--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - tweet_eval metrics: - accuracy - precision - recall model-index: - name: bert-5-epoch-sentiment results: - task: name: Text Classification type: text-classification dataset: name: tweet_eval type: tweet_eval config: sentiment split: test args: sentiment metrics: - name: Accuracy type: accuracy value: 0.6754314555519375 - name: Precision type: precision value: 0.6779994190554874 - name: Recall type: recall value: 0.6754314555519375 --- # bert-5-epoch-sentiment This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 2.5187 - Accuracy: 0.6754 - Precision: 0.6780 - Recall: 0.6754 - Micro-avg-recall: 0.6754 - Micro-avg-precision: 0.6754 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | Micro-avg-recall | Micro-avg-precision | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:----------------:|:-------------------:| | 0.0381 | 1.0 | 2851 | 2.4402 | 0.6588 | 0.6676 | 0.6588 | 0.6588 | 0.6588 | | 0.0401 | 2.0 | 5702 | 2.7499 | 0.6527 | 0.6647 | 0.6527 | 0.6527 | 0.6527 | | 0.1609 | 3.0 | 8553 | 2.0380 | 0.6687 | 0.6724 | 0.6687 | 0.6687 | 0.6687 | | 0.1811 | 4.0 | 11404 | 2.3206 | 0.6679 | 0.6753 | 0.6679 | 0.6679 | 0.6679 | | 0.0987 | 5.0 | 14255 | 2.5187 | 0.6754 | 0.6780 | 0.6754 | 0.6754 | 0.6754 | ### Framework versions - Transformers 4.33.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3