JunHowie's picture
Upload folder using huggingface_hub
fdbdfb0 verified
# SPDX-License-Identifier: Apache-2.0
from copy import deepcopy
from typing import Any, Callable, Optional, Union
import torch
import vllm.model_executor.layers.fused_moe # noqa
from vllm import _custom_ops as ops
from vllm.logger import init_logger
from vllm.model_executor.layers.fused_moe.layer import (
FusedMoE, FusedMoEMethodBase, FusedMoeWeightScaleSupported, UnquantizedFusedMoEMethod)
from vllm.model_executor.layers.linear import (LinearMethodBase,
set_weight_attrs)
from vllm.model_executor.layers.quantization import QuantizationMethods
from vllm.model_executor.layers.quantization.base_config import (
QuantizationConfig, QuantizeMethodBase)
from vllm.model_executor.layers.quantization.kernels.mixed_precision import (
MPLinearLayerConfig, choose_mp_linear_kernel)
from vllm.model_executor.layers.quantization.utils import replace_parameter
from vllm.model_executor.layers.quantization.utils.gptq_utils import (
get_linear_quant_method, override_config, get_dynamic_override)
from vllm.model_executor.layers.quantization.utils.marlin_utils import (
check_marlin_supported, check_moe_marlin_supports_layer,
marlin_make_workspace_new, marlin_moe_permute_scales,
marlin_repeat_scales_on_all_ranks, verify_marlin_supported)
from vllm.model_executor.parameter import (ChannelQuantScaleParameter,
GroupQuantScaleParameter,
PackedColumnParameter,
PackedvLLMParameter,
RowvLLMParameter)
from vllm.platforms import current_platform
from vllm.scalar_type import scalar_types
logger = init_logger(__name__)
def get_moe_quant_method(
config: QuantizationConfig,
layer: torch.nn.Module,
prefix: str,
moe_method_cls: type,
):
cloned_config = deepcopy(config)
if isinstance(layer, FusedMoE):
# False = skip module, None = no override, else = Positive match
if get_dynamic_override( # noqa: E712
cloned_config, # noqa: E712
layer_name=prefix) == False: # noqa: E712
return UnquantizedFusedMoEMethod(layer.moe_config)
if prefix:
# Dynamic per module/layer rules may override base config
override_config(cloned_config, prefix=prefix)
return moe_method_cls(cloned_config)
return None
class GPTQMarlinConfig(QuantizationConfig):
"""Config class for GPTQ Marlin"""
# (num_bits, is_sym) -> quant_type
TYPE_MAP = {
(4, True): scalar_types.uint4b8,
(8, True): scalar_types.uint8b128,
}
def __init__(self, weight_bits: int, group_size: int, desc_act: bool,
is_sym: bool, lm_head_quantized: bool,
dynamic: dict[str, dict[str, Union[int, bool]]],
full_config: dict[str, Any]) -> None:
super().__init__()
if desc_act and group_size == -1:
# In this case, act_order == True is the same as act_order == False
# (since we have only one group per output channel)
desc_act = False
# GPTQModel use `dynamic` config property to allow per module
# quantization config so each module can be individually optimized.
# Format is dict[str, dict] where key is a regex string that can
# perform both positive ("+:" prefixed) or negative ("-:" prefixed)
# matching of a module.
# Default to positive match, override base quant config mode, if no
# prefix is used. Value is in dict format of field key and override
# value.
# Negative matching will skip quantization init for this module
# entirely:
# non-quantized inference. More details and quantization examples can be
# found at: https://github.com/ModelCloud/GPTQModel
# Example:
# # last 1/2 of the layers 10-21 has 8bit vs 4bit for 0-9
# # last 1/4 of the layers 16-21 has 8bit and group_size 64
# dynamic = {
# #`.*\.` matches the layers_node prefix
# # positive match layer 10-15
# r"+:.*\.(?:1[0-5])\..*": {"bits": 8,},
# # positive match layer 16-21
# r"+:.*\.(?:1[6-9]|20|21)\..*": {"bits": 8, "group_size": 64,},
# r"-:.*\.moe\..*": {}, # negative match (skip) all `moe` layers
# }
self.dynamic = dynamic
self.weight_bits = weight_bits
self.is_sym = is_sym
self.pack_factor = 32 // weight_bits # packed into int32
self.group_size = group_size
self.desc_act = desc_act
self.lm_head_quantized = lm_head_quantized
self.full_config = full_config
if (weight_bits, is_sym) not in self.TYPE_MAP:
raise ValueError("Unsupported quantization config: "
f"bits={weight_bits}, sym={is_sym}")
self.quant_type = self.TYPE_MAP[(weight_bits, is_sym)]
def __repr__(self) -> str:
return (f"GPTQMarlinConfig(quant_type={self.quant_type}, "
f"group_size={self.group_size}, "
f"desc_act={self.desc_act}, "
f"lm_head_quantized={self.lm_head_quantized}), "
f"dynamic={self.dynamic}")
@classmethod
def get_name(cls) -> QuantizationMethods:
return "gptq_marlin"
@classmethod
def get_supported_act_dtypes(cls) -> list[torch.dtype]:
return [torch.half, torch.bfloat16]
@classmethod
def get_min_capability(cls) -> int:
return 80
@classmethod
def get_config_filenames(cls) -> list[str]:
return ["quantize_config.json"]
@classmethod
def from_config(cls, config: dict[str, Any]) -> "GPTQMarlinConfig":
dynamic = cls.get_from_keys_or(config, ["dynamic"], default={})
dynamic = {} if dynamic is None else dynamic
weight_bits = cls.get_from_keys(config, ["bits"])
group_size = cls.get_from_keys(config, ["group_size"])
desc_act = cls.get_from_keys(config, ["desc_act"])
is_sym = cls.get_from_keys(config, ["sym"])
lm_head_quantized = cls.get_from_keys_or(config, ["lm_head"],
default=False)
return cls(weight_bits, group_size, desc_act, is_sym,
lm_head_quantized, dynamic, config)
@classmethod
def override_quantization_method(
cls, hf_quant_cfg, user_quant) -> Optional[QuantizationMethods]:
can_convert = cls.is_gptq_marlin_compatible(hf_quant_cfg)
is_valid_user_quant = (user_quant is None or user_quant == "marlin"
or user_quant == "gptq_marlin")
if can_convert and is_valid_user_quant:
msg = ("The model is convertible to {} during runtime."
" Using {} kernel.".format(cls.get_name(), cls.get_name()))
logger.info(msg)
return cls.get_name()
if can_convert and user_quant == "gptq":
logger.info("Detected that the model can run with gptq_marlin"
", however you specified quantization=gptq explicitly,"
" so forcing gptq. Use quantization=gptq_marlin for"
" faster inference")
return None
def get_quant_method(self, layer: torch.nn.Module,
prefix: str) -> Optional["QuantizeMethodBase"]:
if isinstance(layer, FusedMoE):
from vllm.model_executor.layers.quantization.moe_wna16 import (
MoeWNA16Config)
if not check_moe_marlin_supports_layer(layer, self.group_size):
logger.warning_once(
f"Layer '{prefix}' is not supported by GPTQMoeMarlin. "
"Falling back to Moe WNA16 kernels.")
return MoeWNA16Config.from_config(
self.full_config).get_quant_method(layer, prefix)
return get_moe_quant_method(self, layer, prefix, GPTQMarlinMoEMethod)
return get_linear_quant_method(self, layer, prefix, GPTQMarlinLinearMethod)
@classmethod
def is_gptq_marlin_compatible(cls, quant_config: dict[str, Any]):
quant_method = quant_config.get("quant_method", "").lower()
num_bits = quant_config.get("bits")
group_size = quant_config.get("group_size")
sym = quant_config.get("sym")
desc_act = quant_config.get("desc_act")
if not current_platform.is_cuda():
return False
if quant_method != "gptq":
return False
# Marlin conversion is only valid if required properties are found
if (num_bits is None or group_size is None or sym is None
or desc_act is None):
return False
if (num_bits, sym) not in cls.TYPE_MAP:
return False
return check_marlin_supported(quant_type=cls.TYPE_MAP[(num_bits, sym)],
group_size=group_size)
class GPTQMarlinLinearMethod(LinearMethodBase):
"""Linear method for GPTQ Marlin.
Args:
quant_config: The GPTQ Marlin quantization config.
"""
_kernel_backends_being_used: set[str] = set()
def __init__(self, quant_config: GPTQMarlinConfig) -> None:
self.quant_config = quant_config
# Verify supported on platform.
verify_marlin_supported(quant_type=self.quant_config.quant_type,
group_size=self.quant_config.group_size)
def create_weights(
self,
layer: torch.nn.Module,
input_size_per_partition: int,
output_partition_sizes: list[int],
input_size: int,
output_size: int,
params_dtype: torch.dtype,
**extra_weight_attrs,
) -> None:
output_size_per_partition = sum(output_partition_sizes)
is_row_parallel = input_size != input_size_per_partition
weight_loader = extra_weight_attrs.get("weight_loader")
mp_linear_kernel_config = MPLinearLayerConfig(
full_weight_shape=(input_size, output_size),
partition_weight_shape=\
(input_size_per_partition, output_size_per_partition),
weight_type=self.quant_config.quant_type,
act_type=params_dtype,
group_size=self.quant_config.group_size,
zero_points=False,
has_g_idx=self.quant_config.desc_act
)
kernel_type = choose_mp_linear_kernel(mp_linear_kernel_config)
if kernel_type.__name__ not in self._kernel_backends_being_used:
logger.info("Using %s for GPTQMarlinLinearMethod",
kernel_type.__name__)
self._kernel_backends_being_used.add(kernel_type.__name__)
# Normalize group_size
if self.quant_config.group_size != -1:
group_size = self.quant_config.group_size
else:
group_size = input_size
# Determine sharding
if marlin_repeat_scales_on_all_ranks(self.quant_config.desc_act,
self.quant_config.group_size,
is_row_parallel):
# By setting scale_dim == None, weight_loader will
# repeat the scales on each GPU in TP>1 case.
scales_and_zp_input_dim = None
scales_and_zp_size = input_size // group_size
else:
# By setting scale_dim == 0, weight_loader will
# shard the scales in TP>1 case.
scales_and_zp_input_dim = 0
scales_and_zp_size = input_size_per_partition // group_size
# Quantized weights
qweight = PackedvLLMParameter(
data=torch.empty(
input_size_per_partition // self.quant_config.pack_factor,
output_size_per_partition,
dtype=torch.int32,
),
input_dim=0,
output_dim=1,
packed_dim=0,
packed_factor=self.quant_config.pack_factor,
weight_loader=weight_loader)
# Activation order
g_idx = RowvLLMParameter(data=torch.empty(
input_size_per_partition,
dtype=torch.int32,
),
input_dim=0,
weight_loader=weight_loader)
qzeros_args = {
"data":
torch.empty(
scales_and_zp_size,
output_size_per_partition // self.quant_config.pack_factor,
dtype=torch.int32,
),
"weight_loader":
weight_loader
}
weight_scale_args = {
"data":
torch.empty(
scales_and_zp_size,
output_size_per_partition,
dtype=params_dtype,
),
"weight_loader":
weight_loader
}
if scales_and_zp_input_dim is None:
scales = ChannelQuantScaleParameter(output_dim=1,
**weight_scale_args)
qzeros = PackedColumnParameter(
output_dim=1,
packed_dim=1,
packed_factor=self.quant_config.pack_factor,
**qzeros_args)
else:
scales = GroupQuantScaleParameter(output_dim=1,
input_dim=0,
**weight_scale_args)
qzeros = PackedvLLMParameter(
input_dim=0,
output_dim=1,
packed_dim=1,
packed_factor=self.quant_config.pack_factor,
**qzeros_args)
layer.register_parameter("qweight", qweight)
layer.register_parameter("g_idx", g_idx)
layer.register_parameter("scales", scales)
layer.register_parameter("qzeros", qzeros)
self.kernel = kernel_type(mp_linear_kernel_config,
w_q_param_name="qweight",
w_s_param_name="scales",
w_zp_param_name="qzeros",
w_gidx_param_name="g_idx")
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
self.kernel.process_weights_after_loading(layer)
def apply(
self,
layer: torch.nn.Module,
x: torch.Tensor,
bias: Optional[torch.Tensor] = None,
) -> torch.Tensor:
return self.kernel.apply_weights(layer, x, bias)
class GPTQMarlinMoEMethod(FusedMoEMethodBase):
"""MoE Marlin method with quantization."""
def __init__(self, quant_config: GPTQMarlinConfig) -> None:
self.quant_config = quant_config
if self.quant_config.quant_type.size_bits == 4:
self.quant_type = scalar_types.uint4b8
elif self.quant_config.quant_type.size_bits == 8:
self.quant_type = scalar_types.uint8b128
else:
raise ValueError(
"GPTQMarlinMoEMethod only supports int4 and int8 now.")
def create_weights(
self,
layer: torch.nn.Module,
num_experts: int,
hidden_size: int,
intermediate_size_per_partition: int,
params_dtype: torch.dtype,
**extra_weight_attrs,
):
intermediate_size_full = extra_weight_attrs.pop(
"intermediate_size_full")
self.is_k_full = (not self.quant_config.desc_act) or (
intermediate_size_per_partition == intermediate_size_full)
if self.quant_config.group_size != -1:
scales_size13 = hidden_size // self.quant_config.group_size
w2_scales_size = (intermediate_size_full
if self.quant_config.desc_act else
intermediate_size_per_partition)
scales_size2 = (w2_scales_size // self.quant_config.group_size)
strategy = FusedMoeWeightScaleSupported.GROUP.value
else:
scales_size13 = 1
scales_size2 = 1
strategy = FusedMoeWeightScaleSupported.CHANNEL.value
extra_weight_attrs.update({
"quant_method": strategy,
"is_transposed": True
})
# Fused gate_up_proj (column parallel)
w13_qweight = torch.nn.Parameter(
torch.empty(
num_experts,
hidden_size // self.quant_config.pack_factor,
2 * intermediate_size_per_partition,
dtype=torch.int32,
),
requires_grad=False,
)
layer.register_parameter("w13_qweight", w13_qweight)
set_weight_attrs(w13_qweight, extra_weight_attrs)
# down_proj (row parallel)
w2_qweight = torch.nn.Parameter(
torch.empty(
num_experts,
intermediate_size_per_partition //
self.quant_config.pack_factor,
hidden_size,
dtype=torch.int32,
),
requires_grad=False,
)
layer.register_parameter("w2_qweight", w2_qweight)
set_weight_attrs(w2_qweight, extra_weight_attrs)
# up_proj scales
w13_scales = torch.nn.Parameter(
torch.empty(num_experts,
scales_size13,
2 * intermediate_size_per_partition,
dtype=params_dtype),
requires_grad=False,
)
layer.register_parameter("w13_scales", w13_scales)
set_weight_attrs(w13_scales, extra_weight_attrs)
# down_proj scales
w2_scales = torch.nn.Parameter(
torch.empty(num_experts,
scales_size2,
hidden_size,
dtype=params_dtype),
requires_grad=False,
)
layer.register_parameter("w2_scales", w2_scales)
set_weight_attrs(w2_scales, extra_weight_attrs)
# dont shard the w2 scales when running act order
set_weight_attrs(w2_scales,
{"load_full_w2": self.quant_config.desc_act})
# up_proj scales
w13_qzeros = torch.nn.Parameter(
torch.empty(num_experts,
scales_size13,
2 * intermediate_size_per_partition //
self.quant_config.pack_factor,
dtype=params_dtype),
requires_grad=False,
)
layer.register_parameter("w13_qzeros", w13_qzeros)
set_weight_attrs(w13_qzeros, extra_weight_attrs)
# down_proj scales
w2_qzeros = torch.nn.Parameter(
torch.empty(num_experts,
scales_size2,
hidden_size // self.quant_config.pack_factor,
dtype=params_dtype),
requires_grad=False,
)
layer.register_parameter("w2_qzeros", w2_qzeros)
set_weight_attrs(w2_qzeros, extra_weight_attrs)
# dont shard the w2 scales when running act order
set_weight_attrs(w2_qzeros,
{"load_full_w2": self.quant_config.desc_act})
w13_g_idx = torch.nn.Parameter(
torch.empty(
num_experts,
hidden_size,
dtype=torch.int32,
),
requires_grad=False,
)
layer.register_parameter("w13_g_idx", w13_g_idx)
set_weight_attrs(w13_g_idx, extra_weight_attrs)
w2_g_idx = torch.nn.Parameter(
torch.empty(
num_experts,
intermediate_size_per_partition,
dtype=torch.int32,
),
requires_grad=False,
)
layer.register_parameter("w2_g_idx", w2_g_idx)
set_weight_attrs(w2_g_idx, extra_weight_attrs)
w13_g_idx_sort_indices = torch.nn.Parameter(
torch.empty(
num_experts,
hidden_size,
dtype=torch.int32,
),
requires_grad=False,
)
layer.register_parameter("w13_g_idx_sort_indices",
w13_g_idx_sort_indices)
set_weight_attrs(w13_g_idx_sort_indices, extra_weight_attrs)
w2_g_idx_sort_indices = torch.nn.Parameter(
torch.empty(
num_experts,
intermediate_size_per_partition,
dtype=torch.int32,
),
requires_grad=False,
)
layer.register_parameter("w2_g_idx_sort_indices",
w2_g_idx_sort_indices)
set_weight_attrs(w2_g_idx_sort_indices, extra_weight_attrs)
device = layer.w13_qweight.device
layer.workspace = marlin_make_workspace_new(device, 4)
def process_weights_after_loading(self, layer: torch.nn.Module) -> None:
# Process act_order
if self.quant_config.desc_act:
# Get sorting based on g_idx
num_experts = layer.w13_g_idx.shape[0]
w13_g_idx_sort_indices = torch.empty_like(layer.w13_g_idx)
w2_g_idx_sort_indices = torch.empty_like(layer.w2_g_idx)
w13_sorted_g_idx = torch.empty_like(layer.w13_g_idx)
w2_sorted_g_idx = torch.empty_like(layer.w2_g_idx)
for e in range(num_experts):
w13_g_idx_sort_indices[e] = torch.argsort(
layer.w13_g_idx[e]).to(torch.int32)
w2_g_idx_sort_indices[e] = torch.argsort(layer.w2_g_idx[e]).to(
torch.int32)
w13_sorted_g_idx[e] = layer.w13_g_idx[e][
w13_g_idx_sort_indices[e]]
w2_sorted_g_idx[e] = layer.w2_g_idx[e][
w2_g_idx_sort_indices[e]]
replace_parameter(layer, "w13_g_idx", w13_sorted_g_idx)
replace_parameter(layer, "w2_g_idx", w2_sorted_g_idx)
replace_parameter(layer, "w13_g_idx_sort_indices",
w13_g_idx_sort_indices)
replace_parameter(layer, "w2_g_idx_sort_indices",
w2_g_idx_sort_indices)
else:
# Reset g_idx related tensors
num_experts = layer.w13_g_idx.shape[0]
device = layer.w13_g_idx.device
layer.w13_g_idx = torch.nn.Parameter(
torch.empty((num_experts, 0), dtype=torch.int32,
device=device),
requires_grad=False,
)
layer.w2_g_idx = torch.nn.Parameter(
torch.empty((num_experts, 0), dtype=torch.int32,
device=device),
requires_grad=False,
)
layer.w13_g_idx_sort_indices = torch.nn.Parameter(
torch.empty((num_experts, 0), dtype=torch.int32,
device=device),
requires_grad=False,
)
layer.w2_g_idx_sort_indices = torch.nn.Parameter(
torch.empty((num_experts, 0), dtype=torch.int32,
device=device),
requires_grad=False,
)
# Repack weights
marlin_w13_qweight = ops.gptq_marlin_moe_repack(
layer.w13_qweight,
layer.w13_g_idx_sort_indices,
layer.w13_qweight.shape[1] * self.quant_config.pack_factor,
layer.w13_qweight.shape[2],
self.quant_config.quant_type.size_bits,
)
replace_parameter(layer, "w13_qweight", marlin_w13_qweight)
marlin_w2_qweight = ops.gptq_marlin_moe_repack(
layer.w2_qweight,
layer.w2_g_idx_sort_indices,
layer.w2_qweight.shape[1] * self.quant_config.pack_factor,
layer.w2_qweight.shape[2],
self.quant_config.quant_type.size_bits,
)
replace_parameter(layer, "w2_qweight", marlin_w2_qweight)
# Repack scales
marlin_w13_scales = marlin_moe_permute_scales(
s=layer.w13_scales,
size_k=layer.intermediate_size_per_partition,
size_n=layer.w13_scales.shape[2],
group_size=self.quant_config.group_size,
)
replace_parameter(layer, "w13_scales", marlin_w13_scales)
marlin_w2_scales = marlin_moe_permute_scales(
s=layer.w2_scales,
size_k=layer.w2_scales.shape[1] *
(self.quant_config.group_size if self.quant_config.group_size != -1
else self.quant_config.pack_factor),
size_n=layer.w2_scales.shape[2],
group_size=self.quant_config.group_size,
)
replace_parameter(layer, "w2_scales", marlin_w2_scales)
def apply(
self,
layer: torch.nn.Module,
x: torch.Tensor,
router_logits: torch.Tensor,
top_k: int,
renormalize: bool,
use_grouped_topk: bool = False,
topk_group: Optional[int] = None,
num_expert_group: Optional[int] = None,
global_num_experts: int = -1,
expert_map: Optional[torch.Tensor] = None,
custom_routing_function: Optional[Callable] = None,
scoring_func: str = "softmax",
e_score_correction_bias: Optional[torch.Tensor] = None,
apply_router_weight_on_input: bool = False,
activation: str = "silu",
) -> torch.Tensor:
assert activation == "silu", "Only SiLU activation is supported."
if apply_router_weight_on_input:
raise NotImplementedError(
"Apply router weight on input is not supported for "
"fused Marlin MoE method.")
topk_weights, topk_ids = FusedMoE.select_experts(
hidden_states=x,
router_logits=router_logits,
use_grouped_topk=use_grouped_topk,
top_k=top_k,
renormalize=renormalize,
topk_group=topk_group,
num_expert_group=num_expert_group,
custom_routing_function=custom_routing_function,
scoring_func=scoring_func,
e_score_correction_bias=e_score_correction_bias)
return torch.ops.vllm.fused_marlin_moe(
x,
layer.w13_qweight,
layer.w2_qweight,
layer.w13_scales,
layer.w2_scales,
router_logits,
topk_weights,
topk_ids,
quant_type_id=self.quant_type.id,
global_num_experts=global_num_experts,
expert_map=expert_map,
g_idx1=layer.w13_g_idx,
g_idx2=layer.w2_g_idx,
sort_indices1=layer.w13_g_idx_sort_indices,
sort_indices2=layer.w2_g_idx_sort_indices,
workspace=layer.workspace,
is_k_full=self.is_k_full)