Delete legalnlp/get_premodel.py
Browse files- legalnlp/get_premodel.py +0 -77
legalnlp/get_premodel.py
DELETED
|
@@ -1,77 +0,0 @@
|
|
| 1 |
-
import wget
|
| 2 |
-
import zipfile
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
def get_premodel(model):
|
| 6 |
-
modelv = False
|
| 7 |
-
d = None
|
| 8 |
-
if model == 'bert':
|
| 9 |
-
# BERTikal
|
| 10 |
-
url = 'https://ndownloader.figshare.com/files/30446754'
|
| 11 |
-
filename = wget.download(url, out=d)
|
| 12 |
-
if d == None:
|
| 13 |
-
d = ''
|
| 14 |
-
with zipfile.ZipFile(d+filename, "r") as zip_ref:
|
| 15 |
-
zip_ref.extractall(d+filename.replace('.zip', ''))
|
| 16 |
-
modelv = True
|
| 17 |
-
# Download files to use in Word2Vec and Doc2Vec
|
| 18 |
-
if model == 'wodc':
|
| 19 |
-
url2 = 'https://ndownloader.figshare.com/files/30446736'
|
| 20 |
-
filename2 = wget.download(url2, out=d)
|
| 21 |
-
if d == None:
|
| 22 |
-
d = ''
|
| 23 |
-
with zipfile.ZipFile(d+filename2, "r") as zip_ref:
|
| 24 |
-
zip_ref.extractall(d+filename2.replace('.zip', ''))
|
| 25 |
-
modelv = True
|
| 26 |
-
|
| 27 |
-
# Download Word2Vec of NILC
|
| 28 |
-
if model == 'w2vnilc':
|
| 29 |
-
url2 = 'http://143.107.183.175:22980/download.php?file=embeddings/word2vec/cbow_s100.zip'
|
| 30 |
-
filename2 = wget.download(url2, out=d)
|
| 31 |
-
if d == None:
|
| 32 |
-
d = ''
|
| 33 |
-
with zipfile.ZipFile(d+filename2, "r") as zip_ref:
|
| 34 |
-
zip_ref.extractall(d+filename2.replace('.zip', ''))
|
| 35 |
-
modelv = True
|
| 36 |
-
# Download files to use Phraser model
|
| 37 |
-
if model == 'phraser':
|
| 38 |
-
url2 = 'https://ndownloader.figshare.com/files/30446727'
|
| 39 |
-
filename2 = wget.download(url2, out=d)
|
| 40 |
-
if d == None:
|
| 41 |
-
d = ''
|
| 42 |
-
with zipfile.ZipFile(d+filename2, "r") as zip_ref:
|
| 43 |
-
zip_ref.extractall(d+filename2.replace('.zip', ''))
|
| 44 |
-
modelv = True
|
| 45 |
-
# Download files to use Fast Text model
|
| 46 |
-
if model == 'fasttext':
|
| 47 |
-
url2 = 'https://ndownloader.figshare.com/files/30446739'
|
| 48 |
-
filename2 = wget.download(url2, out=d)
|
| 49 |
-
if d == None:
|
| 50 |
-
d = ''
|
| 51 |
-
with zipfile.ZipFile(d+filename2, "r") as zip_ref:
|
| 52 |
-
zip_ref.extractall(d+filename2.replace('.zip', ''))
|
| 53 |
-
modelv = True
|
| 54 |
-
# Download files to use NeuralMind pre-model base
|
| 55 |
-
if model == 'neuralmindbase':
|
| 56 |
-
url2 = 'https://neuralmind-ai.s3.us-east-2.amazonaws.com/nlp/bert-base-portuguese-cased/bert-base-portuguese-cased_pytorch_checkpoint.zip'
|
| 57 |
-
url_vocab = 'https://neuralmind-ai.s3.us-east-2.amazonaws.com/nlp/bert-base-portuguese-cased/vocab.txt'
|
| 58 |
-
filename2 = wget.download(url2, out=d)
|
| 59 |
-
filename3 = wget.download(url_vocab, out=d)
|
| 60 |
-
if d == None:
|
| 61 |
-
d = ''
|
| 62 |
-
with zipfile.ZipFile(d+filename2, "r") as zip_ref:
|
| 63 |
-
zip_ref.extractall(d+filename2.replace('.zip', ''))
|
| 64 |
-
modelv = True
|
| 65 |
-
# Download files to use NeuralMind pre-model large
|
| 66 |
-
if model == 'neuralmindlarge':
|
| 67 |
-
url2 = 'https://neuralmind-ai.s3.us-east-2.amazonaws.com/nlp/bert-large-portuguese-cased/bert-large-portuguese-cased_pytorch_checkpoint.zip'
|
| 68 |
-
url_vocab = 'https://neuralmind-ai.s3.us-east-2.amazonaws.com/nlp/bert-large-portuguese-cased/vocab.txt'
|
| 69 |
-
filename2 = wget.download(url2, out=d)
|
| 70 |
-
filename3 = wget.download(url_vocab, out=d)
|
| 71 |
-
if d == None:
|
| 72 |
-
d = ''
|
| 73 |
-
with zipfile.ZipFile(d+filename2, "r") as zip_ref:
|
| 74 |
-
zip_ref.extractall(d+filename2.replace('.zip', ''))
|
| 75 |
-
modelv = True
|
| 76 |
-
# If don't download any model return false, else return true
|
| 77 |
-
return modelv
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|