Priyanka-Balivada commited on
Commit
a3ef32c
·
1 Parent(s): ca50867

electra-3-epoch-sentiment

Browse files
Files changed (2) hide show
  1. README.md +89 -0
  2. training_args.bin +3 -0
README.md ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: google/electra-small-discriminator
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - tweet_eval
8
+ metrics:
9
+ - accuracy
10
+ - precision
11
+ - recall
12
+ model-index:
13
+ - name: electra-3-epoch-sentiment
14
+ results:
15
+ - task:
16
+ name: Text Classification
17
+ type: text-classification
18
+ dataset:
19
+ name: tweet_eval
20
+ type: tweet_eval
21
+ config: sentiment
22
+ split: test
23
+ args: sentiment
24
+ metrics:
25
+ - name: Accuracy
26
+ type: accuracy
27
+ value: 0.6927710843373494
28
+ - name: Precision
29
+ type: precision
30
+ value: 0.6963974153224572
31
+ - name: Recall
32
+ type: recall
33
+ value: 0.6927710843373494
34
+ ---
35
+
36
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
37
+ should probably proofread and complete it, then remove this comment. -->
38
+
39
+ # electra-3-epoch-sentiment
40
+
41
+ This model is a fine-tuned version of [google/electra-small-discriminator](https://huggingface.co/google/electra-small-discriminator) on the tweet_eval dataset.
42
+ It achieves the following results on the evaluation set:
43
+ - Loss: 0.7127
44
+ - Accuracy: 0.6928
45
+ - Precision: 0.6964
46
+ - Recall: 0.6928
47
+ - Micro-avg-recall: 0.6928
48
+ - Micro-avg-precision: 0.6928
49
+
50
+ ## Model description
51
+
52
+ More information needed
53
+
54
+ ## Intended uses & limitations
55
+
56
+ More information needed
57
+
58
+ ## Training and evaluation data
59
+
60
+ More information needed
61
+
62
+ ## Training procedure
63
+
64
+ ### Training hyperparameters
65
+
66
+ The following hyperparameters were used during training:
67
+ - learning_rate: 2e-05
68
+ - train_batch_size: 16
69
+ - eval_batch_size: 16
70
+ - seed: 42
71
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
72
+ - lr_scheduler_type: linear
73
+ - num_epochs: 3
74
+
75
+ ### Training results
76
+
77
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | Micro-avg-recall | Micro-avg-precision |
78
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:----------------:|:-------------------:|
79
+ | 0.6214 | 1.0 | 2851 | 0.6877 | 0.6987 | 0.6987 | 0.6987 | 0.6987 | 0.6987 |
80
+ | 0.6445 | 2.0 | 5702 | 0.7335 | 0.6853 | 0.6915 | 0.6853 | 0.6853 | 0.6853 |
81
+ | 0.5909 | 3.0 | 8553 | 0.7127 | 0.6928 | 0.6964 | 0.6928 | 0.6928 | 0.6928 |
82
+
83
+
84
+ ### Framework versions
85
+
86
+ - Transformers 4.33.0
87
+ - Pytorch 2.0.0
88
+ - Datasets 2.1.0
89
+ - Tokenizers 0.13.3
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de74029f2d6ec68a57fb6087ff6d1d5c1a73f03840094fca34264347b6761365
3
+ size 4027