Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,69 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
---
|
4 |
+
|
5 |
+
Model Usage:
|
6 |
+
|
7 |
+
```
|
8 |
+
from transformers import Qwen2_5_VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
9 |
+
from qwen_vl_utils import process_vision_info
|
10 |
+
|
11 |
+
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
12 |
+
model_path,
|
13 |
+
torch_dtype=torch.bfloat16,
|
14 |
+
attn_implementation="flash_attention_2",
|
15 |
+
device_map="auto",
|
16 |
+
)
|
17 |
+
processor = AutoProcessor.from_pretrained(model_path, max_pixels=262144)
|
18 |
+
|
19 |
+
|
20 |
+
reason_prompt = r"You FIRST think about the reasoning process as an internal monologue and then provide the final answer. The reasoning process MUST BE enclosed within <think> </think> tags. During this reasoning process, prioritize analyzing the local regions of the image by leveraging the bounding box coordinates in the format [x_min, y_min, x_max, y_max]. The final answer MUST BE put in \boxed{}. An example is like: <think> reasoning process 1 with [x_min1, y_min1, x_max1, y_max1]; reasoning process 2 with [x_min2, y_min2, x_max2, y_max2] </think>. The answer is: \boxed{answer}."
|
21 |
+
|
22 |
+
def get_label(images, content1):
|
23 |
+
content_list = []
|
24 |
+
for image_url in images:
|
25 |
+
content_list.append({
|
26 |
+
"type": "image",
|
27 |
+
"image": image_url,
|
28 |
+
})
|
29 |
+
if mode == 'think':
|
30 |
+
content_list.append({"type": "text",
|
31 |
+
"text": content1 + '\n' + reason_prompt + '\n'})
|
32 |
+
else:
|
33 |
+
content_list.append({"type": "text",
|
34 |
+
"text": content1})
|
35 |
+
messages = [
|
36 |
+
{
|
37 |
+
"role": "user",
|
38 |
+
"content": content_list
|
39 |
+
}
|
40 |
+
]
|
41 |
+
|
42 |
+
# Preparation for inference
|
43 |
+
text = processor.apply_chat_template(
|
44 |
+
messages, tokenize=False, add_generation_prompt=True
|
45 |
+
)
|
46 |
+
# print(text)
|
47 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
48 |
+
inputs = processor(
|
49 |
+
text=[text],
|
50 |
+
images=image_inputs,
|
51 |
+
videos=video_inputs,
|
52 |
+
padding=True,
|
53 |
+
return_tensors="pt",
|
54 |
+
)
|
55 |
+
inputs = inputs.to("cuda")
|
56 |
+
|
57 |
+
# Inference: Generation of the output
|
58 |
+
generated_ids = model.generate(**inputs, max_new_tokens=4096, do_sample=True, temperature=0.6)
|
59 |
+
generated_ids_trimmed = [
|
60 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
61 |
+
]
|
62 |
+
output_text = processor.batch_decode(
|
63 |
+
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
|
64 |
+
)
|
65 |
+
# print(output_text)
|
66 |
+
# print(output_text[0])
|
67 |
+
return output_text[0]
|
68 |
+
|
69 |
+
```
|