aashish1904 commited on
Commit
b429d67
·
verified ·
1 Parent(s): 6dbf228

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +315 -0
README.md ADDED
@@ -0,0 +1,315 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+
4
+ base_model: LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct
5
+ base_model_relation: finetune
6
+ license: other
7
+ license_name: exaone
8
+ license_link: LICENSE
9
+ language:
10
+ - en
11
+ - ko
12
+ tags:
13
+ - lg-ai
14
+ - exaone
15
+ - exaone-deep
16
+ pipeline_tag: text-generation
17
+ library_name: transformers
18
+
19
+ ---
20
+
21
+ [![QuantFactory Banner](https://lh7-rt.googleusercontent.com/docsz/AD_4nXeiuCm7c8lEwEJuRey9kiVZsRn2W-b4pWlu3-X534V3YmVuVc2ZL-NXg2RkzSOOS2JXGHutDuyyNAUtdJI65jGTo8jT9Y99tMi4H4MqL44Uc5QKG77B0d6-JfIkZHFaUA71-RtjyYZWVIhqsNZcx8-OMaA?key=xt3VSDoCbmTY7o-cwwOFwQ)](https://hf.co/QuantFactory)
22
+
23
+
24
+ # QuantFactory/EXAONE-Deep-7.8B-GGUF
25
+ This is quantized version of [LGAI-EXAONE/EXAONE-Deep-7.8B](https://huggingface.co/LGAI-EXAONE/EXAONE-Deep-7.8B) created using llama.cpp
26
+
27
+ # Original Model Card
28
+
29
+
30
+ <p align="center">
31
+ <img src="assets/EXAONE_Symbol+BI_3d.png", width="300", style="margin: 40 auto;">
32
+ <br>
33
+
34
+ # EXAONE-Deep-7.8B
35
+
36
+ ## Introduction
37
+
38
+ We introduce EXAONE Deep, which exhibits superior capabilities in various reasoning tasks including math and coding benchmarks, ranging from 2.4B to 32B parameters developed and released by LG AI Research. Evaluation results show that 1) EXAONE Deep **2.4B** outperforms other models of comparable size, 2) EXAONE Deep **7.8B** outperforms not only open-weight models of comparable scale but also a proprietary reasoning model OpenAI o1-mini, and 3) EXAONE Deep **32B** demonstrates competitive performance against leading open-weight models.
39
+
40
+ For more details, please refer to our [documentation](https://arxiv.org/abs/2503.12524), [blog](https://www.lgresearch.ai/news/view?seq=543) and [GitHub](https://github.com/LG-AI-EXAONE/EXAONE-Deep).
41
+
42
+ <p align="center">
43
+ <img src="assets/exaone_deep_overall_performance.png", width="100%", style="margin: 40 auto;">
44
+
45
+ This repository contains the reasoning 7.8B language model with the following features:
46
+
47
+ - Number of Parameters (without embeddings): 6.98B
48
+ - Number of Layers: 32
49
+ - Number of Attention Heads: GQA with 32 Q-heads and 8 KV-heads
50
+ - Vocab Size: 102,400
51
+ - Context Length: 32,768 tokens
52
+
53
+ ## Quickstart
54
+
55
+ We recommend to use `transformers` v4.43.1 or later.
56
+
57
+ Here is the code snippet to run conversational inference with the model:
58
+
59
+ ```python
60
+ import torch
61
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
62
+ from threading import Thread
63
+
64
+ model_name = "LGAI-EXAONE/EXAONE-Deep-7.8B"
65
+ streaming = True # choose the streaming option
66
+
67
+ model = AutoModelForCausalLM.from_pretrained(
68
+ model_name,
69
+ torch_dtype=torch.bfloat16,
70
+ trust_remote_code=True,
71
+ device_map="auto"
72
+ )
73
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
74
+
75
+ # Choose your prompt:
76
+ # Math example (AIME 2024)
77
+ prompt = r"""Let $x,y$ and $z$ be positive real numbers that satisfy the following system of equations:
78
+ \[\log_2\left({x \over yz}\right) = {1 \over 2}\]\[\log_2\left({y \over xz}\right) = {1 \over 3}\]\[\log_2\left({z \over xy}\right) = {1 \over 4}\]
79
+ Then the value of $\left|\log_2(x^4y^3z^2)\right|$ is $\tfrac{m}{n}$ where $m$ and $n$ are relatively prime positive integers. Find $m+n$.
80
+
81
+ Please reason step by step, and put your final answer within \boxed{}."""
82
+ # Korean MCQA example (CSAT Math 2025)
83
+ prompt = r"""Question : $a_1 = 2$인 수열 $\{a_n\}$과 $b_1 = 2$인 등차수열 $\{b_n\}$이 모든 자연수 $n$에 대하여\[\sum_{k=1}^{n} \frac{a_k}{b_{k+1}} = \frac{1}{2} n^2\]을 만족시킬 때, $\sum_{k=1}^{5} a_k$의 값을 구하여라.
84
+
85
+ Options :
86
+ A) 120
87
+ B) 125
88
+ C) 130
89
+ D) 135
90
+ E) 140
91
+
92
+ Please reason step by step, and you should write the correct option alphabet (A, B, C, D or E) within \\boxed{}."""
93
+
94
+ messages = [
95
+ {"role": "user", "content": prompt}
96
+ ]
97
+ input_ids = tokenizer.apply_chat_template(
98
+ messages,
99
+ tokenize=True,
100
+ add_generation_prompt=True,
101
+ return_tensors="pt"
102
+ )
103
+
104
+ if streaming:
105
+ streamer = TextIteratorStreamer(tokenizer)
106
+ thread = Thread(target=model.generate, kwargs=dict(
107
+ input_ids=input_ids.to("cuda"),
108
+ eos_token_id=tokenizer.eos_token_id,
109
+ max_new_tokens=32768,
110
+ do_sample=True,
111
+ temperature=0.6,
112
+ top_p=0.95,
113
+ streamer=streamer
114
+ ))
115
+ thread.start()
116
+
117
+ for text in streamer:
118
+ print(text, end="", flush=True)
119
+ else:
120
+ output = model.generate(
121
+ input_ids.to("cuda"),
122
+ eos_token_id=tokenizer.eos_token_id,
123
+ max_new_tokens=32768,
124
+ do_sample=True,
125
+ temperature=0.6,
126
+ top_p=0.95,
127
+ )
128
+ print(tokenizer.decode(output[0]))
129
+ ```
130
+
131
+ > ### Note
132
+ > The EXAONE Deep models are trained with an optimized configuration,
133
+ > so we recommend following the [Usage Guideline](#usage-guideline) section to achieve optimal performance.
134
+
135
+ ## Evaluation
136
+
137
+ The following table shows the evaluation results of reasoning tasks such as math and coding. The full evaluation results can be found in the [documentation](https://arxiv.org/abs/2503.12524).
138
+
139
+ <table>
140
+ <tr>
141
+ <th>Models</th>
142
+ <th>MATH-500 (pass@1)</th>
143
+ <th>AIME 2024 (pass@1 / cons@64)</th>
144
+ <th>AIME 2025 (pass@1 / cons@64)</th>
145
+ <th>CSAT Math 2025 (pass@1)</th>
146
+ <th>GPQA Diamond (pass@1)</th>
147
+ <th>Live Code Bench (pass@1)</th>
148
+ </tr>
149
+ <tr>
150
+ <td>EXAONE Deep 32B</td>
151
+ <td>95.7</td>
152
+ <td>72.1 / <strong>90.0</strong></td>
153
+ <td>65.8 / <strong>80.0</strong></td>
154
+ <td><strong>94.5</strong></td>
155
+ <td>66.1</td>
156
+ <td>59.5</td>
157
+ </tr>
158
+ <tr>
159
+ <td>DeepSeek-R1-Distill-Qwen-32B</td>
160
+ <td>94.3</td>
161
+ <td>72.6 / 83.3</td>
162
+ <td>55.2 / 73.3</td>
163
+ <td>84.1</td>
164
+ <td>62.1</td>
165
+ <td>57.2</td>
166
+ </tr>
167
+ <tr>
168
+ <td>QwQ-32B</td>
169
+ <td>95.5</td>
170
+ <td>79.5 / 86.7</td>
171
+ <td><strong>67.1</strong> / 76.7</td>
172
+ <td>94.4</td>
173
+ <td>63.3</td>
174
+ <td>63.4</td>
175
+ </tr>
176
+ <tr>
177
+ <td>DeepSeek-R1-Distill-Llama-70B</td>
178
+ <td>94.5</td>
179
+ <td>70.0 / 86.7</td>
180
+ <td>53.9 / 66.7</td>
181
+ <td>88.8</td>
182
+ <td>65.2</td>
183
+ <td>57.5</td>
184
+ </tr>
185
+ <tr>
186
+ <td>DeepSeek-R1 (671B)</td>
187
+ <td><strong>97.3</strong></td>
188
+ <td><strong>79.8</strong> / 86.7</td>
189
+ <td>66.8 / <strong>80.0</strong></td>
190
+ <td>89.9</td>
191
+ <td><strong>71.5</strong></td>
192
+ <td><strong>65.9</strong></td>
193
+ </tr>
194
+ <tr>
195
+ <th colspan="7" height="30px"></th>
196
+ </tr>
197
+ <tr>
198
+ <td>EXAONE Deep 7.8B</td>
199
+ <td><strong>94.8</strong></td>
200
+ <td><strong>70.0</strong> / <strong>83.3</strong></td>
201
+ <td><strong>59.6</strong> / <strong>76.7</strong></td>
202
+ <td><strong>89.9</strong></td>
203
+ <td><strong>62.6</strong></td>
204
+ <td><strong>55.2</strong></td>
205
+ </tr>
206
+ <tr>
207
+ <td>DeepSeek-R1-Distill-Qwen-7B</td>
208
+ <td>92.8</td>
209
+ <td>55.5 / <strong>83.3</strong></td>
210
+ <td>38.5 / 56.7</td>
211
+ <td>79.7</td>
212
+ <td>49.1</td>
213
+ <td>37.6</td>
214
+ </tr>
215
+ <tr>
216
+ <td>DeepSeek-R1-Distill-Llama-8B</td>
217
+ <td>89.1</td>
218
+ <td>50.4 / 80.0</td>
219
+ <td>33.6 / 53.3</td>
220
+ <td>74.1</td>
221
+ <td>49.0</td>
222
+ <td>39.6</td>
223
+ </tr>
224
+ <tr>
225
+ <td>OpenAI o1-mini</td>
226
+ <td>90.0</td>
227
+ <td>63.6 / 80.0</td>
228
+ <td>54.8 / 66.7</td>
229
+ <td>84.4</td>
230
+ <td>60.0</td>
231
+ <td>53.8</td>
232
+ </tr>
233
+ <tr>
234
+ <th colspan="7" height="30px"></th>
235
+ </tr>
236
+ <tr>
237
+ <td>EXAONE Deep 2.4B</td>
238
+ <td><strong>92.3</strong></td>
239
+ <td><strong>52.5</strong> / <strong>76.7</strong></td>
240
+ <td><strong>47.9</strong> / <strong>73.3</strong></td>
241
+ <td><strong>79.2</strong></td>
242
+ <td><strong>54.3</strong></td>
243
+ <td><strong>46.6</strong></td>
244
+ </tr>
245
+ <tr>
246
+ <td>DeepSeek-R1-Distill-Qwen-1.5B</td>
247
+ <td>83.9</td>
248
+ <td>28.9 / 52.7</td>
249
+ <td>23.9 / 36.7</td>
250
+ <td>65.6</td>
251
+ <td>33.8</td>
252
+ <td>16.9</td>
253
+ </tr>
254
+ </table>
255
+
256
+ ## Deployment
257
+
258
+ EXAONE Deep models can be inferred in the various frameworks, such as:
259
+ - `TensorRT-LLM`
260
+ - `vLLM`
261
+ - `SGLang`
262
+ - `llama.cpp`
263
+ - `Ollama`
264
+ - `LM-Studio`
265
+
266
+ Please refer to our [EXAONE Deep GitHub](https://github.com/LG-AI-EXAONE/EXAONE-Deep) for more details about the inference frameworks.
267
+
268
+ ## Quantization
269
+
270
+ We provide the pre-quantized EXAONE Deep models with **AWQ** and several quantization types in **GGUF** format. Please refer to our [EXAONE Deep collection](https://huggingface.co/collections/LGAI-EXAONE/exaone-deep-67d119918816ec6efa79a4aa) to find corresponding quantized models.
271
+
272
+ ## Usage Guideline
273
+
274
+ To achieve the expected performance, we recommend using the following configurations:
275
+
276
+ 1. Ensure the model starts with `<thought>\n` for reasoning steps. The model's output quality may be degraded when you omit it. You can easily apply this feature by using `tokenizer.apply_chat_template()` with `add_generation_prompt=True`. Please check the example code on [Quickstart](#quickstart) section.
277
+ 2. The reasoning steps of EXAONE Deep models enclosed by `<thought>\n...\n</thought>` usually have lots of tokens, so previous reasoning steps may be necessary to be removed in multi-turn situation. The provided tokenizer handles this automatically.
278
+ 3. Avoid using system prompt, and build the instruction on the user prompt.
279
+ 4. Additional instructions help the models reason more deeply, so that the models generate better output.
280
+ - For math problems, the instructions **"Please reason step by step, and put your final answer within \boxed{}."** are helpful.
281
+ - For more information on our evaluation setting including prompts, please refer to our [Documentation](https://arxiv.org/abs/2503.12524).
282
+ 5. In our evaluation, we use `temperature=0.6` and `top_p=0.95` for generation.
283
+ 6. When evaluating the models, it is recommended to test multiple times to assess the expected performance accurately.
284
+
285
+ ## Limitation
286
+
287
+ The EXAONE language model has certain limitations and may occasionally generate inappropriate responses. The language model generates responses based on the output probability of tokens, and it is determined during learning from training data. While we have made every effort to exclude personal, harmful, and biased information from the training data, some problematic content may still be included, potentially leading to undesirable responses. Please note that the text generated by EXAONE language model does not reflects the views of LG AI Research.
288
+
289
+ - Inappropriate answers may be generated, which contain personal, harmful or other inappropriate information.
290
+ - Biased responses may be generated, which are associated with age, gender, race, and so on.
291
+ - The generated responses rely heavily on statistics from the training data, which can result in the generation of
292
+ semantically or syntactically incorrect sentences.
293
+ - Since the model does not reflect the latest information, the responses may be false or contradictory.
294
+
295
+ LG AI Research strives to reduce potential risks that may arise from EXAONE language models. Users are not allowed
296
+ to engage in any malicious activities (e.g., keying in illegal information) that may induce the creation of inappropriate
297
+ outputs violating LG AI’s ethical principles when using EXAONE language models.
298
+
299
+ ## License
300
+
301
+ The model is licensed under [EXAONE AI Model License Agreement 1.1 - NC](./LICENSE)
302
+
303
+ ## Citation
304
+
305
+ ```
306
+ @article{exaone-deep,
307
+ title={EXAONE Deep: Reasoning Enhanced Language Models},
308
+ author={{LG AI Research}},
309
+ journal={arXiv preprint arXiv:2503.12524},
310
+ year={2025}
311
+ }
312
+ ```
313
+
314
+ ## Contact
315
+ LG AI Research Technical Support: [email protected]