File size: 6,539 Bytes
f0f2280 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
"""
Script to prepare and package the B2B Ecommerce NER model for Hugging Face upload
"""
import os
import shutil
import json
from pathlib import Path
import sys
# Add parent directory to path to import our modules
sys.path.append(str(Path(__file__).parent.parent))
def prepare_huggingface_model():
"""Prepare the model for Hugging Face upload"""
print("Preparing B2B Ecommerce NER model for Hugging Face...")
# Paths
base_dir = Path(__file__).parent.parent
hf_dir = Path(__file__).parent
spacy_model_path = base_dir / "models" / "food_ner_model"
catalog_path = base_dir / "data" / "product_catalog.csv"
print(f"Base directory: {base_dir}")
print(f"HuggingFace directory: {hf_dir}")
print(f"spaCy model path: {spacy_model_path}")
print(f"Catalog path: {catalog_path}")
# Check if required files exist
if not spacy_model_path.exists():
print(f"β spaCy model not found at {spacy_model_path}")
print("Please train the model first using: python src/train_model.py")
return False
if not catalog_path.exists():
print(f"β Product catalog not found at {catalog_path}")
print("Please ensure product_catalog.csv exists in the data directory")
return False
print("β
Required files found")
# Copy spaCy model
target_spacy_path = hf_dir / "spacy_model"
if target_spacy_path.exists():
shutil.rmtree(target_spacy_path)
print(f"Copying spaCy model to {target_spacy_path}")
shutil.copytree(spacy_model_path, target_spacy_path)
# Copy product catalog
target_catalog_path = hf_dir / "product_catalog.csv"
print(f"Copying product catalog to {target_catalog_path}")
shutil.copy(catalog_path, target_catalog_path)
# Update model configuration with actual paths
config_path = hf_dir / "config.json"
with open(config_path, 'r') as f:
config = json.load(f)
config["spacy_model_path"] = "spacy_model"
config["catalog_path"] = "product_catalog.csv"
config["prepared_for_upload"] = True
with open(config_path, 'w') as f:
json.dump(config, f, indent=2)
print("β
Model prepared successfully!")
print("\nNext steps:")
print("1. Test the model using: python huggingface_model/example.py")
print("2. Upload to Hugging Face using the upload script")
return True
def test_prepared_model():
"""Test the prepared model"""
print("\nTesting prepared model...")
try:
from model import B2BEcommerceNER
# Initialize model with local paths
model = B2BEcommerceNER(
model_path="spacy_model",
catalog_path="product_catalog.csv"
)
# Test prediction
test_texts = ["Order 5 Coke Zero 650ML"]
results = model.predict(test_texts)
print("β
Model test successful!")
print("Sample result:", json.dumps(results[0], indent=2, default=str))
return True
except Exception as e:
print(f"β Model test failed: {e}")
return False
def create_upload_script():
"""Create a script for uploading to Hugging Face"""
upload_script = '''#!/usr/bin/env python3
"""
Upload the B2B Ecommerce NER model to Hugging Face Hub
"""
from huggingface_hub import HfApi, create_repo
import os
from pathlib import Path
def upload_to_huggingface(repo_name: str, token: str = None):
"""
Upload the model to Hugging Face Hub
Args:
repo_name: Name of the repository (e.g., "username/b2b-ecommerce-ner")
token: Hugging Face token (or set HF_TOKEN environment variable)
"""
if token is None:
token = os.getenv("HF_TOKEN")
if not token:
print("Please provide a Hugging Face token or set HF_TOKEN environment variable")
return False
api = HfApi()
try:
# Create repository
print(f"Creating repository: {repo_name}")
create_repo(repo_name, token=token, exist_ok=True)
# Upload all files in the current directory
model_dir = Path(__file__).parent
print("Uploading files...")
api.upload_folder(
folder_path=model_dir,
repo_id=repo_name,
token=token,
repo_type="model"
)
print(f"β
Model uploaded successfully to: https://huggingface.co/{repo_name}")
return True
except Exception as e:
print(f"β Upload failed: {e}")
return False
if __name__ == "__main__":
import sys
if len(sys.argv) != 2:
print("Usage: python upload.py <repo_name>")
print("Example: python upload.py username/b2b-ecommerce-ner")
sys.exit(1)
repo_name = sys.argv[1]
success = upload_to_huggingface(repo_name)
if success:
print("\\nYour model is now available on Hugging Face!")
print(f"You can use it with: B2BEcommerceNER.from_pretrained('{repo_name}')")
else:
print("\\nUpload failed. Please check your token and try again.")
'''
upload_script_path = Path(__file__).parent / "upload.py"
with open(upload_script_path, 'w') as f:
f.write(upload_script)
# Make it executable
os.chmod(upload_script_path, 0o755)
print(f"β
Upload script created at {upload_script_path}")
def main():
"""Main function to prepare the model"""
print("B2B Ecommerce NER - Hugging Face Preparation")
print("=" * 50)
# Change to the HuggingFace directory
os.chdir(Path(__file__).parent)
# Prepare the model
if not prepare_huggingface_model():
return False
# Test the model
if not test_prepared_model():
return False
# Create upload script
create_upload_script()
print("\nπ Model preparation complete!")
print("\nFiles in huggingface_model directory:")
for file_path in Path(".").iterdir():
if file_path.is_file():
print(f" π {file_path.name}")
elif file_path.is_dir():
print(f" π {file_path.name}/")
print("\nπ Usage instructions:")
print("1. Test locally: python example.py")
print("2. Upload to HF: python upload.py username/model-name")
print("3. Use remotely: B2BEcommerceNER.from_pretrained('username/model-name')")
return True
if __name__ == "__main__":
main()
|