File size: 1,948 Bytes
971edc1
ca8d005
971edc1
ca8d005
 
 
 
 
 
 
 
971edc1
ca8d005
 
 
971edc1
 
ca8d005
 
971edc1
ca8d005
971edc1
ca8d005
 
 
 
 
 
 
 
971edc1
ca8d005
971edc1
ca8d005
971edc1
ca8d005
971edc1
ca8d005
971edc1
ca8d005
971edc1
ca8d005
971edc1
ca8d005
971edc1
ca8d005
971edc1
ca8d005
 
 
 
 
 
 
 
971edc1
ca8d005
971edc1
ca8d005
 
 
 
 
971edc1
 
 
 
ca8d005
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
---
license: apache-2.0
library_name: peft
tags:
- generated_from_trainer
datasets:
- tweet_eval
metrics:
- accuracy
- precision
- recall
base_model: bert-base-uncased
model-index:
- name: LoRA-SemEval
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# LoRA-SemEval

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the tweet_eval dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7185
- Accuracy: 0.6830
- Precision: 0.6857
- Recall: 0.6830
- Micro-avg-recall: 0.6830
- Micro-avg-precision: 0.6830

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | Micro-avg-recall | Micro-avg-precision |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:----------------:|:-------------------:|
| 0.8156        | 1.0   | 2851 | 0.7505          | 0.6628   | 0.6653    | 0.6628 | 0.6628           | 0.6628              |
| 0.6812        | 2.0   | 5702 | 0.7254          | 0.6789   | 0.6819    | 0.6789 | 0.6789           | 0.6789              |
| 0.661         | 3.0   | 8553 | 0.7185          | 0.6830   | 0.6857    | 0.6830 | 0.6830           | 0.6830              |


### Framework versions

- PEFT 0.7.1
- Transformers 4.36.2
- Pytorch 2.0.0
- Datasets 2.1.0
- Tokenizers 0.15.0