Priyanka-Balivada commited on
Commit
99a3109
·
1 Parent(s): 41e23d6

bert-1-epoch-sentiment

Browse files
Files changed (1) hide show
  1. README.md +10 -10
README.md CHANGED
@@ -24,13 +24,13 @@ model-index:
24
  metrics:
25
  - name: Accuracy
26
  type: accuracy
27
- value: 0.7028655161185282
28
  - name: Precision
29
  type: precision
30
- value: 0.7052777584989943
31
  - name: Recall
32
  type: recall
33
- value: 0.7028655161185282
34
  ---
35
 
36
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -40,12 +40,12 @@ should probably proofread and complete it, then remove this comment. -->
40
 
41
  This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the tweet_eval dataset.
42
  It achieves the following results on the evaluation set:
43
- - Loss: 0.6558
44
- - Accuracy: 0.7029
45
- - Precision: 0.7053
46
- - Recall: 0.7029
47
- - Micro-avg-recall: 0.7029
48
- - Micro-avg-precision: 0.7029
49
 
50
  ## Model description
51
 
@@ -76,7 +76,7 @@ The following hyperparameters were used during training:
76
 
77
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | Micro-avg-recall | Micro-avg-precision |
78
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:----------------:|:-------------------:|
79
- | 0.5503 | 1.0 | 2851 | 0.6558 | 0.7029 | 0.7053 | 0.7029 | 0.7029 | 0.7029 |
80
 
81
 
82
  ### Framework versions
 
24
  metrics:
25
  - name: Accuracy
26
  type: accuracy
27
+ value: 0.6895962227287529
28
  - name: Precision
29
  type: precision
30
+ value: 0.6932981822495374
31
  - name: Recall
32
  type: recall
33
+ value: 0.6895962227287529
34
  ---
35
 
36
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
40
 
41
  This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the tweet_eval dataset.
42
  It achieves the following results on the evaluation set:
43
+ - Loss: 0.6998
44
+ - Accuracy: 0.6896
45
+ - Precision: 0.6933
46
+ - Recall: 0.6896
47
+ - Micro-avg-recall: 0.6896
48
+ - Micro-avg-precision: 0.6896
49
 
50
  ## Model description
51
 
 
76
 
77
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | Micro-avg-recall | Micro-avg-precision |
78
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:----------------:|:-------------------:|
79
+ | 0.5756 | 1.0 | 2851 | 0.6998 | 0.6896 | 0.6933 | 0.6896 | 0.6896 | 0.6896 |
80
 
81
 
82
  ### Framework versions