10:28,459][02133] Fps is (10 sec: 3276.8, 60 sec: 1638.4, 300 sec: 1638.4). Total num frames: 32768. Throughput: 0: 345.2. Samples: 6904. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
761
+ [2025-08-30 00:10:28,460][02133] Avg episode reward: [(0, '3.840')]
762
+ [2025-08-30 00:10:30,042][07576] Updated weights for policy 0, policy_version 10 (0.0095)
763
+ [2025-08-30 00:10:33,459][02133] Fps is (10 sec: 3686.4, 60 sec: 1966.1, 300 sec: 1966.1). Total num frames: 49152. Throughput: 0: 502.7. Samples: 12568. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
764
+ [2025-08-30 00:10:33,460][02133] Avg episode reward: [(0, '4.421')]
765
+ [2025-08-30 00:10:38,459][02133] Fps is (10 sec: 4096.0, 60 sec: 2457.6, 300 sec: 2457.6). Total num frames: 73728. Throughput: 0: 641.7. Samples: 19250. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
766
+ [2025-08-30 00:10:38,463][02133] Avg episode reward: [(0, '4.386')]
767
+ [2025-08-30 00:10:39,670][07576] Updated weights for policy 0, policy_version 20 (0.0023)
768
+ [2025-08-30 00:10:43,459][02133] Fps is (10 sec: 4915.2, 60 sec: 2808.7, 300 sec: 2808.7). Total num frames: 98304. Throughput: 0: 655.6. Samples: 22946. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
769
+ [2025-08-30 00:10:43,463][02133] Avg episode reward: [(0, '4.373')]
770
+ [2025-08-30 00:10:48,459][02133] Fps is (10 sec: 3686.4, 60 sec: 2764.8, 300 sec: 2764.8). Total num frames: 110592. Throughput: 0: 704.9. Samples: 28196. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
771
+ [2025-08-30 00:10:48,461][02133] Avg episode reward: [(0, '4.323')]
772
+ [2025-08-30 00:10:48,466][07555] Saving new best policy, reward=4.323!
773
+ [2025-08-30 00:10:50,391][07576] Updated weights for policy 0, policy_version 30 (0.0031)
774
+ [2025-08-30 00:10:53,459][02133] Fps is (10 sec: 3686.4, 60 sec: 3003.7, 300 sec: 3003.7). Total num frames: 135168. Throughput: 0: 774.2. Samples: 34838. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
775
+ [2025-08-30 00:10:53,463][02133] Avg episode reward: [(0, '4.347')]
776
+ [2025-08-30 00:10:53,467][07555] Saving new best policy, reward=4.347!
777
+ [2025-08-30 00:10:58,459][02133] Fps is (10 sec: 4915.2, 60 sec: 3194.9, 300 sec: 3194.9). Total num frames: 159744. Throughput: 0: 854.3. Samples: 38442. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
778
+ [2025-08-30 00:10:58,460][02133] Avg episode reward: [(0, '4.387')]
779
+ [2025-08-30 00:10:58,466][07555] Saving new best policy, reward=4.387!
780
+ [2025-08-30 00:10:59,068][07576] Updated weights for policy 0, policy_version 40 (0.0016)
781
+ [2025-08-30 00:11:03,459][02133] Fps is (10 sec: 4096.0, 60 sec: 3202.3, 300 sec: 3202.3). Total num frames: 176128. Throughput: 0: 973.0. Samples: 43814. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
782
+ [2025-08-30 00:11:03,463][02133] Avg episode reward: [(0, '4.307')]
783
+ [2025-08-30 00:11:08,459][02133] Fps is (10 sec: 4096.0, 60 sec: 3345.1, 300 sec: 3345.1). Total num frames: 200704. Throughput: 0: 1054.3. Samples: 50746. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
784
+ [2025-08-30 00:11:08,460][02133] Avg episode reward: [(0, '4.405')]
785
+ [2025-08-30 00:11:08,464][07555] Saving new best policy, reward=4.405!
786
+ [2025-08-30 00:11:09,147][07576] Updated weights for policy 0, policy_version 50 (0.0028)
787
+ [2025-08-30 00:11:13,459][02133] Fps is (10 sec: 4505.6, 60 sec: 3686.4, 300 sec: 3402.8). Total num frames: 221184. Throughput: 0: 1053.6. Samples: 54316. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
788
+ [2025-08-30 00:11:13,463][02133] Avg episode reward: [(0, '4.508')]
789
+ [2025-08-30 00:11:13,476][07555] Saving new best policy, reward=4.508!
790
+ [2025-08-30 00:11:18,459][02133] Fps is (10 sec: 3686.4, 60 sec: 3959.5, 300 sec: 3393.8). Total num frames: 237568. Throughput: 0: 1045.8. Samples: 59628. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
791
+ [2025-08-30 00:11:18,466][02133] Avg episode reward: [(0, '4.578')]
792
+ [2025-08-30 00:11:18,475][07555] Saving new best policy, reward=4.578!
793
+ [2025-08-30 00:11:19,490][07576] Updated weights for policy 0, policy_version 60 (0.0016)
794
+ [2025-08-30 00:11:23,459][02133] Fps is (10 sec: 4096.0, 60 sec: 4164.3, 300 sec: 3495.3). Total num frames: 262144. Throughput: 0: 1048.6. Samples: 66438. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
795
+ [2025-08-30 00:11:23,463][02133] Avg episode reward: [(0, '4.495')]
796
+ [2025-08-30 00:11:28,113][07576] Updated weights for policy 0, policy_version 70 (0.0022)
797
+ [2025-08-30 00:11:28,459][02133] Fps is (10 sec: 4915.1, 60 sec: 4232.5, 300 sec: 3584.0). Total num frames: 286720. Throughput: 0: 1049.0. Samples: 70150. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
798
+ [2025-08-30 00:11:28,465][02133] Avg episode reward: [(0, '4.637')]
799
+ [2025-08-30 00:11:28,471][07555] Saving new best policy, reward=4.637!
800
+ [2025-08-30 00:11:33,459][02133] Fps is (10 sec: 4096.0, 60 sec: 4232.5, 300 sec: 3565.9). Total num frames: 303104. Throughput: 0: 1045.6. Samples: 75246. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
801
+ [2025-08-30 00:11:33,464][02133] Avg episode reward: [(0, '4.447')]
802
+ [2025-08-30 00:11:38,353][07576] Updated weights for policy 0, policy_version 80 (0.0011)
803
+ [2025-08-30 00:11:38,459][02133] Fps is (10 sec: 4096.1, 60 sec: 4232.5, 300 sec: 3640.9). Total num frames: 327680. Throughput: 0: 1056.9. Samples: 82400. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
804
+ [2025-08-30 00:11:38,461][02133] Avg episode reward: [(0, '4.378')]
805
+ [2025-08-30 00:11:43,461][02133] Fps is (10 sec: 4505.4, 60 sec: 4164.2, 300 sec: 3664.8). Total num frames: 348160. Throughput: 0: 1056.3. Samples: 85974. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
806
+ [2025-08-30 00:11:43,464][02133] Avg episode reward: [(0, '4.573')]
807
+ [2025-08-30 00:11:48,459][02133] Fps is (10 sec: 3686.4, 60 sec: 4232.5, 300 sec: 3645.4). Total num frames: 364544. Throughput: 0: 1048.1. Samples: 90980. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
808
+ [2025-08-30 00:11:48,462][02133] Avg episode reward: [(0, '4.632')]
809
+ [2025-08-30 00:11:48,467][07555] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000089_364544.pth...
810
+ [2025-08-30 00:11:48,832][07576] Updated weights for policy 0, policy_version 90 (0.0028)
811
+ [2025-08-30 00:11:53,459][02133] Fps is (10 sec: 4096.2, 60 sec: 4232.5, 300 sec: 3705.9). Total num frames: 389120. Throughput: 0: 1050.3. Samples: 98010. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
812
+ [2025-08-30 00:11:53,463][02133] Avg episode reward: [(0, '4.556')]
813
+ [2025-08-30 00:11:57,374][07576] Updated weights for policy 0, policy_version 100 (0.0014)
814
+ [2025-08-30 00:11:58,461][02133] Fps is (10 sec: 4504.8, 60 sec: 4164.1, 300 sec: 3723.6). Total num frames: 409600. Throughput: 0: 1052.8. Samples: 101694. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
815
+ [2025-08-30 00:11:58,462][02133] Avg episode reward: [(0, '4.577')]
816
+ [2025-08-30 00:12:03,460][02133] Fps is (10 sec: 4095.7, 60 sec: 4232.5, 300 sec: 3739.8). Total num frames: 430080. Throughput: 0: 1045.8. Samples: 106690. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
817
+ [2025-08-30 00:12:03,464][02133] Avg episode reward: [(0, '4.485')]
818
+ [2025-08-30 00:12:07,741][07576] Updated weights for policy 0, policy_version 110 (0.0016)
819
+ [2025-08-30 00:12:08,459][02133] Fps is (10 sec: 4096.7, 60 sec: 4164.3, 300 sec: 3754.7). Total num frames: 450560. Throughput: 0: 1054.0. Samples: 113866. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
820
+ [2025-08-30 00:12:08,466][02133] Avg episode reward: [(0, '4.489')]
821
+ [2025-08-30 00:12:13,461][02133] Fps is (10 sec: 4504.9, 60 sec: 4232.4, 300 sec: 3801.0). Total num frames: 475136. Throughput: 0: 1052.2. Samples: 117502. Policy #0 lag: (min: 0.0, avg: 0.6, max: 1.0)
822
+ [2025-08-30 00:12:13,463][02133] Avg episode reward: [(0, '4.714')]
823
+ [2025-08-30 00:12:13,471][07555] Saving new best policy, reward=4.714!
824
+ [2025-08-30 00:12:18,053][07576] Updated weights for policy 0, policy_version 120 (0.0024)
825
+ [2025-08-30 00:12:18,459][02133] Fps is (10 sec: 4096.0, 60 sec: 4232.5, 300 sec: 3780.9). Total num frames: 491520. Throughput: 0: 1048.9. Samples: 122446. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
826
+ [2025-08-30 00:12:18,460][02133] Avg episode reward: [(0, '4.611')]
827
+ [2025-08-30 00:12:23,459][02133] Fps is (10 sec: 4097.0, 60 sec: 4232.5, 300 sec: 3822.9). Total num frames: 516096. Throughput: 0: 1049.8. Samples: 129640. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
828
+ [2025-08-30 00:12:23,463][02133] Avg episode reward: [(0, '4.557')]
829
+ [2025-08-30 00:12:26,671][07576] Updated weights for policy 0, policy_version 130 (0.0021)
830
+ [2025-08-30 00:12:28,459][02133] Fps is (10 sec: 4505.6, 60 sec: 4164.3, 300 sec: 3832.7). Total num frames: 536576. Throughput: 0: 1047.5. Samples: 133110. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
831
+ [2025-08-30 00:12:28,468][02133] Avg episode reward: [(0, '4.613')]
832
+ [2025-08-30 00:12:33,459][02133] Fps is (10 sec: 3686.4, 60 sec: 4164.3, 300 sec: 3813.5). Total num frames: 552960. Throughput: 0: 1046.0. Samples: 138048. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
833
+ [2025-08-30 00:12:33,463][02133] Avg episode reward: [(0, '4.702')]
834
+ [2025-08-30 00:12:37,311][07576] Updated weights for policy 0, policy_version 140 (0.0018)
835
+ [2025-08-30 00:12:38,459][02133] Fps is (10 sec: 4096.0, 60 sec: 4164.3, 300 sec: 3850.2). Total num frames: 577536. Throughput: 0: 1042.1. Samples: 144904. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
836
+ [2025-08-30 00:12:38,465][02133] Avg episode reward: [(0, '5.077')]
837
+ [2025-08-30 00:12:38,474][07555] Saving new best policy, reward=5.077!
838
+ [2025-08-30 00:12:43,459][02133] Fps is (10 sec: 4505.7, 60 sec: 4164.3, 300 sec: 3858.2). Total num frames: 598016. Throughput: 0: 1033.3. Samples: 148190. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
839
+ [2025-08-30 00:12:43,462][02133] Avg episode reward: [(0, '4.964')]
840
+ [2025-08-30 00:12:48,460][02133] Fps is (10 sec: 3276.5, 60 sec: 4095.9, 300 sec: 3814.4). Total num frames: 610304. Throughput: 0: 1021.6. Samples: 152660. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
841
+ [2025-08-30 00:12:48,465][02133] Avg episode reward: [(0, '4.715')]
842
+ [2025-08-30 00:12:48,488][07576] Updated weights for policy 0, policy_version 150 (0.0020)
843
+ [2025-08-30 00:12:53,459][02133] Fps is (10 sec: 3686.4, 60 sec: 4096.0, 300 sec: 3847.8). Total num frames: 634880. Throughput: 0: 1013.3. Samples: 159466. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
844
+ [2025-08-30 00:12:53,464][02133] Avg episode reward: [(0, '4.849')]
845
+ [2025-08-30 00:12:57,336][07576] Updated weights for policy 0, policy_version 160 (0.0018)
846
+ [2025-08-30 00:12:58,459][02133] Fps is (10 sec: 4505.9, 60 sec: 4096.1, 300 sec: 3855.1). Total num frames: 655360. Throughput: 0: 1012.1. Samples: 163044. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
847
+ [2025-08-30 00:12:58,463][02133] Avg episode reward: [(0, '4.868')]
848
+ [2025-08-30 00:13:03,459][02133] Fps is (10 sec: 3686.4, 60 sec: 4027.8, 300 sec: 3838.5). Total num frames: 671744. Throughput: 0: 1009.6. Samples: 167876. Policy #0 lag: (min: 0.0, avg: 0.5, max: 1.0)
849
+ [2025-08-30 00:13:03,463][02133] Avg episode reward: [(0, '4.680')]
850
+ [2025-08-30 00:13:07,855][07576] Updated weights for policy 0, policy_version 170 (0.0013)
851
+ [2025-08-30 00:13:08,459][02133] Fps is (10 sec: 4096.1, 60 sec: 4096.0, 300 sec: 3868.4). Total num frames: 696320. Throughput: 0: 1009.0. Samples: 175046. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
852
+ [2025-08-30 00:13:08,463][02133] Avg episode reward: [(0, '4.664')]
853
+ [2025-08-30 00:13:13,459][02133] Fps is (10 sec: 4915.2, 60 sec: 4096.2, 300 sec: 3896.7). Total num frames: 720896. Throughput: 0: 1012.9. Samples: 178690. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
854
+ [2025-08-30 00:13:13,460][02133] Avg episode reward: [(0, '4.963')]
855
+ [2025-08-30 00:13:18,315][07576] Updated weights for policy 0, policy_version 180 (0.0022)
856
+ [2025-08-30 00:13:18,459][02133] Fps is (10 sec: 4096.0, 60 sec: 4096.0, 300 sec: 3880.4). Total num frames: 737280. Throughput: 0: 1012.6. Samples: 183614. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
857
+ [2025-08-30 00:13:18,460][02133] Avg episode reward: [(0, '5.224')]
858
+ [2025-08-30 00:13:18,467][07555] Saving new best policy, reward=5.224!
859
+ [2025-08-30 00:13:23,459][02133] Fps is (10 sec: 3686.4, 60 sec: 4027.7, 300 sec: 3886.0). Total num frames: 757760. Throughput: 0: 1016.9. Samples: 190666. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
860
+ [2025-08-30 00:13:23,463][02133] Avg episode reward: [(0, '5.501')]
861
+ [2025-08-30 00:13:23,546][07555] Saving new best policy, reward=5.501!
862
+ [2025-08-30 00:13:27,376][07576] Updated weights for policy 0, policy_version 190 (0.0018)
863
+ [2025-08-30 00:13:28,460][02133] Fps is (10 sec: 4095.7, 60 sec: 4027.7, 300 sec: 3891.2). Total num frames: 778240. Throughput: 0: 1021.8. Samples: 194170. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
864
+ [2025-08-30 00:13:28,464][02133] Avg episode reward: [(0, '5.684')]
865
+ [2025-08-30 00:13:28,476][07555] Saving new best policy, reward=5.684!
866
+ [2025-08-30 00:13:33,459][02133] Fps is (10 sec: 4096.0, 60 sec: 4096.0, 300 sec: 3896.2). Total num frames: 798720. Throughput: 0: 1032.9. Samples: 199140. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
867
+ [2025-08-30 00:13:33,464][02133] Avg episode reward: [(0, '5.653')]
868
+ [2025-08-30 00:13:37,372][07576] Updated weights for policy 0, policy_version 200 (0.0023)
869
+ [2025-08-30 00:13:38,459][02133] Fps is (10 sec: 4505.9, 60 sec: 4096.0, 300 sec: 3920.5). Total num frames: 823296. Throughput: 0: 1042.9. Samples: 206398. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
870
+ [2025-08-30 00:13:38,463][02133] Avg episode reward: [(0, '5.665')]
871
+ [2025-08-30 00:13:43,460][02133] Fps is (10 sec: 4505.2, 60 sec: 4095.9, 300 sec: 3924.5). Total num frames: 843776. Throughput: 0: 1044.0. Samples: 210024. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
872
+ [2025-08-30 00:13:43,464][02133] Avg episode reward: [(0, '5.705')]
873
+ [2025-08-30 00:13:43,465][07555] Saving new best policy, reward=5.705!
874
+ [2025-08-30 00:13:47,677][07576] Updated weights for policy 0, policy_version 210 (0.0012)
875
+ [2025-08-30 00:13:48,459][02133] Fps is (10 sec: 3686.5, 60 sec: 4164.3, 300 sec: 3909.8). Total num frames: 860160. Throughput: 0: 1045.1. Samples: 214906. Policy #0 lag: (min: 0.0, avg: 0.5, max: 2.0)
876
+ [2025-08-30 00:13:48,462][02133] Avg episode reward: [(0, '5.644')]
877
+ [2025-08-30 00:13:48,468][07555] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000210_860160.pth...
878
+ [2025-08-30 00:13:48,592][07555] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000026_106496.pth
879
+ [2025-08-30 00:13:53,459][02133] Fps is (10 sec: 4096.4, 60 sec: 4164.3, 300 sec: 3932.2). Total num frames: 884736. Throughput: 0: 1042.7. Samples: 221966. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
880
+ [2025-08-30 00:13:53,463][02133] Avg episode reward: [(0, '5.383')]
881
+ [2025-08-30 00:13:56,361][07576] Updated weights for policy 0, policy_version 220 (0.0016)
882
+ [2025-08-30 00:13:58,459][02133] Fps is (10 sec: 4505.6, 60 sec: 4164.3, 300 sec: 3935.7). Total num frames: 905216. Throughput: 0: 1041.5. Samples: 225558. Policy #0 lag: (min: 0.0, avg: 0.4, max: 2.0)
883
+ [2025-08-30 00:13:58,465][02133] Avg episode reward: [(0, '6.183')]
884
+ [2025-08-30 00:13:58,471][07555] Saving new best policy, reward=6.183!
885
+ [2025-08-30 00:14:03,459][02133] Fps is (10 sec: 4096.0, 60 sec: 4232.5, 300 sec: 3939.1). Total num frames: 925696. Throughput: 0: 1042.1. Samples: 230510. Policy #0 lag: (min: 0.0, avg: 0.4, max: 1.0)
886
+ [2025-08-30 00:14:03,463][02133] Avg episode reward: [(0, '6.369')]
887
+ [2025-08-30 00:14:03,467][07555] Saving new best policy, reward=6.369!
888
+ [2025-08-30 00:14:06,935][07576] Updated weights for policy 0, policy_version 230 (0.0015)
889
+ [2025-08-30 00:14:08,459][02133] Fps is (10 sec: 4096.0, 60 sec: 4164.3, 300 sec: 3942.4). Total num frames: 946176. Throughput: 0: 1041.7. Samples: 237544. Policy #0 lag: (min: 0.0, avg: 0.7, max: 2.0)
890
+ [2025-08-30 00:14:08,463][02133] Avg episode reward: [(0, '6.839')]
891
+ [2025-08-30 00:14:08,470][07555] Saving new best policy, reward=6.839!
892
+ [2025-08-30 00:14:13,463][02133] Fps is (10 sec: 4095.0, 60 sec: 4095.8, 300 sec: 3945.5). Total num frames: 966656. Throughput: 0: 1041.3. Samples: 241032. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
893
+ [2025-08-30 00:14:13,468][02133] Avg episode reward: [(0, '7.071')]
894
+ [2025-08-30 00:14:13,470][07555] Saving new best policy, reward=7.071!
895
+ [2025-08-30 00:14:17,488][07576] Updated weights for policy 0, policy_version 240 (0.0027)
896
+ [2025-08-30 00:14:18,459][02133] Fps is (10 sec: 4096.0, 60 sec: 4164.3, 300 sec: 3948.5). Total num frames: 987136. Throughput: 0: 1043.1. Samples: 246078. Policy #0 lag: (min: 0.0, avg: 0.6, max: 2.0)
897
+ [2025-08-30 00:14:18,463][02133] Avg episode reward: [(0, '8.004')]
898
+ [2025-08-30 00:14:18,469][07555] Saving new best policy, reward=8.004!
899
+ [2025-08-30 00:14:22,764][07555] Stopping Batcher_0...
900
+ [2025-08-30 00:14:22,764][07555] Loop batcher_evt_loop terminating...
901
+ [2025-08-30 00:14:22,765][02133] Component Batcher_0 stopped!
902
+ [2025-08-30 00:14:22,768][07555] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000246_1007616.pth...
903
+ [2025-08-30 00:14:22,897][07555] Removing /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000089_364544.pth
904
+ [2025-08-30 00:14:22,909][07555] Saving /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000246_1007616.pth...
905
+ [2025-08-30 00:14:22,913][07576] Weights refcount: 2 0
906
+ [2025-08-30 00:14:22,930][02133] Component InferenceWorker_p0-w0 stopped!
907
+ [2025-08-30 00:14:22,931][07576] Stopping InferenceWorker_p0-w0...
908
+ [2025-08-30 00:14:22,934][07576] Loop inference_proc0-0_evt_loop terminating...
909
+ [2025-08-30 00:14:23,115][02133] Component LearnerWorker_p0 stopped!
910
+ [2025-08-30 00:14:23,119][07555] Stopping LearnerWorker_p0...
911
+ [2025-08-30 00:14:23,119][07555] Loop learner_proc0_evt_loop terminating...
912
+ [2025-08-30 00:14:23,565][02133] Component RolloutWorker_w6 stopped!
913
+ [2025-08-30 00:14:23,568][07573] Stopping RolloutWorker_w6...
914
+ [2025-08-30 00:14:23,575][07573] Loop rollout_proc6_evt_loop terminating...
915
+ [2025-08-30 00:14:23,593][07571] Stopping RolloutWorker_w1...
916
+ [2025-08-30 00:14:23,594][07571] Loop rollout_proc1_evt_loop terminating...
917
+ [2025-08-30 00:14:23,593][02133] Component RolloutWorker_w1 stopped!
918
+ [2025-08-30 00:14:23,601][07572] Stopping RolloutWorker_w7...
919
+ [2025-08-30 00:14:23,601][02133] Component RolloutWorker_w7 stopped!
920
+ [2025-08-30 00:14:23,603][07572] Loop rollout_proc7_evt_loop terminating...
921
+ [2025-08-30 00:14:23,622][07575] Stopping RolloutWorker_w3...
922
+ [2025-08-30 00:14:23,622][02133] Component RolloutWorker_w3 stopped!
923
+ [2025-08-30 00:14:23,633][07570] Stopping RolloutWorker_w5...
924
+ [2025-08-30 00:14:23,633][02133] Component RolloutWorker_w5 stopped!
925
+ [2025-08-30 00:14:23,623][07575] Loop rollout_proc3_evt_loop terminating...
926
+ [2025-08-30 00:14:23,634][07570] Loop rollout_proc5_evt_loop terminating...
927
+ [2025-08-30 00:14:23,648][02133] Component RolloutWorker_w4 stopped!
928
+ [2025-08-30 00:14:23,649][07569] Stopping RolloutWorker_w4...
929
+ [2025-08-30 00:14:23,650][07569] Loop rollout_proc4_evt_loop terminating...
930
+ [2025-08-30 00:14:23,663][02133] Component RolloutWorker_w0 stopped!
931
+ [2025-08-30 00:14:23,664][07574] Stopping RolloutWorker_w0...
932
+ [2025-08-30 00:14:23,665][07574] Loop rollout_proc0_evt_loop terminating...
933
+ [2025-08-30 00:14:23,724][02133] Component RolloutWorker_w2 stopped!
934
+ [2025-08-30 00:14:23,727][02133] Waiting for process learner_proc0 to stop...
935
+ [2025-08-30 00:14:23,730][07568] Stopping RolloutWorker_w2...
936
+ [2025-08-30 00:14:23,741][07568] Loop rollout_proc2_evt_loop terminating...
937
+ [2025-08-30 00:14:25,085][02133] Waiting for process inference_proc0-0 to join...
938
+ [2025-08-30 00:14:25,090][02133] Waiting for process rollout_proc0 to join...
939
+ [2025-08-30 00:14:27,614][02133] Waiting for process rollout_proc1 to join...
940
+ [2025-08-30 00:14:27,918][02133] Waiting for process rollout_proc2 to join...
941
+ [2025-08-30 00:14:27,920][02133] Waiting for process rollout_proc3 to join...
942
+ [2025-08-30 00:14:27,921][02133] Waiting for process rollout_proc4 to join...
943
+ [2025-08-30 00:14:27,922][02133] Waiting for process rollout_proc5 to join...
944
+ [2025-08-30 00:14:27,923][02133] Waiting for process rollout_proc6 to join...
945
+ [2025-08-30 00:14:27,924][02133] Waiting for process rollout_proc7 to join...
946
+ [2025-08-30 00:14:27,925][02133] Batcher 0 profile tree view:
947
+ batching: 6.2551, releasing_batches: 0.0077
948
+ [2025-08-30 00:14:27,927][02133] InferenceWorker_p0-w0 profile tree view:
949
+ wait_policy: 0.0000
950
+ wait_policy_total: 107.8726
951
+ update_model: 1.9901
952
+ weight_update: 0.0026
953
+ one_step: 0.0192
954
+ handle_policy_step: 134.6821
955
+ deserialize: 3.4461, stack: 0.7702, obs_to_device_normalize: 28.2248, forward: 69.2912, send_messages: 6.8835
956
+ prepare_outputs: 20.1651
957
+ to_cpu: 12.5958
958
+ [2025-08-30 00:14:27,928][02133] Learner 0 profile tree view:
959
+ misc: 0.0009, prepare_batch: 4.1257
960
+ train: 19.1130
961
+ epoch_init: 0.0010, minibatch_init: 0.0016, losses_postprocess: 0.1870, kl_divergence: 0.1665, after_optimizer: 8.3136
962
+ calculate_losses: 6.6074
963
+ losses_init: 0.0009, forward_head: 0.6567, bptt_initial: 4.1140, tail: 0.2923, advantages_returns: 0.0716, losses: 0.9097
964
+ bptt: 0.4920
965
+ bptt_forward_core: 0.4440
966
+ update: 3.7163
967
+ clip: 0.2445
968
+ [2025-08-30 00:14:27,930][02133] RolloutWorker_w0 profile tree view:
969
+ wait_for_trajectories: 0.0546, enqueue_policy_requests: 26.2367, env_step: 191.6451, overhead: 2.9250, complete_rollouts: 1.6959
970
+ save_policy_outputs: 4.3974
971
+ split_output_tensors: 1.7725
972
+ [2025-08-30 00:14:27,931][02133] RolloutWorker_w7 profile tree view:
973
+ wait_for_trajectories: 0.0872, enqueue_policy_requests: 26.4995, env_step: 191.5837, overhead: 3.0973, complete_rollouts: 1.5555
974
+ save_policy_outputs: 4.6519
975
+ split_output_tensors: 1.9002
976
+ [2025-08-30 00:14:27,932][02133] Loop Runner_EvtLoop terminating...
977
+ [2025-08-30 00:14:27,935][02133] Runner profile tree view:
978
+ main_loop: 277.0532
979
+ [2025-08-30 00:14:27,936][02133] Collected {0: 1007616}, FPS: 3636.9
980
+ [2025-08-30 00:14:46,367][02133] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
981
+ [2025-08-30 00:14:46,368][02133] Overriding arg 'num_workers' with value 1 passed from command line
982
+ [2025-08-30 00:14:46,369][02133] Adding new argument 'no_render'=True that is not in the saved config file!
983
+ [2025-08-30 00:14:46,370][02133] Adding new argument 'save_video'=True that is not in the saved config file!
984
+ [2025-08-30 00:14:46,371][02133] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
985
+ [2025-08-30 00:14:46,372][02133] Adding new argument 'video_name'=None that is not in the saved config file!
986
+ [2025-08-30 00:14:46,373][02133] Adding new argument 'max_num_frames'=1000000000.0 that is not in the saved config file!
987
+ [2025-08-30 00:14:46,374][02133] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
988
+ [2025-08-30 00:14:46,375][02133] Adding new argument 'push_to_hub'=False that is not in the saved config file!
989
+ [2025-08-30 00:14:46,376][02133] Adding new argument 'hf_repository'=None that is not in the saved config file!
990
+ [2025-08-30 00:14:46,376][02133] Adding new argument 'policy_index'=0 that is not in the saved config file!
991
+ [2025-08-30 00:14:46,377][02133] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
992
+ [2025-08-30 00:14:46,378][02133] Adding new argument 'train_script'=None that is not in the saved config file!
993
+ [2025-08-30 00:14:46,379][02133] Adding new argument 'enjoy_script'=None that is not in the saved config file!
994
+ [2025-08-30 00:14:46,380][02133] Using frameskip 1 and render_action_repeat=4 for evaluation
995
+ [2025-08-30 00:14:46,415][02133] RunningMeanStd input shape: (3, 72, 128)
996
+ [2025-08-30 00:14:46,416][02133] RunningMeanStd input shape: (1,)
997
+ [2025-08-30 00:14:46,427][02133] ConvEncoder: input_channels=3
998
+ [2025-08-30 00:14:46,458][02133] Conv encoder output size: 512
999
+ [2025-08-30 00:14:46,459][02133] Policy head output size: 512
1000
+ [2025-08-30 00:14:46,477][02133] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000246_1007616.pth...
1001
+ [2025-08-30 00:14:46,904][02133] Num frames 100...
1002
+ [2025-08-30 00:14:47,024][02133] Num frames 200...
1003
+ [2025-08-30 00:14:47,145][02133] Num frames 300...
1004
+ [2025-08-30 00:14:47,301][02133] Avg episode rewards: #0: 3.840, true rewards: #0: 3.840
1005
+ [2025-08-30 00:14:47,302][02133] Avg episode reward: 3.840, avg true_objective: 3.840
1006
+ [2025-08-30 00:14:47,326][02133] Num frames 400...
1007
+ [2025-08-30 00:14:47,451][02133] Num frames 500...
1008
+ [2025-08-30 00:14:47,575][02133] Num frames 600...
1009
+ [2025-08-30 00:14:47,698][02133] Num frames 700...
1010
+ [2025-08-30 00:14:47,823][02133] Num frames 800...
1011
+ [2025-08-30 00:14:47,958][02133] Num frames 900...
1012
+ [2025-08-30 00:14:48,089][02133] Num frames 1000...
1013
+ [2025-08-30 00:14:48,247][02133] Avg episode rewards: #0: 7.440, true rewards: #0: 5.440
1014
+ [2025-08-30 00:14:48,248][02133] Avg episode reward: 7.440, avg true_objective: 5.440
1015
+ [2025-08-30 00:14:48,267][02133] Num frames 1100...
1016
+ [2025-08-30 00:14:48,388][02133] Num frames 1200...
1017
+ [2025-08-30 00:14:48,512][02133] Num frames 1300...
1018
+ [2025-08-30 00:14:48,642][02133] Num frames 1400...
1019
+ [2025-08-30 00:14:48,771][02133] Num frames 1500...
1020
+ [2025-08-30 00:14:48,904][02133] Num frames 1600...
1021
+ [2025-08-30 00:14:49,030][02133] Num frames 1700...
1022
+ [2025-08-30 00:14:49,154][02133] Num frames 1800...
1023
+ [2025-08-30 00:14:49,312][02133] Avg episode rewards: #0: 10.280, true rewards: #0: 6.280
1024
+ [2025-08-30 00:14:49,312][02133] Avg episode reward: 10.280, avg true_objective: 6.280
1025
+ [2025-08-30 00:14:49,336][02133] Num frames 1900...
1026
+ [2025-08-30 00:14:49,457][02133] Num frames 2000...
1027
+ [2025-08-30 00:14:49,577][02133] Num frames 2100...
1028
+ [2025-08-30 00:14:49,698][02133] Num frames 2200...
1029
+ [2025-08-30 00:14:49,832][02133] Num frames 2300...
1030
+ [2025-08-30 00:14:49,884][02133] Avg episode rewards: #0: 9.250, true rewards: #0: 5.750
1031
+ [2025-08-30 00:14:49,885][02133] Avg episode reward: 9.250, avg true_objective: 5.750
1032
+ [2025-08-30 00:14:50,079][02133] Num frames 2400...
1033
+ [2025-08-30 00:14:50,254][02133] Num frames 2500...
1034
+ [2025-08-30 00:14:50,433][02133] Num frames 2600...
1035
+ [2025-08-30 00:14:50,609][02133] Num frames 2700...
1036
+ [2025-08-30 00:14:50,747][02133] Avg episode rewards: #0: 8.496, true rewards: #0: 5.496
1037
+ [2025-08-30 00:14:50,750][02133] Avg episode reward: 8.496, avg true_objective: 5.496
1038
+ [2025-08-30 00:14:50,845][02133] Num frames 2800...
1039
+ [2025-08-30 00:14:51,020][02133] Num frames 2900...
1040
+ [2025-08-30 00:14:51,191][02133] Num frames 3000...
1041
+ [2025-08-30 00:14:51,367][02133] Num frames 3100...
1042
+ [2025-08-30 00:14:51,547][02133] Num frames 3200...
1043
+ [2025-08-30 00:14:51,718][02133] Num frames 3300...
1044
+ [2025-08-30 00:14:51,818][02133] Avg episode rewards: #0: 8.707, true rewards: #0: 5.540
1045
+ [2025-08-30 00:14:51,820][02133] Avg episode reward: 8.707, avg true_objective: 5.540
1046
+ [2025-08-30 00:14:51,956][02133] Num frames 3400...
1047
+ [2025-08-30 00:14:52,144][02133] Num frames 3500...
1048
+ [2025-08-30 00:14:52,281][02133] Num frames 3600...
1049
+ [2025-08-30 00:14:52,405][02133] Num frames 3700...
1050
+ [2025-08-30 00:14:52,549][02133] Avg episode rewards: #0: 8.246, true rewards: #0: 5.389
1051
+ [2025-08-30 00:14:52,550][02133] Avg episode reward: 8.246, avg true_objective: 5.389
1052
+ [2025-08-30 00:14:52,587][02133] Num frames 3800...
1053
+ [2025-08-30 00:14:52,710][02133] Num frames 3900...
1054
+ [2025-08-30 00:14:52,837][02133] Num frames 4000...
1055
+ [2025-08-30 00:14:52,960][02133] Num frames 4100...
1056
+ [2025-08-30 00:14:53,089][02133] Num frames 4200...
1057
+ [2025-08-30 00:14:53,222][02133] Num frames 4300...
1058
+ [2025-08-30 00:14:53,342][02133] Avg episode rewards: #0: 8.435, true rewards: #0: 5.435
1059
+ [2025-08-30 00:14:53,343][02133] Avg episode reward: 8.435, avg true_objective: 5.435
1060
+ [2025-08-30 00:14:53,408][02133] Num frames 4400...
1061
+ [2025-08-30 00:14:53,532][02133] Num frames 4500...
1062
+ [2025-08-30 00:14:53,656][02133] Num frames 4600...
1063
+ [2025-08-30 00:14:53,784][02133] Num frames 4700...
1064
+ [2025-08-30 00:14:53,835][02133] Avg episode rewards: #0: 8.111, true rewards: #0: 5.222
1065
+ [2025-08-30 00:14:53,836][02133] Avg episode reward: 8.111, avg true_objective: 5.222
1066
+ [2025-08-30 00:14:53,965][02133] Num frames 4800...
1067
+ [2025-08-30 00:14:54,092][02133] Num frames 4900...
1068
+ [2025-08-30 00:14:54,226][02133] Num frames 5000...
1069
+ [2025-08-30 00:14:54,346][02133] Num frames 5100...
1070
+ [2025-08-30 00:14:54,469][02133] Num frames 5200...
1071
+ [2025-08-30 00:14:54,589][02133] Num frames 5300...
1072
+ [2025-08-30 00:14:54,710][02133] Num frames 5400...
1073
+ [2025-08-30 00:14:54,849][02133] Avg episode rewards: #0: 8.568, true rewards: #0: 5.468
1074
+ [2025-08-30 00:14:54,850][02133] Avg episode reward: 8.568, avg true_objective: 5.468
1075
+ [2025-08-30 00:15:24,708][02133] Replay video saved to /content/train_dir/default_experiment/replay.mp4!
1076
+ [2025-08-30 00:15:57,391][02133] Loading existing experiment configuration from /content/train_dir/default_experiment/config.json
1077
+ [2025-08-30 00:15:57,392][02133] Overriding arg 'num_workers' with value 1 passed from command line
1078
+ [2025-08-30 00:15:57,393][02133] Adding new argument 'no_render'=True that is not in the saved config file!
1079
+ [2025-08-30 00:15:57,394][02133] Adding new argument 'save_video'=True that is not in the saved config file!
1080
+ [2025-08-30 00:15:57,395][02133] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
1081
+ [2025-08-30 00:15:57,396][02133] Adding new argument 'video_name'=None that is not in the saved config file!
1082
+ [2025-08-30 00:15:57,397][02133] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
1083
+ [2025-08-30 00:15:57,397][02133] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
1084
+ [2025-08-30 00:15:57,398][02133] Adding new argument 'push_to_hub'=True that is not in the saved config file!
1085
+ [2025-08-30 00:15:57,399][02133] Adding new argument 'hf_repository'='Priyam05/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
1086
+ [2025-08-30 00:15:57,400][02133] Adding new argument 'policy_index'=0 that is not in the saved config file!
1087
+ [2025-08-30 00:15:57,401][02133] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
1088
+ [2025-08-30 00:15:57,402][02133] Adding new argument 'train_script'=None that is not in the saved config file!
1089
+ [2025-08-30 00:15:57,403][02133] Adding new argument 'enjoy_script'=None that is not in the saved config file!
1090
+ [2025-08-30 00:15:57,404][02133] Using frameskip 1 and render_action_repeat=4 for evaluation
1091
+ [2025-08-30 00:15:57,428][02133] RunningMeanStd input shape: (3, 72, 128)
1092
+ [2025-08-30 00:15:57,563][02133] RunningMeanStd input shape: (1,)
1093
+ [2025-08-30 00:15:57,572][02133] ConvEncoder: input_channels=3
1094
+ [2025-08-30 00:15:57,603][02133] Conv encoder output size: 512
1095
+ [2025-08-30 00:15:57,603][02133] Policy head output size: 512
1096
+ [2025-08-30 00:15:57,619][02133] Loading state from checkpoint /content/train_dir/default_experiment/checkpoint_p0/checkpoint_000000246_1007616.pth...
1097
+ [2025-08-30 00:15:58,009][02133] Num frames 100...
1098
+ [2025-08-30 00:15:58,130][02133] Num frames 200...
1099
+ [2025-08-30 00:15:58,262][02133] Num frames 300...
1100
+ [2025-08-30 00:15:58,423][02133] Avg episode rewards: #0: 3.840, true rewards: #0: 3.840
1101
+ [2025-08-30 00:15:58,424][02133] Avg episode reward: 3.840, avg true_objective: 3.840
1102
+ [2025-08-30 00:15:58,446][02133] Num frames 400...
1103
+ [2025-08-30 00:15:58,564][02133] Num frames 500...
1104
+ [2025-08-30 00:15:58,681][02133] Num frames 600...
1105
+ [2025-08-30 00:15:58,782][02133] Avg episode rewards: #0: 3.200, true rewards: #0: 3.200
1106
+ [2025-08-30 00:15:58,783][02133] Avg episode reward: 3.200, avg true_objective: 3.200
1107
+ [2025-08-30 00:15:58,855][02133] Num frames 700...
1108
+ [2025-08-30 00:15:58,975][02133] Num frames 800...
1109
+ [2025-08-30 00:15:59,096][02133] Num frames 900...
1110
+ [2025-08-30 00:15:59,229][02133] Num frames 1000...
1111
+ [2025-08-30 00:15:59,316][02133] Avg episode rewards: #0: 3.413, true rewards: #0: 3.413
1112
+ [2025-08-30 00:15:59,316][02133] Avg episode reward: 3.413, avg true_objective: 3.413
1113
+ [2025-08-30 00:15:59,408][02133] Num frames 1100...
1114
+ [2025-08-30 00:15:59,528][02133] Num frames 1200...
1115
+ [2025-08-30 00:15:59,648][02133] Num frames 1300...
1116
+ [2025-08-30 00:15:59,815][02133] Avg episode rewards: #0: 3.740, true rewards: #0: 3.490
1117
+ [2025-08-30 00:15:59,816][02133] Avg episode reward: 3.740, avg true_objective: 3.490
1118
+ [2025-08-30 00:15:59,824][02133] Num frames 1400...
1119
+ [2025-08-30 00:15:59,943][02133] Num frames 1500...
1120
+ [2025-08-30 00:16:00,060][02133] Num frames 1600...
1121
+ [2025-08-30 00:16:00,202][02133] Num frames 1700...
1122
+ [2025-08-30 00:16:00,363][02133] Avg episode rewards: #0: 3.760, true rewards: #0: 3.560
1123
+ [2025-08-30 00:16:00,364][02133] Avg episode reward: 3.760, avg true_objective: 3.560
1124
+ [2025-08-30 00:16:00,390][02133] Num frames 1800...
1125
+ [2025-08-30 00:16:00,510][02133] Num frames 1900...
1126
+ [2025-08-30 00:16:00,631][02133] Num frames 2000...
1127
+ [2025-08-30 00:16:00,758][02133] Num frames 2100...
1128
+ [2025-08-30 00:16:00,878][02133] Num frames 2200...
1129
+ [2025-08-30 00:16:00,998][02133] Num frames 2300...
1130
+ [2025-08-30 00:16:01,121][02133] Num frames 2400...
1131
+ [2025-08-30 00:16:01,245][02133] Num frames 2500...
1132
+ [2025-08-30 00:16:01,375][02133] Num frames 2600...
1133
+ [2025-08-30 00:16:01,494][02133] Num frames 2700...
1134
+ [2025-08-30 00:16:01,559][02133] Avg episode rewards: #0: 5.847, true rewards: #0: 4.513
1135
+ [2025-08-30 00:16:01,559][02133] Avg episode reward: 5.847, avg true_objective: 4.513
1136
+ [2025-08-30 00:16:01,671][02133] Num frames 2800...
1137
+ [2025-08-30 00:16:01,790][02133] Num frames 2900...
1138
+ [2025-08-30 00:16:01,925][02133] Num frames 3000...
1139
+ [2025-08-30 00:16:02,032][02133] Avg episode rewards: #0: 5.611, true rewards: #0: 4.326
1140
+ [2025-08-30 00:16:02,033][02133] Avg episode reward: 5.611, avg true_objective: 4.326
1141
+ [2025-08-30 00:16:02,156][02133] Num frames 3100...
1142
+ [2025-08-30 00:16:02,336][02133] Num frames 3200...
1143
+ [2025-08-30 00:16:02,534][02133] Avg episode rewards: #0: 5.230, true rewards: #0: 4.105
1144
+ [2025-08-30 00:16:02,535][02133] Avg episode reward: 5.230, avg true_objective: 4.105
1145
+ [2025-08-30 00:16:02,565][02133] Num frames 3300...
1146
+ [2025-08-30 00:16:02,735][02133] Num frames 3400...
1147
+ [2025-08-30 00:16:02,903][02133] Num frames 3500...
1148
+ [2025-08-30 00:16:03,069][02133] Num frames 3600...
1149
+ [2025-08-30 00:16:03,239][02133] Num frames 3700...
1150
+ [2025-08-30 00:16:03,422][02133] Num frames 3800...
1151
+ [2025-08-30 00:16:03,638][02133] Avg episode rewards: #0: 5.658, true rewards: #0: 4.324
1152
+ [2025-08-30 00:16:03,639][02133] Avg episode reward: 5.658, avg true_objective: 4.324
1153
+ [2025-08-30 00:16:03,655][02133] Num frames 3900...
1154
+ [2025-08-30 00:16:03,831][02133] Num frames 4000...
1155
+ [2025-08-30 00:16:04,011][02133] Num frames 4100...
1156
+ [2025-08-30 00:16:04,160][02133] Num frames 4200...
1157
+ [2025-08-30 00:16:04,286][02133] Num frames 4300...
1158
+ [2025-08-30 00:16:04,420][02133] Num frames 4400...
1159
+ [2025-08-30 00:16:04,521][02133] Avg episode rewards: #0: 5.836, true rewards: #0: 4.436
1160
+ [2025-08-30 00:16:04,521][02133] Avg episode reward: 5.836, avg true_objective: 4.436
1161
+ [2025-08-30 00:16:27,557][02133] Replay video saved to /content/train_dir/default_experiment/replay.mp4!