--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - tweet_eval metrics: - accuracy - precision - recall model-index: - name: bert-1-epoch-sentiment results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval config: sentiment split: test args: sentiment metrics: - name: Accuracy type: accuracy value: 0.6895962227287529 - name: Precision type: precision value: 0.6932981822495374 - name: Recall type: recall value: 0.6895962227287529 --- # bert-1-epoch-sentiment This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.6998 - Accuracy: 0.6896 - Precision: 0.6933 - Recall: 0.6896 - Micro-avg-recall: 0.6896 - Micro-avg-precision: 0.6896 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | Micro-avg-recall | Micro-avg-precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:----------------:|:-------------------:| | 0.5756 | 1.0 | 2851 | 0.6998 | 0.6896 | 0.6933 | 0.6896 | 0.6896 | 0.6896 | ### Framework versions - Transformers 4.33.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3