Push model
Browse files- README.md +37 -0
- a2c_panda_reach.zip +3 -0
- a2c_panda_reach/_stable_baselines3_version +1 -0
- a2c_panda_reach/data +106 -0
- a2c_panda_reach/policy.optimizer.pth +3 -0
- a2c_panda_reach/policy.pth +3 -0
- a2c_panda_reach/pytorch_variables.pth +3 -0
- a2c_panda_reach/system_info.txt +8 -0
- config.json +1 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReach-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReach-v3
|
16 |
+
type: PandaReach-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -2.00 +/- 0.77
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReach-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReach-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c_panda_reach.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4ea570e6969911fbcd9fad303b7cf0254e02f3cf89f18cf15ff935ad5b843f2b
|
3 |
+
size 128132
|
a2c_panda_reach/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.4.0
|
a2c_panda_reach/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7711d875e8c0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7711d8757640>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 2000000,
|
23 |
+
"_total_timesteps": 2000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1735507341758232090,
|
28 |
+
"learning_rate": 0.001,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWV+wwAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgADAAAAAAAAA0GkPUn2uLxUekE+6nIdPRlsGqxDI0o+QGHAvMOHmT3kd+Q99jsVPVNOxzy0Iy0+4nRhPQO2v7wNrjU+F2nBu88xwzxqEkU+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+/x5MvTS+lrxrfwA+bt27PdWJkT22IRY+ZTxuPSyik736Qm4+FN+ePXiQRT2lrQM+6nIdPRlsGqxDI0o+3hf0u7QjrbzKzUQ+15qLu8uZwzx8vEU+cEDQPXXSub3LPYw+bGeaPPqBzbxeOCo+F2nBu88xwzxqEkU+6TqXPUmkUj02k/c91PzavCNioL0U3TY+F2nBu88xwzxqEkU+iwx1vdmS8j1GfYQ96nIdPRlsGqxDI0o+hY7Ou4Le0bw+XUU+RINGvbe0lT2H8P496nIdPRlsGqxDI0o+hY7Ou4Le0bw+XUU+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+kyD0PNNvk71wYu096nIdPRlsGqxDI0o+bGeaPPqBzbxeOCo+nJG8va24PL2BYHY+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+yzq3Pa9X3j2IRYE9hY7Ou4Le0bw+XUU+75qYPU31lD2KPGI+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+VVmfPDADxDzsQyo+cbvGvM3aob1U6TU+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+dtDKPTAETT2z7gk+cTenvHbDkz3Ro+Q9KXuLPXWGmbwcX/M96nIdPRlsGqxDI0o+guK8vf7nf7xUB3U+VVmfPDADxDzsQyo+bGeaPPqBzbxeOCo+6nIdPRlsGqxDI0o+F2nBu88xwzxqEkU+VVmfPDADxDzsQyo+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o++SioPTlnir36NB4+Q2q/vJpLm71ffeQ9GkyoPQU4Sz05jXU+SneZval8/z0w+ls+N1p1PJZqzLzwLk4+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgADAAAAAAAA5BIFPtlp+72EtTY+Xa8HPuBUBT4Jn3A+u9RRvXLv4z0xnxU8A2txPYgKYD0cjsY9g3bsPeX5or0e9PM8JTYavZaX+j1PmzY+acmjvZuzqL1u0Ig+rSwCPs08YT1vm/w999a5vWCkSrvZ5iE+vZy7Pd3CBT6ZsPM9nM6mPeQo8L3chXQ+wcbpPUF1BD23ZHs94f0Eviu7Az7f26Q9JhwGvoKOd7rhOoM+K0qsOqgynD1ll08+4WIVPrPRsb15LZk+KdGrvJzuP72eJ189NDq2vWClDz6DYGY+xlrPPbZmVz3PUo07IicWvkBrEL5pZDc+JMGbvYwZ/T0tuI0+96DRvRD1Dz6CmJU72hCKO4yJ4DxgUVk+JVVSvQ0XFb6J6ls+Bs37vWVm1j2CHR8+yeKnPakcVz36Bvg90DM6vQDYnL3doGI+vA2bPZ85TL1rWO89wU8FvMwH3ztVGzM+tqCEPXNHCL7RnUM9LWWYPc/s7DxBET091UmvvDAzD72u8ZA80UkPvhnpIL054I0+4DARPlMeGr2g+wA+GdVWPYFU3b02mJc+wwrOPcYpFj7Dc8Q8840FvidR6r0qp1U+rqqSPUW+AD45mFA+ap2evLeAOL3G9HY+zz6kvYImuz16u5899dW0vXjExz0n1Jg+jqjFvW469T0N6AE+foTbvVS3p72z0i4+076APTYFT73dCu09T9v7PaW7AL5RJ0w+zT51veO+yz2ge+U99HPlPbueGz2WMZM9BE4VvLsakz0+sV89hjPOPeycC7xM2AI9mbZ/PbdlBzp8q4c+nacWvuVYObx1uJg+HB+yvestDz7QFaw9ZogEvkejBb534SY+NxUFvs4NYD3m/kA+e7GRvTrtvT0vP4o+ue4ivWn6Hz1pLAA+/ymDvdqFQD3JCW8+UPMFvlTwiTw/e4Q+x9buPdnICL4DtDA+4uCxvFoB9r1Ji2A9jgwSPhHvWj0zmpE+PPAKvoW89j3rOk4+R1gRO8sWqb39UHQ+XwoFPifeijztB5g+lGgOS0BLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWAAYAAAAAAAADQaQ9Sfa4vFR6QT7qXQY/6H2Tv37Ui7/qch09GWwarEMjSj4AAAAAAAAAgAAAAABAYcC8w4eZPeR35D171iO/lVtEP1MRdL/2OxU9U07HPLQjLT63w7i+WrycP449or/idGE9A7a/vA2uNT5NzUO+WLuWv+Cwsr8XacG7zzHDPGoSRT7AfBa/AqSbP0jKtT7qch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAD/Hky9NL6WvGt/AD6L2Ey/hQoLvrn24r5u3bs91YmRPbYhFj7PqbS9HM8TP5k9fL9lPG49LKKTvfpCbj6GQjo91Q4/v4rbTz8U3549eJBFPaWtAz4ddqa+L5jivBhZs7/qch09GWwarEMjSj4AAAAAAAAAgAAAAADeF/S7tCOtvMrNRD7C0yO/pbD/vqoDrj7Xmou7y5nDPHy8RT5jxAO/Ng6cPwe8wz5wQNA9ddK5vcs9jD6TVXY+pqAVvqW0+j5sZ5o8+oHNvF44Kj7mfoq/a4mev55yob8XacG7zzHDPGoSRT7AfBa/AqSbP0jKtT7pOpc9SaRSPTaT9z0wbP06D86sPPyMtb/U/Nq8I2KgvRTdNj6+fgm/Wus+v4e5u74XacG7zzHDPGoSRT7AfBa/AqSbP0jKtT6LDHW92ZLyPUZ9hD1TDF+/b1FQPxMzdL/qch09GWwarEMjSj4AAAAAAAAAgAAAAACFjs67gt7RvD5dRT5E5h2/rJiav655uj5Eg0a9t7SVPYfw/j0tkTy/LMc5P3i7377qch09GWwarEMjSj4AAAAAAAAAgAAAAACFjs67gt7RvD5dRT5E5h2/rJiav655uj7qch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACTIPQ802+TvXBi7T3c/6M+eaEUv1ryor/qch09GWwarEMjSj4AAAAAAAAAgAAAAABsZ5o8+oHNvF44Kj7mfoq/a4mev55yob+ckby9rbg8vYFgdj7FZTU9en1evCoghT/qch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADLOrc9r1fePYhFgT0myWu+Uq0aP67Ku7+Fjs67gt7RvD5dRT5E5h2/rJiav655uj7vmpg9TfWUPYo8Yj7VS7g9vD0sPwO7rj3qch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAABVWZ88MAPEPOxDKj5zCY6/wsuaPwP1o79xu8a8zdqhvVTpNT5E1Tm/T3I/v+9eh7/qch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAB20Mo9MARNPbPuCT44nAm+95fluzr5uL9xN6e8dsOTPdGj5D2bOhG/EIApPw8Tdr8pe4s9dYaZvBxf8z1kot69qqIlvTXat7/qch09GWwarEMjSj4AAAAAAAAAgAAAAACC4ry9/ud/vFQHdT5jZGk9UJGKPw7Tgz9VWZ88MAPEPOxDKj5zCY6/wsuaPwP1o79sZ5o8+oHNvF44Kj7mfoq/a4mev55yob/qch09GWwarEMjSj4AAAAAAAAAgAAAAAAXacG7zzHDPGoSRT7AfBa/AqSbP0jKtT5VWZ88MAPEPOxDKj5zCY6/wsuaPwP1o7/qch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAD5KKg9OWeKvfo0Hj4gHga9ZEkdv7dTNr9Dar+8mkubvV995D3GJxW/Z6I3v38fdL8aTKg9BThLPTmNdT7pI7M+DIQ+vNjGSj9Kd5m9qXz/PTD6Wz4InPS+OmZfP1+7MT43WnU8lmrMvPAuTj4dohe+G9ecv6SbCT/qch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LQEsGhpRoEnSUUpR1Lg==",
|
33 |
+
"achieved_goal": "[[ 8.02021250e-02 -2.25783754e-02 1.88943207e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01]\n [-2.34838724e-02 7.49659762e-02 1.11556798e-01]\n [ 3.64341363e-02 2.43293401e-02 1.69081509e-01]\n [ 5.50431088e-02 -2.34022196e-02 1.77421764e-01]\n [-5.90242026e-03 2.38274615e-02 1.92453057e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01]\n [-4.98342477e-02 -1.84012428e-02 1.25486061e-01]\n [ 9.17309374e-02 7.10636750e-02 1.46612972e-01]\n [ 5.81630655e-02 -7.20866621e-02 2.32677370e-01]\n [ 7.75739253e-02 4.82334793e-02 1.28592089e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01]\n [-7.44913425e-03 -2.11351886e-02 1.92191273e-01]\n [-4.26040171e-03 2.38770451e-02 1.93101823e-01]\n [ 1.01685405e-01 -9.07334462e-02 2.73908943e-01]\n [ 1.88481435e-02 -2.50863917e-02 1.66230649e-01]\n [-5.90242026e-03 2.38274615e-02 1.92453057e-01]\n [ 7.38428310e-02 5.14262058e-02 1.20886251e-01]\n [-2.67318860e-02 -7.83121809e-02 1.78577721e-01]\n [-5.90242026e-03 2.38274615e-02 1.92453057e-01]\n [-5.98264150e-02 1.18444152e-01 6.46920651e-02]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01]\n [-6.30361075e-03 -2.56187953e-02 1.92738503e-01]\n [-4.84650284e-02 7.30985925e-02 1.24482207e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01]\n [-6.30361075e-03 -2.56187953e-02 1.92738503e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01]\n [ 2.98006888e-02 -7.19906315e-02 1.15910411e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01]\n [ 1.88481435e-02 -2.50863917e-02 1.66230649e-01]\n [-9.20746028e-02 -4.60745580e-02 2.40602508e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01]\n [ 8.94676074e-02 1.08565681e-01 6.31209016e-02]\n [-6.30361075e-03 -2.56187953e-02 1.92738503e-01]\n [ 7.45142624e-02 7.27334991e-02 2.20934063e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01]\n [ 1.94517765e-02 2.39273012e-02 1.66274726e-01]\n [-2.42593009e-02 -7.90306106e-02 1.77647889e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01]\n [ 9.90304202e-02 5.00528216e-02 1.34699628e-01]\n [-2.04121787e-02 7.21501559e-02 1.11640580e-01]\n [ 6.81060031e-02 -1.87408719e-02 1.18833750e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01]\n [-9.22289044e-02 -1.56192761e-02 2.39285767e-01]\n [ 1.94517765e-02 2.39273012e-02 1.66274726e-01]\n [ 1.88481435e-02 -2.50863917e-02 1.66230649e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01]\n [-5.90242026e-03 2.38274615e-02 1.92453057e-01]\n [ 1.94517765e-02 2.39273012e-02 1.66274726e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01]\n [ 8.21093991e-02 -6.75796941e-02 1.54498965e-01]\n [-2.33660992e-02 -7.58277923e-02 1.11567251e-01]\n [ 8.21764022e-02 4.96139713e-02 2.39796534e-01]\n [-7.49345571e-02 1.24749489e-01 2.14821577e-01]\n [ 1.49751222e-02 -2.49531679e-02 2.01350927e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01]]",
|
34 |
+
"desired_goal": "[[ 0.12995487 -0.12276048 0.1784268 ]\n [ 0.1325049 0.13020658 0.23498167]\n [-0.05122827 0.11129655 0.00913219]\n [ 0.05893994 0.05469754 0.09695074]\n [ 0.11546042 -0.0795782 0.02977949]\n [-0.03764929 0.12235944 0.17832683]\n [-0.079974 -0.08237382 0.2672152 ]\n [ 0.12712355 0.05498962 0.12334334]\n [-0.09074204 -0.00309207 0.15810718]\n [ 0.09160755 0.13062616 0.11898918]\n [ 0.08144876 -0.11726549 0.23879188]\n [ 0.11414862 0.03233838 0.06137535]\n [-0.12987472 0.12864368 0.0804975 ]\n [-0.13096675 -0.00094435 0.2563086 ]\n [ 0.00131447 0.07626849 0.20272596]\n [ 0.145885 -0.08682575 0.29917505]\n [-0.02097376 -0.04685842 0.05448114]\n [-0.0889782 0.1402793 0.22497754]\n [ 0.10124736 0.05258819 0.00431285]\n [-0.14663365 -0.14103413 0.17909397]\n [-0.07605198 0.12358388 0.27679577]\n [-0.1023578 0.14058328 0.0045653 ]\n [ 0.00421343 0.02740934 0.21222448]\n [-0.05135073 -0.14559574 0.21476187]\n [-0.12294964 0.10468749 0.155386 ]\n [ 0.08197553 0.05251757 0.12110706]\n [-0.04545957 -0.07658386 0.22131677]\n [ 0.07570979 -0.04985964 0.11686786]\n [-0.00813669 0.00680635 0.17490895]\n [ 0.06475966 -0.13308506 0.04775793]\n [ 0.07441173 0.02892151 0.04615903]\n [-0.02139751 -0.03496093 0.01769337]\n [-0.13993002 -0.0392848 0.2771013 ]\n [ 0.141788 -0.03762658 0.12595987]\n [ 0.05244932 -0.10807133 0.29608315]\n [ 0.10060646 0.14664373 0.02398098]\n [-0.1304243 -0.1144126 0.2086455 ]\n [ 0.07161461 0.12572582 0.20370568]\n [-0.01936217 -0.04504463 0.24116811]\n [-0.08019792 0.09138204 0.0779943 ]\n [-0.08829872 0.0975427 0.2984936 ]\n [-0.0965129 0.11974035 0.12686177]\n [-0.1071863 -0.08189264 0.17072563]\n [ 0.06286397 -0.05054208 0.11574338]\n [ 0.12297689 -0.1257158 0.19936873]\n [-0.05987434 0.09948518 0.1120522 ]\n [ 0.11203757 0.03799317 0.07187192]\n [-0.00911284 0.07182833 0.05461239]\n [ 0.10068421 -0.0085213 0.03194456]\n [ 0.06243 0.0005165 0.2649802 ]\n [-0.14712377 -0.0113127 0.2982823 ]\n [-0.0869734 0.1398236 0.08402598]\n [-0.12942657 -0.13050567 0.16296946]\n [-0.12996374 0.05470067 0.18847236]\n [-0.0711393 0.09273763 0.2700133 ]\n [-0.03977844 0.03905717 0.12516941]\n [-0.06404494 0.04700265 0.23343576]\n [-0.13081098 0.01683823 0.2587528 ]\n [ 0.11662059 -0.13357867 0.17256169]\n [-0.02171368 -0.12011977 0.05482033]\n [ 0.14262602 0.05345065 0.28437957]\n [-0.13568205 0.12047676 0.20139663]\n [ 0.00221779 -0.08256301 0.2385902 ]\n [ 0.12992238 0.01695163 0.29693547]]",
|
35 |
+
"observation": "[[ 8.02021250e-02 -2.25783754e-02 1.88943207e-01 5.24870515e-01\n -1.15227985e+00 -1.09242225e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [-2.34838724e-02 7.49659762e-02 1.11556798e-01 -6.39991462e-01\n 7.67022431e-01 -9.53389347e-01]\n [ 3.64341363e-02 2.43293401e-02 1.69081509e-01 -3.60868186e-01\n 1.22449803e+00 -1.26750350e+00]\n [ 5.50431088e-02 -2.34022196e-02 1.77421764e-01 -1.91212848e-01\n -1.17759228e+00 -1.39602280e+00]\n [-5.90242026e-03 2.38274615e-02 1.92453057e-01 -5.87841034e-01\n 1.21594262e+00 3.55058908e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [-4.98342477e-02 -1.84012428e-02 1.25486061e-01 -8.00179183e-01\n -1.35782316e-01 -4.43288594e-01]\n [ 9.17309374e-02 7.10636750e-02 1.46612972e-01 -8.82145092e-02\n 5.77378988e-01 -9.85314906e-01]\n [ 5.81630655e-02 -7.20866621e-02 2.32677370e-01 4.54735979e-02\n -7.46320069e-01 8.11943650e-01]\n [ 7.75739253e-02 4.82334793e-02 1.28592089e-01 -3.25119883e-01\n -2.76604574e-02 -1.40115643e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [-7.44913425e-03 -2.11351886e-02 1.92191273e-01 -6.39949918e-01\n -4.99394566e-01 3.39871705e-01]\n [-4.26040171e-03 2.38770451e-02 1.93101823e-01 -5.14715374e-01\n 1.21918368e+00 3.82293910e-01]\n [ 1.01685405e-01 -9.07334462e-02 2.73908943e-01 2.40560815e-01\n -1.46120638e-01 4.89659458e-01]\n [ 1.88481435e-02 -2.50863917e-02 1.66230649e-01 -1.08199763e+00\n -1.23856866e+00 -1.26131034e+00]\n [-5.90242026e-03 2.38274615e-02 1.92453057e-01 -5.87841034e-01\n 1.21594262e+00 3.55058908e-01]\n [ 7.38428310e-02 5.14262058e-02 1.20886251e-01 1.93346106e-03\n 2.10943501e-02 -1.41836500e+00]\n [-2.67318860e-02 -7.83121809e-02 1.78577721e-01 -5.37090182e-01\n -7.45778680e-01 -3.66649836e-01]\n [-5.90242026e-03 2.38274615e-02 1.92453057e-01 -5.87841034e-01\n 1.21594262e+00 3.55058908e-01]\n [-5.98264150e-02 1.18444152e-01 6.46920651e-02 -8.71281803e-01\n 8.13742578e-01 -9.53904331e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [-6.30361075e-03 -2.56187953e-02 1.92738503e-01 -6.16794825e-01\n -1.20778418e+00 3.64209592e-01]\n [-4.84650284e-02 7.30985925e-02 1.24482207e-01 -7.36590207e-01\n 7.25695372e-01 -4.36977148e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [-6.30361075e-03 -2.56187953e-02 1.92738503e-01 -6.16794825e-01\n -1.20778418e+00 3.64209592e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [ 2.98006888e-02 -7.19906315e-02 1.15910411e-01 3.20311427e-01\n -5.80588877e-01 -1.27302098e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [ 1.88481435e-02 -2.50863917e-02 1.66230649e-01 -1.08199763e+00\n -1.23856866e+00 -1.26131034e+00]\n [-9.20746028e-02 -4.60745580e-02 2.40602508e-01 4.42865081e-02\n -1.35797206e-02 1.04004407e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [ 8.94676074e-02 1.08565681e-01 6.31209016e-02 -2.30259508e-01\n 6.04207158e-01 -1.46712279e+00]\n [-6.30361075e-03 -2.56187953e-02 1.92738503e-01 -6.16794825e-01\n -1.20778418e+00 3.64209592e-01]\n [ 7.45142624e-02 7.27334991e-02 2.20934063e-01 8.99883881e-02\n 6.72816992e-01 8.53176340e-02]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [ 1.94517765e-02 2.39273012e-02 1.66274726e-01 -1.10966337e+00\n 1.20934319e+00 -1.28091466e+00]\n [-2.42593009e-02 -7.90306106e-02 1.77647889e-01 -7.25910425e-01\n -7.47837961e-01 -1.05758464e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [ 9.90304202e-02 5.00528216e-02 1.34699628e-01 -1.34384990e-01\n -7.00664101e-03 -1.44510579e+00]\n [-2.04121787e-02 7.21501559e-02 1.11640580e-01 -5.67300498e-01\n 6.62110329e-01 -9.61228311e-01]\n [ 6.81060031e-02 -1.87408719e-02 1.18833750e-01 -1.08708173e-01\n -4.04383317e-02 -1.43634665e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [-9.22289044e-02 -1.56192761e-02 2.39285767e-01 5.69805019e-02\n 1.08255959e+00 1.02987838e+00]\n [ 1.94517765e-02 2.39273012e-02 1.66274726e-01 -1.10966337e+00\n 1.20934319e+00 -1.28091466e+00]\n [ 1.88481435e-02 -2.50863917e-02 1.66230649e-01 -1.08199763e+00\n -1.23856866e+00 -1.26131034e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [-5.90242026e-03 2.38274615e-02 1.92453057e-01 -5.87841034e-01\n 1.21594262e+00 3.55058908e-01]\n [ 1.94517765e-02 2.39273012e-02 1.66274726e-01 -1.10966337e+00\n 1.20934319e+00 -1.28091466e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [ 8.21093991e-02 -6.75796941e-02 1.54498965e-01 -3.27435732e-02\n -6.14401102e-01 -7.12214887e-01]\n [-2.33660992e-02 -7.58277923e-02 1.11567251e-01 -5.82638144e-01\n -7.17321813e-01 -9.53605592e-01]\n [ 8.21764022e-02 4.96139713e-02 2.39796534e-01 3.49883348e-01\n -1.16281621e-02 7.92096615e-01]\n [-7.49345571e-02 1.24749489e-01 2.14821577e-01 -4.77752924e-01\n 8.72653604e-01 1.73566326e-01]\n [ 1.49751222e-02 -2.49531679e-02 2.01350927e-01 -1.48079351e-01\n -1.22531450e+00 5.37531137e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAABAAAAAAEBAAAAAAEAAAAAAAAAAAABAAABAAEBAAEAAAEBAAAAAQEBAAABAQEAAAABAAAAAQAAAQEAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": null,
|
42 |
+
"_episode_num": 0,
|
43 |
+
"use_sde": false,
|
44 |
+
"sde_sample_freq": -1,
|
45 |
+
"_current_progress_remaining": 0.0,
|
46 |
+
"_stats_window_size": 100,
|
47 |
+
"ep_info_buffer": {
|
48 |
+
":type:": "<class 'collections.deque'>",
|
49 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwAgAAAAAAACMAWyUSwSMAXSUR0CYhB/ATIvKdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYg94B3iaRdX2UKGgGR8AIAAAAAAAAaAdLBGgIR0CYgxEVnEl3dX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYgs29+PRzdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYkq003wTedX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYki6FM7EHdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYka1Bt1p1dX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYkGojfNzKdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYj47qptJndX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYjz1yNn5BdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYjuv60pmVdX2UKGgGR8AIAAAAAAAAaAdLBGgIR0CYjk8uBczJdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYjWIoVmBfdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYjRlK9PDYdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYi2MPjGT+dX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYix8rI5o5dX2UKGgGR8AIAAAAAAAAaAdLBGgIR0CYipcEvCdjdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYihUkOZssdX2UKGgGR8AIAAAAAAAAaAdLBGgIR0CYiU7/n4fwdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CYiIB8hLXddX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYiDvgm7aqdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYh/ZZB9kSdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYhuT9sJpndX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYhqFLnLaFdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYhdwDNhVmdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYhZ1RceKbdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CYhVznzQNTdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYhRV7hNucdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYhJCdSVGDdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYg8YpUgjhdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYg3+cpb2UdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYgm/yGzrvdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYgdc81XNkdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYkpqFh5PedX2UKGgGR8AIAAAAAAAAaAdLBGgIR0CYkZpD/lySdX2UKGgGR8AQAAAAAAAAaAdLBWgIR0CYkVscQyyldX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYkRiG34KydX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYkNTMJQchdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CYkJcFhXr/dX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYkE9Wp6yCdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYjizND+irdX2UKGgGR8AIAAAAAAAAaAdLBGgIR0CYjd2jfvWpdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYjGWQwK0EdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYjBhN/OMVdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYiwfRu0kXdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYiTab4Ju3dX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYiPH/LkjpdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYh52h7E5ydX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYh1P+n62wdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYholmvnr6dX2UKGgGR8AIAAAAAAAAaAdLBGgIR0CYhkgZ0jkddX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CYhggQ6IWQdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYhHaDwpfAdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYhDTTOPeYdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYg2fEn9ehdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYgyRUm2LHdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYguDlo11odX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYgliFj/dZdX2UKGgGR8AIAAAAAAAAaAdLBGgIR0CYk0afSQYDdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYkoXo1UEQdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYkkgh8pkPdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYkgUN8VpLdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYkDppeu3ddX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYj+atLcsUdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYj5V2Rq46dX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYjvfqoqCpdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYjqcurZJ1dX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYjbo4MnZ1dX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYjNlJYkmhdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYi/8cdYGMdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYiq4ecQRPdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CYiWICEHt4dX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYiAqu8scydX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYhWuFYdQwdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYhSi5uqFRdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CYhKFZgXuWdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CYhF+ajN6gdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CYgoKOktVadX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYky67dznzdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYke98Z1mrdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYkbBOHnEEdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CYkGQ2/BWQdX2UKGgGR8AIAAAAAAAAaAdLBGgIR0CYjVJL/S6UdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYjGzp5eJIdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYi+S7Xg+AdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYi6DSgGr0dX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYixit7rs0dX2UKGgGR8AIAAAAAAAAaAdLBGgIR0CYilK4QSSNdX2UKGgGR8AIAAAAAAAAaAdLBGgIR0CYihFrl/6PdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYiQI2OyVwdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYiL2QGOdYdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYiHhE0BOpdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYh6mxMWXUdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYh2cY64lQdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYhyNMoMKDdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYhh8n/kvLdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYhRJCSidrdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYhEfqX4TLdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYhAF1B+nZdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYgljopx3ndWUu"
|
50 |
+
},
|
51 |
+
"ep_success_buffer": {
|
52 |
+
":type:": "<class 'collections.deque'>",
|
53 |
+
":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIhlLg=="
|
54 |
+
},
|
55 |
+
"_n_updates": 3282,
|
56 |
+
"observation_space": {
|
57 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
58 |
+
":serialized:": "gAWVkQMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5R9lCiMDWFjaGlldmVkX2dvYWyUjBRneW1uYXNpdW0uc3BhY2VzLmJveJSMA0JveJSTlCmBlH2UKIwFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijAZfc2hhcGWUSwOFlIwDbG93lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgTSwOFlIwBQ5R0lFKUjA1ib3VuZGVkX2JlbG93lGgbKJYDAAAAAAAAAAEBAZRoEIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoHnSUUpSMBGhpZ2iUaBsolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgTSwOFlGgedJRSlIwNYm91bmRlZF9hYm92ZZRoGyiWAwAAAAAAAAABAQGUaCVLA4WUaB50lFKUjAhsb3dfcmVwcpSMBS0xMC4wlIwJaGlnaF9yZXBylIwEMTAuMJSMCl9ucF9yYW5kb22UTnVijAxkZXNpcmVkX2dvYWyUaAopgZR9lChoDWgTaBZLA4WUaBhoGyiWDAAAAAAAAAAAACDBAAAgwQAAIMGUaBNLA4WUaB50lFKUaCFoGyiWAwAAAAAAAAABAQGUaCVLA4WUaB50lFKUaCtoGyiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBNLA4WUaB50lFKUaDBoGyiWAwAAAAAAAAABAQGUaCVLA4WUaB50lFKUaDWMBS0xMC4wlGg3jAQxMC4wlGg5TnVijAtvYnNlcnZhdGlvbpRoCimBlH2UKGgNaBNoFksGhZRoGGgbKJYYAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwZRoE0sGhZRoHnSUUpRoIWgbKJYGAAAAAAAAAAEBAQEBAZRoJUsGhZRoHnSUUpRoK2gbKJYYAAAAAAAAAAAAIEEAACBBAAAgQQAAIEEAACBBAAAgQZRoE0sGhZRoHnSUUpRoMGgbKJYGAAAAAAAAAAEBAQEBAZRoJUsGhZRoHnSUUpRoNYwFLTEwLjCUaDeMBDEwLjCUaDlOdWJ1aBZOaA1OaDlOdWIu",
|
59 |
+
"spaces": "{'achieved_goal': Box(-10.0, 10.0, (3,), float32), 'desired_goal': Box(-10.0, 10.0, (3,), float32), 'observation': Box(-10.0, 10.0, (6,), float32)}",
|
60 |
+
"_shape": null,
|
61 |
+
"dtype": null,
|
62 |
+
"_np_random": null
|
63 |
+
},
|
64 |
+
"action_space": {
|
65 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
66 |
+
":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolgMAAAAAAAAAAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwOFlGgWdJRSlIwEaGlnaJRoEyiWDAAAAAAAAAAAAIA/AACAPwAAgD+UaAtLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoHUsDhZRoFnSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
|
67 |
+
"dtype": "float32",
|
68 |
+
"_shape": [
|
69 |
+
3
|
70 |
+
],
|
71 |
+
"low": "[-1. -1. -1.]",
|
72 |
+
"bounded_below": "[ True True True]",
|
73 |
+
"high": "[1. 1. 1.]",
|
74 |
+
"bounded_above": "[ True True True]",
|
75 |
+
"low_repr": "-1.0",
|
76 |
+
"high_repr": "1.0",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 64,
|
80 |
+
"n_steps": 10,
|
81 |
+
"gamma": 0.95,
|
82 |
+
"gae_lambda": 1.0,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"rollout_buffer_class": {
|
87 |
+
":type:": "<class 'abc.ABCMeta'>",
|
88 |
+
":serialized:": "gAWVOgAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwRRGljdFJvbGxvdXRCdWZmZXKUk5Qu",
|
89 |
+
"__module__": "stable_baselines3.common.buffers",
|
90 |
+
"__annotations__": "{'observation_space': <class 'gymnasium.spaces.dict.Dict'>, 'obs_shape': typing.Dict[str, typing.Tuple[int, ...]], 'observations': typing.Dict[str, numpy.ndarray]}",
|
91 |
+
"__doc__": "\n Dict Rollout buffer used in on-policy algorithms like A2C/PPO.\n Extends the RolloutBuffer to use dictionary observations\n\n It corresponds to ``buffer_size`` transitions collected\n using the current policy.\n This experience will be discarded after the policy update.\n In order to use PPO objective, we also store the current value of each state\n and the log probability of each taken action.\n\n The term rollout here refers to the model-free notion and should not\n be used with the concept of rollout used in model-based RL or planning.\n Hence, it is only involved in policy and value function training but not action selection.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param gae_lambda: Factor for trade-off of bias vs variance for Generalized Advantage Estimator\n Equivalent to Monte-Carlo advantage estimate when set to 1.\n :param gamma: Discount factor\n :param n_envs: Number of parallel environments\n ",
|
92 |
+
"__init__": "<function DictRolloutBuffer.__init__ at 0x7711d8708550>",
|
93 |
+
"reset": "<function DictRolloutBuffer.reset at 0x7711d87085e0>",
|
94 |
+
"add": "<function DictRolloutBuffer.add at 0x7711d8708670>",
|
95 |
+
"get": "<function DictRolloutBuffer.get at 0x7711d8708700>",
|
96 |
+
"_get_samples": "<function DictRolloutBuffer._get_samples at 0x7711d8708790>",
|
97 |
+
"__abstractmethods__": "frozenset()",
|
98 |
+
"_abc_impl": "<_abc._abc_data object at 0x7712646ffe00>"
|
99 |
+
},
|
100 |
+
"rollout_buffer_kwargs": {},
|
101 |
+
"normalize_advantage": false,
|
102 |
+
"lr_schedule": {
|
103 |
+
":type:": "<class 'function'>",
|
104 |
+
":serialized:": "gAWV4QMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjHEvaG9tZS9qYWt1Yi9tYWNoaW5lX2xlYXJuaW5nL3JsL2d5bS9wYW5kYV9neW0vdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMCDxsYW1iZGE+lEthQwIMAJSMDnZhbHVlX3NjaGVkdWxllIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMcS9ob21lL2pha3ViL21hY2hpbmVfbGVhcm5pbmcvcmwvZ3ltL3BhbmRhX2d5bS92ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGIwIPGxhbWJkYT6UjAxfX3F1YWxuYW1lX1+UjCFnZXRfc2NoZWR1bGVfZm4uPGxvY2Fscz4uPGxhbWJkYT6UjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOUaAIoaAcoSwFLAEsASwFLAUsTQwSIAFMAlGgJKYwBX5SFlGgOjARmdW5jlEuFQwIEAZSMA3ZhbJSFlCl0lFKUaBVOTmgdKVKUhZR0lFKUaCNoPn2UfZQoaBiMBGZ1bmOUaCeMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUaCl9lGgrTmgsTmgtaBloLk5oL2gxRz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjCFlFKUhZRoR12UaEl9lHWGlIZSMC4="
|
105 |
+
}
|
106 |
+
}
|
a2c_panda_reach/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dedd87e4e420fd0f8177cbe5c3e9963daa5f7bfacc284e30f085deb407e2dadf
|
3 |
+
size 48328
|
a2c_panda_reach/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b3db281c3e87a5bcd05d3fc0f981bef95389a0ec2b8016a9d5ddb896a2ed47c1
|
3 |
+
size 46447
|
a2c_panda_reach/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
a2c_panda_reach/system_info.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.8.0-49-generic-x86_64-with-glibc2.35 # 49~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Wed Nov 6 17:42:15 UTC 2
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.4.0
|
4 |
+
- PyTorch: 2.5.1+cu124
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.26.4
|
7 |
+
- Cloudpickle: 3.1.0
|
8 |
+
- Gymnasium: 1.0.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7711d875e8c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7711d8757640>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1735507341758232090, "learning_rate": 0.001, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWV+wwAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgADAAAAAAAAA0GkPUn2uLxUekE+6nIdPRlsGqxDI0o+QGHAvMOHmT3kd+Q99jsVPVNOxzy0Iy0+4nRhPQO2v7wNrjU+F2nBu88xwzxqEkU+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+/x5MvTS+lrxrfwA+bt27PdWJkT22IRY+ZTxuPSyik736Qm4+FN+ePXiQRT2lrQM+6nIdPRlsGqxDI0o+3hf0u7QjrbzKzUQ+15qLu8uZwzx8vEU+cEDQPXXSub3LPYw+bGeaPPqBzbxeOCo+F2nBu88xwzxqEkU+6TqXPUmkUj02k/c91PzavCNioL0U3TY+F2nBu88xwzxqEkU+iwx1vdmS8j1GfYQ96nIdPRlsGqxDI0o+hY7Ou4Le0bw+XUU+RINGvbe0lT2H8P496nIdPRlsGqxDI0o+hY7Ou4Le0bw+XUU+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+kyD0PNNvk71wYu096nIdPRlsGqxDI0o+bGeaPPqBzbxeOCo+nJG8va24PL2BYHY+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+yzq3Pa9X3j2IRYE9hY7Ou4Le0bw+XUU+75qYPU31lD2KPGI+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+VVmfPDADxDzsQyo+cbvGvM3aob1U6TU+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+dtDKPTAETT2z7gk+cTenvHbDkz3Ro+Q9KXuLPXWGmbwcX/M96nIdPRlsGqxDI0o+guK8vf7nf7xUB3U+VVmfPDADxDzsQyo+bGeaPPqBzbxeOCo+6nIdPRlsGqxDI0o+F2nBu88xwzxqEkU+VVmfPDADxDzsQyo+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o++SioPTlnir36NB4+Q2q/vJpLm71ffeQ9GkyoPQU4Sz05jXU+SneZval8/z0w+ls+N1p1PJZqzLzwLk4+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktASwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgADAAAAAAAA5BIFPtlp+72EtTY+Xa8HPuBUBT4Jn3A+u9RRvXLv4z0xnxU8A2txPYgKYD0cjsY9g3bsPeX5or0e9PM8JTYavZaX+j1PmzY+acmjvZuzqL1u0Ig+rSwCPs08YT1vm/w999a5vWCkSrvZ5iE+vZy7Pd3CBT6ZsPM9nM6mPeQo8L3chXQ+wcbpPUF1BD23ZHs94f0Eviu7Az7f26Q9JhwGvoKOd7rhOoM+K0qsOqgynD1ll08+4WIVPrPRsb15LZk+KdGrvJzuP72eJ189NDq2vWClDz6DYGY+xlrPPbZmVz3PUo07IicWvkBrEL5pZDc+JMGbvYwZ/T0tuI0+96DRvRD1Dz6CmJU72hCKO4yJ4DxgUVk+JVVSvQ0XFb6J6ls+Bs37vWVm1j2CHR8+yeKnPakcVz36Bvg90DM6vQDYnL3doGI+vA2bPZ85TL1rWO89wU8FvMwH3ztVGzM+tqCEPXNHCL7RnUM9LWWYPc/s7DxBET091UmvvDAzD72u8ZA80UkPvhnpIL054I0+4DARPlMeGr2g+wA+GdVWPYFU3b02mJc+wwrOPcYpFj7Dc8Q8840FvidR6r0qp1U+rqqSPUW+AD45mFA+ap2evLeAOL3G9HY+zz6kvYImuz16u5899dW0vXjExz0n1Jg+jqjFvW469T0N6AE+foTbvVS3p72z0i4+076APTYFT73dCu09T9v7PaW7AL5RJ0w+zT51veO+yz2ge+U99HPlPbueGz2WMZM9BE4VvLsakz0+sV89hjPOPeycC7xM2AI9mbZ/PbdlBzp8q4c+nacWvuVYObx1uJg+HB+yvestDz7QFaw9ZogEvkejBb534SY+NxUFvs4NYD3m/kA+e7GRvTrtvT0vP4o+ue4ivWn6Hz1pLAA+/ymDvdqFQD3JCW8+UPMFvlTwiTw/e4Q+x9buPdnICL4DtDA+4uCxvFoB9r1Ji2A9jgwSPhHvWj0zmpE+PPAKvoW89j3rOk4+R1gRO8sWqb39UHQ+XwoFPifeijztB5g+lGgOS0BLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWAAYAAAAAAAADQaQ9Sfa4vFR6QT7qXQY/6H2Tv37Ui7/qch09GWwarEMjSj4AAAAAAAAAgAAAAABAYcC8w4eZPeR35D171iO/lVtEP1MRdL/2OxU9U07HPLQjLT63w7i+WrycP449or/idGE9A7a/vA2uNT5NzUO+WLuWv+Cwsr8XacG7zzHDPGoSRT7AfBa/AqSbP0jKtT7qch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAD/Hky9NL6WvGt/AD6L2Ey/hQoLvrn24r5u3bs91YmRPbYhFj7PqbS9HM8TP5k9fL9lPG49LKKTvfpCbj6GQjo91Q4/v4rbTz8U3549eJBFPaWtAz4ddqa+L5jivBhZs7/qch09GWwarEMjSj4AAAAAAAAAgAAAAADeF/S7tCOtvMrNRD7C0yO/pbD/vqoDrj7Xmou7y5nDPHy8RT5jxAO/Ng6cPwe8wz5wQNA9ddK5vcs9jD6TVXY+pqAVvqW0+j5sZ5o8+oHNvF44Kj7mfoq/a4mev55yob8XacG7zzHDPGoSRT7AfBa/AqSbP0jKtT7pOpc9SaRSPTaT9z0wbP06D86sPPyMtb/U/Nq8I2KgvRTdNj6+fgm/Wus+v4e5u74XacG7zzHDPGoSRT7AfBa/AqSbP0jKtT6LDHW92ZLyPUZ9hD1TDF+/b1FQPxMzdL/qch09GWwarEMjSj4AAAAAAAAAgAAAAACFjs67gt7RvD5dRT5E5h2/rJiav655uj5Eg0a9t7SVPYfw/j0tkTy/LMc5P3i7377qch09GWwarEMjSj4AAAAAAAAAgAAAAACFjs67gt7RvD5dRT5E5h2/rJiav655uj7qch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACTIPQ802+TvXBi7T3c/6M+eaEUv1ryor/qch09GWwarEMjSj4AAAAAAAAAgAAAAABsZ5o8+oHNvF44Kj7mfoq/a4mev55yob+ckby9rbg8vYFgdj7FZTU9en1evCoghT/qch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADLOrc9r1fePYhFgT0myWu+Uq0aP67Ku7+Fjs67gt7RvD5dRT5E5h2/rJiav655uj7vmpg9TfWUPYo8Yj7VS7g9vD0sPwO7rj3qch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAABVWZ88MAPEPOxDKj5zCY6/wsuaPwP1o79xu8a8zdqhvVTpNT5E1Tm/T3I/v+9eh7/qch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAB20Mo9MARNPbPuCT44nAm+95fluzr5uL9xN6e8dsOTPdGj5D2bOhG/EIApPw8Tdr8pe4s9dYaZvBxf8z1kot69qqIlvTXat7/qch09GWwarEMjSj4AAAAAAAAAgAAAAACC4ry9/ud/vFQHdT5jZGk9UJGKPw7Tgz9VWZ88MAPEPOxDKj5zCY6/wsuaPwP1o79sZ5o8+oHNvF44Kj7mfoq/a4mev55yob/qch09GWwarEMjSj4AAAAAAAAAgAAAAAAXacG7zzHDPGoSRT7AfBa/AqSbP0jKtT5VWZ88MAPEPOxDKj5zCY6/wsuaPwP1o7/qch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAAD5KKg9OWeKvfo0Hj4gHga9ZEkdv7dTNr9Dar+8mkubvV995D3GJxW/Z6I3v38fdL8aTKg9BThLPTmNdT7pI7M+DIQ+vNjGSj9Kd5m9qXz/PTD6Wz4InPS+OmZfP1+7MT43WnU8lmrMvPAuTj4dohe+G9ecv6SbCT/qch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LQEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 8.02021250e-02 -2.25783754e-02 1.88943207e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01]\n [-2.34838724e-02 7.49659762e-02 1.11556798e-01]\n [ 3.64341363e-02 2.43293401e-02 1.69081509e-01]\n [ 5.50431088e-02 -2.34022196e-02 1.77421764e-01]\n [-5.90242026e-03 2.38274615e-02 1.92453057e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01]\n [-4.98342477e-02 -1.84012428e-02 1.25486061e-01]\n [ 9.17309374e-02 7.10636750e-02 1.46612972e-01]\n [ 5.81630655e-02 -7.20866621e-02 2.32677370e-01]\n [ 7.75739253e-02 4.82334793e-02 1.28592089e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01]\n [-7.44913425e-03 -2.11351886e-02 1.92191273e-01]\n [-4.26040171e-03 2.38770451e-02 1.93101823e-01]\n [ 1.01685405e-01 -9.07334462e-02 2.73908943e-01]\n [ 1.88481435e-02 -2.50863917e-02 1.66230649e-01]\n [-5.90242026e-03 2.38274615e-02 1.92453057e-01]\n [ 7.38428310e-02 5.14262058e-02 1.20886251e-01]\n [-2.67318860e-02 -7.83121809e-02 1.78577721e-01]\n [-5.90242026e-03 2.38274615e-02 1.92453057e-01]\n [-5.98264150e-02 1.18444152e-01 6.46920651e-02]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01]\n [-6.30361075e-03 -2.56187953e-02 1.92738503e-01]\n [-4.84650284e-02 7.30985925e-02 1.24482207e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01]\n [-6.30361075e-03 -2.56187953e-02 1.92738503e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01]\n [ 2.98006888e-02 -7.19906315e-02 1.15910411e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01]\n [ 1.88481435e-02 -2.50863917e-02 1.66230649e-01]\n [-9.20746028e-02 -4.60745580e-02 2.40602508e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01]\n [ 8.94676074e-02 1.08565681e-01 6.31209016e-02]\n [-6.30361075e-03 -2.56187953e-02 1.92738503e-01]\n [ 7.45142624e-02 7.27334991e-02 2.20934063e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01]\n [ 1.94517765e-02 2.39273012e-02 1.66274726e-01]\n [-2.42593009e-02 -7.90306106e-02 1.77647889e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01]\n [ 9.90304202e-02 5.00528216e-02 1.34699628e-01]\n [-2.04121787e-02 7.21501559e-02 1.11640580e-01]\n [ 6.81060031e-02 -1.87408719e-02 1.18833750e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01]\n [-9.22289044e-02 -1.56192761e-02 2.39285767e-01]\n [ 1.94517765e-02 2.39273012e-02 1.66274726e-01]\n [ 1.88481435e-02 -2.50863917e-02 1.66230649e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01]\n [-5.90242026e-03 2.38274615e-02 1.92453057e-01]\n [ 1.94517765e-02 2.39273012e-02 1.66274726e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01]\n [ 8.21093991e-02 -6.75796941e-02 1.54498965e-01]\n [-2.33660992e-02 -7.58277923e-02 1.11567251e-01]\n [ 8.21764022e-02 4.96139713e-02 2.39796534e-01]\n [-7.49345571e-02 1.24749489e-01 2.14821577e-01]\n [ 1.49751222e-02 -2.49531679e-02 2.01350927e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01]]", "desired_goal": "[[ 0.12995487 -0.12276048 0.1784268 ]\n [ 0.1325049 0.13020658 0.23498167]\n [-0.05122827 0.11129655 0.00913219]\n [ 0.05893994 0.05469754 0.09695074]\n [ 0.11546042 -0.0795782 0.02977949]\n [-0.03764929 0.12235944 0.17832683]\n [-0.079974 -0.08237382 0.2672152 ]\n [ 0.12712355 0.05498962 0.12334334]\n [-0.09074204 -0.00309207 0.15810718]\n [ 0.09160755 0.13062616 0.11898918]\n [ 0.08144876 -0.11726549 0.23879188]\n [ 0.11414862 0.03233838 0.06137535]\n [-0.12987472 0.12864368 0.0804975 ]\n [-0.13096675 -0.00094435 0.2563086 ]\n [ 0.00131447 0.07626849 0.20272596]\n [ 0.145885 -0.08682575 0.29917505]\n [-0.02097376 -0.04685842 0.05448114]\n [-0.0889782 0.1402793 0.22497754]\n [ 0.10124736 0.05258819 0.00431285]\n [-0.14663365 -0.14103413 0.17909397]\n [-0.07605198 0.12358388 0.27679577]\n [-0.1023578 0.14058328 0.0045653 ]\n [ 0.00421343 0.02740934 0.21222448]\n [-0.05135073 -0.14559574 0.21476187]\n [-0.12294964 0.10468749 0.155386 ]\n [ 0.08197553 0.05251757 0.12110706]\n [-0.04545957 -0.07658386 0.22131677]\n [ 0.07570979 -0.04985964 0.11686786]\n [-0.00813669 0.00680635 0.17490895]\n [ 0.06475966 -0.13308506 0.04775793]\n [ 0.07441173 0.02892151 0.04615903]\n [-0.02139751 -0.03496093 0.01769337]\n [-0.13993002 -0.0392848 0.2771013 ]\n [ 0.141788 -0.03762658 0.12595987]\n [ 0.05244932 -0.10807133 0.29608315]\n [ 0.10060646 0.14664373 0.02398098]\n [-0.1304243 -0.1144126 0.2086455 ]\n [ 0.07161461 0.12572582 0.20370568]\n [-0.01936217 -0.04504463 0.24116811]\n [-0.08019792 0.09138204 0.0779943 ]\n [-0.08829872 0.0975427 0.2984936 ]\n [-0.0965129 0.11974035 0.12686177]\n [-0.1071863 -0.08189264 0.17072563]\n [ 0.06286397 -0.05054208 0.11574338]\n [ 0.12297689 -0.1257158 0.19936873]\n [-0.05987434 0.09948518 0.1120522 ]\n [ 0.11203757 0.03799317 0.07187192]\n [-0.00911284 0.07182833 0.05461239]\n [ 0.10068421 -0.0085213 0.03194456]\n [ 0.06243 0.0005165 0.2649802 ]\n [-0.14712377 -0.0113127 0.2982823 ]\n [-0.0869734 0.1398236 0.08402598]\n [-0.12942657 -0.13050567 0.16296946]\n [-0.12996374 0.05470067 0.18847236]\n [-0.0711393 0.09273763 0.2700133 ]\n [-0.03977844 0.03905717 0.12516941]\n [-0.06404494 0.04700265 0.23343576]\n [-0.13081098 0.01683823 0.2587528 ]\n [ 0.11662059 -0.13357867 0.17256169]\n [-0.02171368 -0.12011977 0.05482033]\n [ 0.14262602 0.05345065 0.28437957]\n [-0.13568205 0.12047676 0.20139663]\n [ 0.00221779 -0.08256301 0.2385902 ]\n [ 0.12992238 0.01695163 0.29693547]]", "observation": "[[ 8.02021250e-02 -2.25783754e-02 1.88943207e-01 5.24870515e-01\n -1.15227985e+00 -1.09242225e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [-2.34838724e-02 7.49659762e-02 1.11556798e-01 -6.39991462e-01\n 7.67022431e-01 -9.53389347e-01]\n [ 3.64341363e-02 2.43293401e-02 1.69081509e-01 -3.60868186e-01\n 1.22449803e+00 -1.26750350e+00]\n [ 5.50431088e-02 -2.34022196e-02 1.77421764e-01 -1.91212848e-01\n -1.17759228e+00 -1.39602280e+00]\n [-5.90242026e-03 2.38274615e-02 1.92453057e-01 -5.87841034e-01\n 1.21594262e+00 3.55058908e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [-4.98342477e-02 -1.84012428e-02 1.25486061e-01 -8.00179183e-01\n -1.35782316e-01 -4.43288594e-01]\n [ 9.17309374e-02 7.10636750e-02 1.46612972e-01 -8.82145092e-02\n 5.77378988e-01 -9.85314906e-01]\n [ 5.81630655e-02 -7.20866621e-02 2.32677370e-01 4.54735979e-02\n -7.46320069e-01 8.11943650e-01]\n [ 7.75739253e-02 4.82334793e-02 1.28592089e-01 -3.25119883e-01\n -2.76604574e-02 -1.40115643e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [-7.44913425e-03 -2.11351886e-02 1.92191273e-01 -6.39949918e-01\n -4.99394566e-01 3.39871705e-01]\n [-4.26040171e-03 2.38770451e-02 1.93101823e-01 -5.14715374e-01\n 1.21918368e+00 3.82293910e-01]\n [ 1.01685405e-01 -9.07334462e-02 2.73908943e-01 2.40560815e-01\n -1.46120638e-01 4.89659458e-01]\n [ 1.88481435e-02 -2.50863917e-02 1.66230649e-01 -1.08199763e+00\n -1.23856866e+00 -1.26131034e+00]\n [-5.90242026e-03 2.38274615e-02 1.92453057e-01 -5.87841034e-01\n 1.21594262e+00 3.55058908e-01]\n [ 7.38428310e-02 5.14262058e-02 1.20886251e-01 1.93346106e-03\n 2.10943501e-02 -1.41836500e+00]\n [-2.67318860e-02 -7.83121809e-02 1.78577721e-01 -5.37090182e-01\n -7.45778680e-01 -3.66649836e-01]\n [-5.90242026e-03 2.38274615e-02 1.92453057e-01 -5.87841034e-01\n 1.21594262e+00 3.55058908e-01]\n [-5.98264150e-02 1.18444152e-01 6.46920651e-02 -8.71281803e-01\n 8.13742578e-01 -9.53904331e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [-6.30361075e-03 -2.56187953e-02 1.92738503e-01 -6.16794825e-01\n -1.20778418e+00 3.64209592e-01]\n [-4.84650284e-02 7.30985925e-02 1.24482207e-01 -7.36590207e-01\n 7.25695372e-01 -4.36977148e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [-6.30361075e-03 -2.56187953e-02 1.92738503e-01 -6.16794825e-01\n -1.20778418e+00 3.64209592e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [ 2.98006888e-02 -7.19906315e-02 1.15910411e-01 3.20311427e-01\n -5.80588877e-01 -1.27302098e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [ 1.88481435e-02 -2.50863917e-02 1.66230649e-01 -1.08199763e+00\n -1.23856866e+00 -1.26131034e+00]\n [-9.20746028e-02 -4.60745580e-02 2.40602508e-01 4.42865081e-02\n -1.35797206e-02 1.04004407e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [ 8.94676074e-02 1.08565681e-01 6.31209016e-02 -2.30259508e-01\n 6.04207158e-01 -1.46712279e+00]\n [-6.30361075e-03 -2.56187953e-02 1.92738503e-01 -6.16794825e-01\n -1.20778418e+00 3.64209592e-01]\n [ 7.45142624e-02 7.27334991e-02 2.20934063e-01 8.99883881e-02\n 6.72816992e-01 8.53176340e-02]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [ 1.94517765e-02 2.39273012e-02 1.66274726e-01 -1.10966337e+00\n 1.20934319e+00 -1.28091466e+00]\n [-2.42593009e-02 -7.90306106e-02 1.77647889e-01 -7.25910425e-01\n -7.47837961e-01 -1.05758464e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [ 9.90304202e-02 5.00528216e-02 1.34699628e-01 -1.34384990e-01\n -7.00664101e-03 -1.44510579e+00]\n [-2.04121787e-02 7.21501559e-02 1.11640580e-01 -5.67300498e-01\n 6.62110329e-01 -9.61228311e-01]\n [ 6.81060031e-02 -1.87408719e-02 1.18833750e-01 -1.08708173e-01\n -4.04383317e-02 -1.43634665e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [-9.22289044e-02 -1.56192761e-02 2.39285767e-01 5.69805019e-02\n 1.08255959e+00 1.02987838e+00]\n [ 1.94517765e-02 2.39273012e-02 1.66274726e-01 -1.10966337e+00\n 1.20934319e+00 -1.28091466e+00]\n [ 1.88481435e-02 -2.50863917e-02 1.66230649e-01 -1.08199763e+00\n -1.23856866e+00 -1.26131034e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [-5.90242026e-03 2.38274615e-02 1.92453057e-01 -5.87841034e-01\n 1.21594262e+00 3.55058908e-01]\n [ 1.94517765e-02 2.39273012e-02 1.66274726e-01 -1.10966337e+00\n 1.20934319e+00 -1.28091466e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]\n [ 8.21093991e-02 -6.75796941e-02 1.54498965e-01 -3.27435732e-02\n -6.14401102e-01 -7.12214887e-01]\n [-2.33660992e-02 -7.58277923e-02 1.11567251e-01 -5.82638144e-01\n -7.17321813e-01 -9.53605592e-01]\n [ 8.21764022e-02 4.96139713e-02 2.39796534e-01 3.49883348e-01\n -1.16281621e-02 7.92096615e-01]\n [-7.49345571e-02 1.24749489e-01 2.14821577e-01 -4.77752924e-01\n 8.72653604e-01 1.73566326e-01]\n [ 1.49751222e-02 -2.49531679e-02 2.01350927e-01 -1.48079351e-01\n -1.22531450e+00 5.37531137e-01]\n [ 3.84396687e-02 -2.19447225e-12 1.97400138e-01 0.00000000e+00\n -0.00000000e+00 0.00000000e+00]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVswAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZAAAAAAAAAAAABAAAAAAEBAAAAAAEAAAAAAAAAAAABAAABAAEBAAEAAAEBAAAAAQEBAAABAQEAAAABAAAAAQAAAQEAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS0CFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwAgAAAAAAACMAWyUSwSMAXSUR0CYhB/ATIvKdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYg94B3iaRdX2UKGgGR8AIAAAAAAAAaAdLBGgIR0CYgxEVnEl3dX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYgs29+PRzdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYkq003wTedX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYki6FM7EHdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYka1Bt1p1dX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYkGojfNzKdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYj47qptJndX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYjz1yNn5BdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYjuv60pmVdX2UKGgGR8AIAAAAAAAAaAdLBGgIR0CYjk8uBczJdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYjWIoVmBfdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYjRlK9PDYdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYi2MPjGT+dX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYix8rI5o5dX2UKGgGR8AIAAAAAAAAaAdLBGgIR0CYipcEvCdjdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYihUkOZssdX2UKGgGR8AIAAAAAAAAaAdLBGgIR0CYiU7/n4fwdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CYiIB8hLXddX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYiDvgm7aqdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYh/ZZB9kSdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYhuT9sJpndX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYhqFLnLaFdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYhdwDNhVmdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYhZ1RceKbdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CYhVznzQNTdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYhRV7hNucdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYhJCdSVGDdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYg8YpUgjhdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYg3+cpb2UdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYgm/yGzrvdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYgdc81XNkdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYkpqFh5PedX2UKGgGR8AIAAAAAAAAaAdLBGgIR0CYkZpD/lySdX2UKGgGR8AQAAAAAAAAaAdLBWgIR0CYkVscQyyldX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYkRiG34KydX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYkNTMJQchdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CYkJcFhXr/dX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYkE9Wp6yCdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYjizND+irdX2UKGgGR8AIAAAAAAAAaAdLBGgIR0CYjd2jfvWpdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYjGWQwK0EdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYjBhN/OMVdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYiwfRu0kXdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYiTab4Ju3dX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYiPH/LkjpdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYh52h7E5ydX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYh1P+n62wdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYholmvnr6dX2UKGgGR8AIAAAAAAAAaAdLBGgIR0CYhkgZ0jkddX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CYhggQ6IWQdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYhHaDwpfAdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYhDTTOPeYdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYg2fEn9ehdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYgyRUm2LHdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYguDlo11odX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYgliFj/dZdX2UKGgGR8AIAAAAAAAAaAdLBGgIR0CYk0afSQYDdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYkoXo1UEQdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYkkgh8pkPdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYkgUN8VpLdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYkDppeu3ddX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYj+atLcsUdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYj5V2Rq46dX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYjvfqoqCpdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYjqcurZJ1dX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYjbo4MnZ1dX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYjNlJYkmhdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYi/8cdYGMdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYiq4ecQRPdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CYiWICEHt4dX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYiAqu8scydX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYhWuFYdQwdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYhSi5uqFRdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CYhKFZgXuWdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CYhF+ajN6gdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CYgoKOktVadX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYky67dznzdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYke98Z1mrdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYkbBOHnEEdX2UKGgGRwAAAAAAAAAAaAdLAWgIR0CYkGQ2/BWQdX2UKGgGR8AIAAAAAAAAaAdLBGgIR0CYjVJL/S6UdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYjGzp5eJIdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYi+S7Xg+AdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYi6DSgGr0dX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYixit7rs0dX2UKGgGR8AIAAAAAAAAaAdLBGgIR0CYilK4QSSNdX2UKGgGR8AIAAAAAAAAaAdLBGgIR0CYihFrl/6PdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYiQI2OyVwdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYiL2QGOdYdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYiHhE0BOpdX2UKGgGR7/wAAAAAAAAaAdLAmgIR0CYh6mxMWXUdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYh2cY64lQdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYhyNMoMKDdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYhh8n/kvLdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYhRJCSidrdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYhEfqX4TLdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYhAF1B+nZdX2UKGgGR8AAAAAAAAAAaAdLA2gIR0CYgljopx3ndWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIhlLg=="}, "_n_updates": 3282, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVkQMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5R9lCiMDWFjaGlldmVkX2dvYWyUjBRneW1uYXNpdW0uc3BhY2VzLmJveJSMA0JveJSTlCmBlH2UKIwFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRijAZfc2hhcGWUSwOFlIwDbG93lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgTSwOFlIwBQ5R0lFKUjA1ib3VuZGVkX2JlbG93lGgbKJYDAAAAAAAAAAEBAZRoEIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoHnSUUpSMBGhpZ2iUaBsolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgTSwOFlGgedJRSlIwNYm91bmRlZF9hYm92ZZRoGyiWAwAAAAAAAAABAQGUaCVLA4WUaB50lFKUjAhsb3dfcmVwcpSMBS0xMC4wlIwJaGlnaF9yZXBylIwEMTAuMJSMCl9ucF9yYW5kb22UTnVijAxkZXNpcmVkX2dvYWyUaAopgZR9lChoDWgTaBZLA4WUaBhoGyiWDAAAAAAAAAAAACDBAAAgwQAAIMGUaBNLA4WUaB50lFKUaCFoGyiWAwAAAAAAAAABAQGUaCVLA4WUaB50lFKUaCtoGyiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBNLA4WUaB50lFKUaDBoGyiWAwAAAAAAAAABAQGUaCVLA4WUaB50lFKUaDWMBS0xMC4wlGg3jAQxMC4wlGg5TnVijAtvYnNlcnZhdGlvbpRoCimBlH2UKGgNaBNoFksGhZRoGGgbKJYYAAAAAAAAAAAAIMEAACDBAAAgwQAAIMEAACDBAAAgwZRoE0sGhZRoHnSUUpRoIWgbKJYGAAAAAAAAAAEBAQEBAZRoJUsGhZRoHnSUUpRoK2gbKJYYAAAAAAAAAAAAIEEAACBBAAAgQQAAIEEAACBBAAAgQZRoE0sGhZRoHnSUUpRoMGgbKJYGAAAAAAAAAAEBAQEBAZRoJUsGhZRoHnSUUpRoNYwFLTEwLjCUaDeMBDEwLjCUaDlOdWJ1aBZOaA1OaDlOdWIu", "spaces": "{'achieved_goal': Box(-10.0, 10.0, (3,), float32), 'desired_goal': Box(-10.0, 10.0, (3,), float32), 'observation': Box(-10.0, 10.0, (6,), float32)}", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolgMAAAAAAAAAAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwOFlGgWdJRSlIwEaGlnaJRoEyiWDAAAAAAAAAAAAIA/AACAPwAAgD+UaAtLA4WUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYDAAAAAAAAAAEBAZRoHUsDhZRoFnSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "bounded_below": "[ True True True]", "high": "[1. 1. 1.]", "bounded_above": "[ True True True]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 64, "n_steps": 10, "gamma": 0.95, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "rollout_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOgAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwRRGljdFJvbGxvdXRCdWZmZXKUk5Qu", "__module__": "stable_baselines3.common.buffers", "__annotations__": "{'observation_space': <class 'gymnasium.spaces.dict.Dict'>, 'obs_shape': typing.Dict[str, typing.Tuple[int, ...]], 'observations': typing.Dict[str, numpy.ndarray]}", "__doc__": "\n Dict Rollout buffer used in on-policy algorithms like A2C/PPO.\n Extends the RolloutBuffer to use dictionary observations\n\n It corresponds to ``buffer_size`` transitions collected\n using the current policy.\n This experience will be discarded after the policy update.\n In order to use PPO objective, we also store the current value of each state\n and the log probability of each taken action.\n\n The term rollout here refers to the model-free notion and should not\n be used with the concept of rollout used in model-based RL or planning.\n Hence, it is only involved in policy and value function training but not action selection.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param gae_lambda: Factor for trade-off of bias vs variance for Generalized Advantage Estimator\n Equivalent to Monte-Carlo advantage estimate when set to 1.\n :param gamma: Discount factor\n :param n_envs: Number of parallel environments\n ", "__init__": "<function DictRolloutBuffer.__init__ at 0x7711d8708550>", "reset": "<function DictRolloutBuffer.reset at 0x7711d87085e0>", "add": "<function DictRolloutBuffer.add at 0x7711d8708670>", "get": "<function DictRolloutBuffer.get at 0x7711d8708700>", "_get_samples": "<function DictRolloutBuffer._get_samples at 0x7711d8708790>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7712646ffe00>"}, "rollout_buffer_kwargs": {}, "normalize_advantage": false, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV4QMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjHEvaG9tZS9qYWt1Yi9tYWNoaW5lX2xlYXJuaW5nL3JsL2d5bS9wYW5kYV9neW0vdmVudi9saWIvcHl0aG9uMy4xMC9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMCDxsYW1iZGE+lEthQwIMAJSMDnZhbHVlX3NjaGVkdWxllIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMcS9ob21lL2pha3ViL21hY2hpbmVfbGVhcm5pbmcvcmwvZ3ltL3BhbmRhX2d5bS92ZW52L2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGghfZR9lChoGIwIPGxhbWJkYT6UjAxfX3F1YWxuYW1lX1+UjCFnZXRfc2NoZWR1bGVfZm4uPGxvY2Fscz4uPGxhbWJkYT6UjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOUaAIoaAcoSwFLAEsASwFLAUsTQwSIAFMAlGgJKYwBX5SFlGgOjARmdW5jlEuFQwIEAZSMA3ZhbJSFlCl0lFKUaBVOTmgdKVKUhZR0lFKUaCNoPn2UfZQoaBiMBGZ1bmOUaCeMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUaCl9lGgrTmgsTmgtaBloLk5oL2gxRz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjCFlFKUhZRoR12UaEl9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.8.0-49-generic-x86_64-with-glibc2.35 # 49~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Wed Nov 6 17:42:15 UTC 2", "Python": "3.10.12", "Stable-Baselines3": "2.4.0", "PyTorch": "2.5.1+cu124", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "1.0.0"}}
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -2.0, "std_reward": 0.7745966692414834, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-12-29T22:58:27.711207"}
|