--- license: apache-2.0 library_name: peft tags: - generated_from_trainer datasets: - tweet_eval metrics: - accuracy - precision - recall base_model: bert-base-uncased model-index: - name: LoRA-SemEval results: [] --- # LoRA-SemEval This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.7185 - Accuracy: 0.6830 - Precision: 0.6857 - Recall: 0.6830 - Micro-avg-recall: 0.6830 - Micro-avg-precision: 0.6830 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | Micro-avg-recall | Micro-avg-precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:----------------:|:-------------------:| | 0.8156 | 1.0 | 2851 | 0.7505 | 0.6628 | 0.6653 | 0.6628 | 0.6628 | 0.6628 | | 0.6812 | 2.0 | 5702 | 0.7254 | 0.6789 | 0.6819 | 0.6789 | 0.6789 | 0.6789 | | 0.661 | 3.0 | 8553 | 0.7185 | 0.6830 | 0.6857 | 0.6830 | 0.6830 | 0.6830 | ### Framework versions - PEFT 0.7.1 - Transformers 4.36.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.15.0