Commit
·
3dc443c
1
Parent(s):
7e435ad
Update README.md
Browse files
README.md
CHANGED
|
@@ -6,6 +6,8 @@ tags:
|
|
| 6 |
---
|
| 7 |
---
|
| 8 |
|
|
|
|
|
|
|
| 9 |
import contextlib
|
| 10 |
import os
|
| 11 |
from matplotlib import pyplot as plt
|
|
@@ -28,7 +30,11 @@ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
|
| 28 |
tokenizer = AutoTokenizer.from_pretrained("janpase97/codeformer-pretrained")
|
| 29 |
|
| 30 |
model = AutoModelForSeq2SeqLM.from_pretrained("janpase97/codeformer-pretrained")
|
|
|
|
| 31 |
|
|
|
|
|
|
|
|
|
|
| 32 |
def check_graphics_api(target_app_name):
|
| 33 |
graphics_api = None
|
| 34 |
|
|
@@ -43,9 +49,11 @@ def check_graphics_api(target_app_name):
|
|
| 43 |
elif "vulkan" in output:
|
| 44 |
graphics_api = "VULKAN"
|
| 45 |
return graphics_api
|
| 46 |
-
|
| 47 |
|
| 48 |
# Get the target application's process object
|
|
|
|
|
|
|
| 49 |
def get_target_app_process(target_app_name):
|
| 50 |
return next(
|
| 51 |
(
|
|
@@ -55,8 +63,11 @@ def get_target_app_process(target_app_name):
|
|
| 55 |
),
|
| 56 |
None,
|
| 57 |
)
|
|
|
|
| 58 |
|
| 59 |
# Attach the AI to the application's process by PID
|
|
|
|
|
|
|
| 60 |
def attach_ai_to_app_pid(target_app_process):
|
| 61 |
if target_app_process is not None:
|
| 62 |
print(f"AI is attached to the application's process with PID: {target_app_process.pid}")
|
|
@@ -64,20 +75,29 @@ def attach_ai_to_app_pid(target_app_process):
|
|
| 64 |
else:
|
| 65 |
print("Could not find the target application's process to attach the AI.")
|
| 66 |
return False
|
|
|
|
| 67 |
|
| 68 |
# Check if the targeted application is running
|
|
|
|
|
|
|
| 69 |
def is_target_app_running(target_app_name):
|
| 70 |
return any(
|
| 71 |
process.info['name'] == target_app_name
|
| 72 |
for process in psutil.process_iter(['name'])
|
| 73 |
)
|
|
|
|
| 74 |
|
| 75 |
# Create the directory if it doesn't exist
|
|
|
|
|
|
|
| 76 |
directory = r"G:\Epic Games\GTAV\GTA5_AI\trained_models"
|
| 77 |
if not os.path.exists(directory):
|
| 78 |
os.makedirs(directory)
|
|
|
|
| 79 |
|
| 80 |
# Define the neural network model
|
|
|
|
|
|
|
| 81 |
class NanoCircuit(nn.Module):
|
| 82 |
def __init__(self):
|
| 83 |
super(NanoCircuit, self).__init__()
|
|
@@ -89,22 +109,33 @@ class NanoCircuit(nn.Module):
|
|
| 89 |
x = torch.relu(self.fc1(x))
|
| 90 |
x = self.fc2(x)
|
| 91 |
return x
|
|
|
|
| 92 |
|
| 93 |
# Set the device to GPU if available
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
# Load the MNIST dataset
|
|
|
|
|
|
|
| 97 |
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
|
| 98 |
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
|
| 99 |
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
|
| 100 |
-
|
| 101 |
|
| 102 |
# Initialize the model and move it to the GPU
|
|
|
|
|
|
|
| 103 |
model = NanoCircuit().to(device)
|
| 104 |
criterion = nn.CrossEntropyLoss()
|
| 105 |
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
|
|
|
|
| 106 |
|
| 107 |
# Train the model on the GPU with a data cap
|
|
|
|
|
|
|
| 108 |
def train_with_data_cap(model, data_loader, criterion, optimizer, device, data_cap_gb):
|
| 109 |
data_processed = 0
|
| 110 |
data_cap_bytes = data_cap_gb * (1024 ** 3)
|
|
@@ -135,15 +166,19 @@ def train_with_data_cap(model, data_loader, criterion, optimizer, device, data_c
|
|
| 135 |
print(f"Data processed: {data_processed / (1024 ** 3):.2f} GB")
|
| 136 |
|
| 137 |
return model
|
| 138 |
-
|
| 139 |
|
| 140 |
# Save the updated model as a .onnx file
|
|
|
|
|
|
|
| 141 |
def save_model(model, filepath):
|
| 142 |
dummy_input = torch.randn(1, 1, 28, 28).to(device)
|
| 143 |
torch.onnx.export(model, dummy_input, filepath, input_names=['input'], output_names=['output'], opset_version=11)
|
| 144 |
-
|
| 145 |
|
| 146 |
# Train the model with a 1 GB data cap
|
|
|
|
|
|
|
| 147 |
trained_model = train_with_data_cap(model, train_loader, criterion, optimizer, device, data_cap_gb=50)
|
| 148 |
save_model(trained_model, os.path.join(directory, 'GTA5_TRAINED.onnx'))
|
| 149 |
|
|
@@ -208,8 +243,11 @@ def train_with_data_cap(model, data_loader, criterion, optimizer, device, data_c
|
|
| 208 |
print(f"Data processed: {data_processed / (1024 ** 3):.2f} GB")
|
| 209 |
|
| 210 |
return model
|
|
|
|
| 211 |
|
| 212 |
# Train the model with a 10 GB data cap
|
|
|
|
|
|
|
| 213 |
trained_model = train_with_data_cap(model, train_loader, criterion, optimizer, os.device_encoding, data_cap_gb=10)
|
| 214 |
save_model(trained_model, os.path.join(directory, 'GTA5_TRAINED.onnx'))
|
| 215 |
|
|
@@ -325,9 +363,11 @@ while True:
|
|
| 325 |
if not is_target_app_running(target_app_name):
|
| 326 |
print("Target application not detected in 5 seconds. Shutting down the AI.")
|
| 327 |
break
|
|
|
|
| 328 |
|
| 329 |
-
|
| 330 |
-
|
|
|
|
| 331 |
np.random.seed(0)
|
| 332 |
original_data = np.random.normal(0, 1, 100)
|
| 333 |
trained_data = np.random.normal(0.5, 1, 100)
|
|
@@ -368,4 +408,5 @@ while True:
|
|
| 368 |
|
| 369 |
if not is_target_app_running(target_app_name):
|
| 370 |
print("Target application not detected in 5 seconds. Shutting down the AI.")
|
| 371 |
-
break
|
|
|
|
|
|
| 6 |
---
|
| 7 |
---
|
| 8 |
|
| 9 |
+
# Initialize Model and Tokenizer
|
| 10 |
+
```python
|
| 11 |
import contextlib
|
| 12 |
import os
|
| 13 |
from matplotlib import pyplot as plt
|
|
|
|
| 30 |
tokenizer = AutoTokenizer.from_pretrained("janpase97/codeformer-pretrained")
|
| 31 |
|
| 32 |
model = AutoModelForSeq2SeqLM.from_pretrained("janpase97/codeformer-pretrained")
|
| 33 |
+
```
|
| 34 |
|
| 35 |
+
# Check for the graphics API
|
| 36 |
+
|
| 37 |
+
```python
|
| 38 |
def check_graphics_api(target_app_name):
|
| 39 |
graphics_api = None
|
| 40 |
|
|
|
|
| 49 |
elif "vulkan" in output:
|
| 50 |
graphics_api = "VULKAN"
|
| 51 |
return graphics_api
|
| 52 |
+
```
|
| 53 |
|
| 54 |
# Get the target application's process object
|
| 55 |
+
|
| 56 |
+
```python
|
| 57 |
def get_target_app_process(target_app_name):
|
| 58 |
return next(
|
| 59 |
(
|
|
|
|
| 63 |
),
|
| 64 |
None,
|
| 65 |
)
|
| 66 |
+
```
|
| 67 |
|
| 68 |
# Attach the AI to the application's process by PID
|
| 69 |
+
|
| 70 |
+
```python
|
| 71 |
def attach_ai_to_app_pid(target_app_process):
|
| 72 |
if target_app_process is not None:
|
| 73 |
print(f"AI is attached to the application's process with PID: {target_app_process.pid}")
|
|
|
|
| 75 |
else:
|
| 76 |
print("Could not find the target application's process to attach the AI.")
|
| 77 |
return False
|
| 78 |
+
```
|
| 79 |
|
| 80 |
# Check if the targeted application is running
|
| 81 |
+
|
| 82 |
+
```python
|
| 83 |
def is_target_app_running(target_app_name):
|
| 84 |
return any(
|
| 85 |
process.info['name'] == target_app_name
|
| 86 |
for process in psutil.process_iter(['name'])
|
| 87 |
)
|
| 88 |
+
```
|
| 89 |
|
| 90 |
# Create the directory if it doesn't exist
|
| 91 |
+
|
| 92 |
+
```python
|
| 93 |
directory = r"G:\Epic Games\GTAV\GTA5_AI\trained_models"
|
| 94 |
if not os.path.exists(directory):
|
| 95 |
os.makedirs(directory)
|
| 96 |
+
```
|
| 97 |
|
| 98 |
# Define the neural network model
|
| 99 |
+
|
| 100 |
+
```python
|
| 101 |
class NanoCircuit(nn.Module):
|
| 102 |
def __init__(self):
|
| 103 |
super(NanoCircuit, self).__init__()
|
|
|
|
| 109 |
x = torch.relu(self.fc1(x))
|
| 110 |
x = self.fc2(x)
|
| 111 |
return x
|
| 112 |
+
```
|
| 113 |
|
| 114 |
# Set the device to GPU if available
|
| 115 |
+
|
| 116 |
+
```python
|
| 117 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "CPU")
|
| 118 |
+
```
|
| 119 |
|
| 120 |
# Load the MNIST dataset
|
| 121 |
+
|
| 122 |
+
```python
|
| 123 |
transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))])
|
| 124 |
train_dataset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
|
| 125 |
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
|
| 126 |
+
```
|
| 127 |
|
| 128 |
# Initialize the model and move it to the GPU
|
| 129 |
+
|
| 130 |
+
```python
|
| 131 |
model = NanoCircuit().to(device)
|
| 132 |
criterion = nn.CrossEntropyLoss()
|
| 133 |
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
|
| 134 |
+
```
|
| 135 |
|
| 136 |
# Train the model on the GPU with a data cap
|
| 137 |
+
|
| 138 |
+
```python
|
| 139 |
def train_with_data_cap(model, data_loader, criterion, optimizer, device, data_cap_gb):
|
| 140 |
data_processed = 0
|
| 141 |
data_cap_bytes = data_cap_gb * (1024 ** 3)
|
|
|
|
| 166 |
print(f"Data processed: {data_processed / (1024 ** 3):.2f} GB")
|
| 167 |
|
| 168 |
return model
|
| 169 |
+
```
|
| 170 |
|
| 171 |
# Save the updated model as a .onnx file
|
| 172 |
+
|
| 173 |
+
```python
|
| 174 |
def save_model(model, filepath):
|
| 175 |
dummy_input = torch.randn(1, 1, 28, 28).to(device)
|
| 176 |
torch.onnx.export(model, dummy_input, filepath, input_names=['input'], output_names=['output'], opset_version=11)
|
| 177 |
+
```
|
| 178 |
|
| 179 |
# Train the model with a 1 GB data cap
|
| 180 |
+
|
| 181 |
+
```python
|
| 182 |
trained_model = train_with_data_cap(model, train_loader, criterion, optimizer, device, data_cap_gb=50)
|
| 183 |
save_model(trained_model, os.path.join(directory, 'GTA5_TRAINED.onnx'))
|
| 184 |
|
|
|
|
| 243 |
print(f"Data processed: {data_processed / (1024 ** 3):.2f} GB")
|
| 244 |
|
| 245 |
return model
|
| 246 |
+
```
|
| 247 |
|
| 248 |
# Train the model with a 10 GB data cap
|
| 249 |
+
|
| 250 |
+
```python
|
| 251 |
trained_model = train_with_data_cap(model, train_loader, criterion, optimizer, os.device_encoding, data_cap_gb=10)
|
| 252 |
save_model(trained_model, os.path.join(directory, 'GTA5_TRAINED.onnx'))
|
| 253 |
|
|
|
|
| 363 |
if not is_target_app_running(target_app_name):
|
| 364 |
print("Target application not detected in 5 seconds. Shutting down the AI.")
|
| 365 |
break
|
| 366 |
+
```
|
| 367 |
|
| 368 |
+
# Generate some random data for the boxplots
|
| 369 |
+
|
| 370 |
+
```python
|
| 371 |
np.random.seed(0)
|
| 372 |
original_data = np.random.normal(0, 1, 100)
|
| 373 |
trained_data = np.random.normal(0.5, 1, 100)
|
|
|
|
| 408 |
|
| 409 |
if not is_target_app_running(target_app_name):
|
| 410 |
print("Target application not detected in 5 seconds. Shutting down the AI.")
|
| 411 |
+
break
|
| 412 |
+
```
|