|
|
|
from copy import deepcopy |
|
from typing import Any, Callable, Optional, Union |
|
|
|
import torch |
|
|
|
import vllm.model_executor.layers.fused_moe |
|
from vllm import _custom_ops as ops |
|
from vllm.logger import init_logger |
|
from vllm.model_executor.layers.fused_moe.layer import ( |
|
FusedMoE, FusedMoEMethodBase, FusedMoeWeightScaleSupported, UnquantizedFusedMoEMethod) |
|
from vllm.model_executor.layers.linear import (LinearMethodBase, |
|
set_weight_attrs) |
|
from vllm.model_executor.layers.quantization import QuantizationMethods |
|
from vllm.model_executor.layers.quantization.base_config import ( |
|
QuantizationConfig, QuantizeMethodBase) |
|
from vllm.model_executor.layers.quantization.kernels.mixed_precision import ( |
|
MPLinearLayerConfig, choose_mp_linear_kernel) |
|
from vllm.model_executor.layers.quantization.utils import replace_parameter |
|
from vllm.model_executor.layers.quantization.utils.gptq_utils import ( |
|
get_linear_quant_method, override_config, get_dynamic_override) |
|
from vllm.model_executor.layers.quantization.utils.marlin_utils import ( |
|
check_marlin_supported, check_moe_marlin_supports_layer, |
|
marlin_make_workspace_new, marlin_moe_permute_scales, |
|
marlin_repeat_scales_on_all_ranks, verify_marlin_supported) |
|
from vllm.model_executor.parameter import (ChannelQuantScaleParameter, |
|
GroupQuantScaleParameter, |
|
PackedColumnParameter, |
|
PackedvLLMParameter, |
|
RowvLLMParameter) |
|
from vllm.platforms import current_platform |
|
from vllm.scalar_type import scalar_types |
|
|
|
logger = init_logger(__name__) |
|
|
|
|
|
def get_moe_quant_method( |
|
config: QuantizationConfig, |
|
layer: torch.nn.Module, |
|
prefix: str, |
|
moe_method_cls: type, |
|
): |
|
cloned_config = deepcopy(config) |
|
|
|
if isinstance(layer, FusedMoE): |
|
|
|
if get_dynamic_override( |
|
cloned_config, |
|
layer_name=prefix) == False: |
|
return UnquantizedFusedMoEMethod(layer.moe_config) |
|
|
|
if prefix: |
|
|
|
override_config(cloned_config, prefix=prefix) |
|
|
|
return moe_method_cls(cloned_config) |
|
return None |
|
|
|
|
|
class GPTQMarlinConfig(QuantizationConfig): |
|
"""Config class for GPTQ Marlin""" |
|
|
|
|
|
TYPE_MAP = { |
|
(4, True): scalar_types.uint4b8, |
|
(8, True): scalar_types.uint8b128, |
|
} |
|
|
|
def __init__(self, weight_bits: int, group_size: int, desc_act: bool, |
|
is_sym: bool, lm_head_quantized: bool, |
|
dynamic: dict[str, dict[str, Union[int, bool]]], |
|
full_config: dict[str, Any]) -> None: |
|
super().__init__() |
|
if desc_act and group_size == -1: |
|
|
|
|
|
desc_act = False |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.dynamic = dynamic |
|
|
|
self.weight_bits = weight_bits |
|
self.is_sym = is_sym |
|
|
|
self.pack_factor = 32 // weight_bits |
|
self.group_size = group_size |
|
self.desc_act = desc_act |
|
self.lm_head_quantized = lm_head_quantized |
|
self.full_config = full_config |
|
|
|
if (weight_bits, is_sym) not in self.TYPE_MAP: |
|
raise ValueError("Unsupported quantization config: " |
|
f"bits={weight_bits}, sym={is_sym}") |
|
|
|
self.quant_type = self.TYPE_MAP[(weight_bits, is_sym)] |
|
|
|
def __repr__(self) -> str: |
|
return (f"GPTQMarlinConfig(quant_type={self.quant_type}, " |
|
f"group_size={self.group_size}, " |
|
f"desc_act={self.desc_act}, " |
|
f"lm_head_quantized={self.lm_head_quantized}), " |
|
f"dynamic={self.dynamic}") |
|
|
|
@classmethod |
|
def get_name(cls) -> QuantizationMethods: |
|
return "gptq_marlin" |
|
|
|
@classmethod |
|
def get_supported_act_dtypes(cls) -> list[torch.dtype]: |
|
return [torch.half, torch.bfloat16] |
|
|
|
@classmethod |
|
def get_min_capability(cls) -> int: |
|
return 80 |
|
|
|
@classmethod |
|
def get_config_filenames(cls) -> list[str]: |
|
return ["quantize_config.json"] |
|
|
|
@classmethod |
|
def from_config(cls, config: dict[str, Any]) -> "GPTQMarlinConfig": |
|
dynamic = cls.get_from_keys_or(config, ["dynamic"], default={}) |
|
dynamic = {} if dynamic is None else dynamic |
|
|
|
weight_bits = cls.get_from_keys(config, ["bits"]) |
|
group_size = cls.get_from_keys(config, ["group_size"]) |
|
desc_act = cls.get_from_keys(config, ["desc_act"]) |
|
is_sym = cls.get_from_keys(config, ["sym"]) |
|
lm_head_quantized = cls.get_from_keys_or(config, ["lm_head"], |
|
default=False) |
|
return cls(weight_bits, group_size, desc_act, is_sym, |
|
lm_head_quantized, dynamic, config) |
|
|
|
@classmethod |
|
def override_quantization_method( |
|
cls, hf_quant_cfg, user_quant) -> Optional[QuantizationMethods]: |
|
can_convert = cls.is_gptq_marlin_compatible(hf_quant_cfg) |
|
|
|
is_valid_user_quant = (user_quant is None or user_quant == "marlin" |
|
or user_quant == "gptq_marlin") |
|
|
|
if can_convert and is_valid_user_quant: |
|
msg = ("The model is convertible to {} during runtime." |
|
" Using {} kernel.".format(cls.get_name(), cls.get_name())) |
|
logger.info(msg) |
|
return cls.get_name() |
|
|
|
if can_convert and user_quant == "gptq": |
|
logger.info("Detected that the model can run with gptq_marlin" |
|
", however you specified quantization=gptq explicitly," |
|
" so forcing gptq. Use quantization=gptq_marlin for" |
|
" faster inference") |
|
return None |
|
|
|
def get_quant_method(self, layer: torch.nn.Module, |
|
prefix: str) -> Optional["QuantizeMethodBase"]: |
|
if isinstance(layer, FusedMoE): |
|
from vllm.model_executor.layers.quantization.moe_wna16 import ( |
|
MoeWNA16Config) |
|
if not check_moe_marlin_supports_layer(layer, self.group_size): |
|
logger.warning_once( |
|
f"Layer '{prefix}' is not supported by GPTQMoeMarlin. " |
|
"Falling back to Moe WNA16 kernels.") |
|
return MoeWNA16Config.from_config( |
|
self.full_config).get_quant_method(layer, prefix) |
|
return get_moe_quant_method(self, layer, prefix, GPTQMarlinMoEMethod) |
|
return get_linear_quant_method(self, layer, prefix, GPTQMarlinLinearMethod) |
|
|
|
@classmethod |
|
def is_gptq_marlin_compatible(cls, quant_config: dict[str, Any]): |
|
quant_method = quant_config.get("quant_method", "").lower() |
|
num_bits = quant_config.get("bits") |
|
group_size = quant_config.get("group_size") |
|
sym = quant_config.get("sym") |
|
desc_act = quant_config.get("desc_act") |
|
|
|
if not current_platform.is_cuda(): |
|
return False |
|
|
|
if quant_method != "gptq": |
|
return False |
|
|
|
|
|
if (num_bits is None or group_size is None or sym is None |
|
or desc_act is None): |
|
return False |
|
|
|
if (num_bits, sym) not in cls.TYPE_MAP: |
|
return False |
|
|
|
return check_marlin_supported(quant_type=cls.TYPE_MAP[(num_bits, sym)], |
|
group_size=group_size) |
|
|
|
|
|
class GPTQMarlinLinearMethod(LinearMethodBase): |
|
"""Linear method for GPTQ Marlin. |
|
|
|
Args: |
|
quant_config: The GPTQ Marlin quantization config. |
|
""" |
|
|
|
_kernel_backends_being_used: set[str] = set() |
|
|
|
def __init__(self, quant_config: GPTQMarlinConfig) -> None: |
|
self.quant_config = quant_config |
|
|
|
|
|
verify_marlin_supported(quant_type=self.quant_config.quant_type, |
|
group_size=self.quant_config.group_size) |
|
|
|
def create_weights( |
|
self, |
|
layer: torch.nn.Module, |
|
input_size_per_partition: int, |
|
output_partition_sizes: list[int], |
|
input_size: int, |
|
output_size: int, |
|
params_dtype: torch.dtype, |
|
**extra_weight_attrs, |
|
) -> None: |
|
output_size_per_partition = sum(output_partition_sizes) |
|
is_row_parallel = input_size != input_size_per_partition |
|
weight_loader = extra_weight_attrs.get("weight_loader") |
|
|
|
mp_linear_kernel_config = MPLinearLayerConfig( |
|
full_weight_shape=(input_size, output_size), |
|
partition_weight_shape=\ |
|
(input_size_per_partition, output_size_per_partition), |
|
weight_type=self.quant_config.quant_type, |
|
act_type=params_dtype, |
|
group_size=self.quant_config.group_size, |
|
zero_points=False, |
|
has_g_idx=self.quant_config.desc_act |
|
) |
|
|
|
kernel_type = choose_mp_linear_kernel(mp_linear_kernel_config) |
|
|
|
if kernel_type.__name__ not in self._kernel_backends_being_used: |
|
logger.info("Using %s for GPTQMarlinLinearMethod", |
|
kernel_type.__name__) |
|
self._kernel_backends_being_used.add(kernel_type.__name__) |
|
|
|
|
|
if self.quant_config.group_size != -1: |
|
group_size = self.quant_config.group_size |
|
else: |
|
group_size = input_size |
|
|
|
|
|
if marlin_repeat_scales_on_all_ranks(self.quant_config.desc_act, |
|
self.quant_config.group_size, |
|
is_row_parallel): |
|
|
|
|
|
scales_and_zp_input_dim = None |
|
scales_and_zp_size = input_size // group_size |
|
else: |
|
|
|
|
|
scales_and_zp_input_dim = 0 |
|
scales_and_zp_size = input_size_per_partition // group_size |
|
|
|
|
|
qweight = PackedvLLMParameter( |
|
data=torch.empty( |
|
input_size_per_partition // self.quant_config.pack_factor, |
|
output_size_per_partition, |
|
dtype=torch.int32, |
|
), |
|
input_dim=0, |
|
output_dim=1, |
|
packed_dim=0, |
|
packed_factor=self.quant_config.pack_factor, |
|
weight_loader=weight_loader) |
|
|
|
|
|
g_idx = RowvLLMParameter(data=torch.empty( |
|
input_size_per_partition, |
|
dtype=torch.int32, |
|
), |
|
input_dim=0, |
|
weight_loader=weight_loader) |
|
|
|
qzeros_args = { |
|
"data": |
|
torch.empty( |
|
scales_and_zp_size, |
|
output_size_per_partition // self.quant_config.pack_factor, |
|
dtype=torch.int32, |
|
), |
|
"weight_loader": |
|
weight_loader |
|
} |
|
weight_scale_args = { |
|
"data": |
|
torch.empty( |
|
scales_and_zp_size, |
|
output_size_per_partition, |
|
dtype=params_dtype, |
|
), |
|
"weight_loader": |
|
weight_loader |
|
} |
|
|
|
if scales_and_zp_input_dim is None: |
|
scales = ChannelQuantScaleParameter(output_dim=1, |
|
**weight_scale_args) |
|
qzeros = PackedColumnParameter( |
|
output_dim=1, |
|
packed_dim=1, |
|
packed_factor=self.quant_config.pack_factor, |
|
**qzeros_args) |
|
|
|
else: |
|
scales = GroupQuantScaleParameter(output_dim=1, |
|
input_dim=0, |
|
**weight_scale_args) |
|
qzeros = PackedvLLMParameter( |
|
input_dim=0, |
|
output_dim=1, |
|
packed_dim=1, |
|
packed_factor=self.quant_config.pack_factor, |
|
**qzeros_args) |
|
|
|
layer.register_parameter("qweight", qweight) |
|
layer.register_parameter("g_idx", g_idx) |
|
layer.register_parameter("scales", scales) |
|
layer.register_parameter("qzeros", qzeros) |
|
|
|
self.kernel = kernel_type(mp_linear_kernel_config, |
|
w_q_param_name="qweight", |
|
w_s_param_name="scales", |
|
w_zp_param_name="qzeros", |
|
w_gidx_param_name="g_idx") |
|
|
|
def process_weights_after_loading(self, layer: torch.nn.Module) -> None: |
|
self.kernel.process_weights_after_loading(layer) |
|
|
|
def apply( |
|
self, |
|
layer: torch.nn.Module, |
|
x: torch.Tensor, |
|
bias: Optional[torch.Tensor] = None, |
|
) -> torch.Tensor: |
|
return self.kernel.apply_weights(layer, x, bias) |
|
|
|
|
|
class GPTQMarlinMoEMethod(FusedMoEMethodBase): |
|
"""MoE Marlin method with quantization.""" |
|
|
|
def __init__(self, quant_config: GPTQMarlinConfig) -> None: |
|
self.quant_config = quant_config |
|
if self.quant_config.quant_type.size_bits == 4: |
|
self.quant_type = scalar_types.uint4b8 |
|
elif self.quant_config.quant_type.size_bits == 8: |
|
self.quant_type = scalar_types.uint8b128 |
|
else: |
|
raise ValueError( |
|
"GPTQMarlinMoEMethod only supports int4 and int8 now.") |
|
|
|
def create_weights( |
|
self, |
|
layer: torch.nn.Module, |
|
num_experts: int, |
|
hidden_size: int, |
|
intermediate_size_per_partition: int, |
|
params_dtype: torch.dtype, |
|
**extra_weight_attrs, |
|
): |
|
intermediate_size_full = extra_weight_attrs.pop( |
|
"intermediate_size_full") |
|
|
|
self.is_k_full = (not self.quant_config.desc_act) or ( |
|
intermediate_size_per_partition == intermediate_size_full) |
|
|
|
if self.quant_config.group_size != -1: |
|
scales_size13 = hidden_size // self.quant_config.group_size |
|
w2_scales_size = (intermediate_size_full |
|
if self.quant_config.desc_act else |
|
intermediate_size_per_partition) |
|
scales_size2 = (w2_scales_size // self.quant_config.group_size) |
|
strategy = FusedMoeWeightScaleSupported.GROUP.value |
|
else: |
|
scales_size13 = 1 |
|
scales_size2 = 1 |
|
strategy = FusedMoeWeightScaleSupported.CHANNEL.value |
|
|
|
extra_weight_attrs.update({ |
|
"quant_method": strategy, |
|
"is_transposed": True |
|
}) |
|
|
|
w13_qweight = torch.nn.Parameter( |
|
torch.empty( |
|
num_experts, |
|
hidden_size // self.quant_config.pack_factor, |
|
2 * intermediate_size_per_partition, |
|
dtype=torch.int32, |
|
), |
|
requires_grad=False, |
|
) |
|
layer.register_parameter("w13_qweight", w13_qweight) |
|
set_weight_attrs(w13_qweight, extra_weight_attrs) |
|
|
|
w2_qweight = torch.nn.Parameter( |
|
torch.empty( |
|
num_experts, |
|
intermediate_size_per_partition // |
|
self.quant_config.pack_factor, |
|
hidden_size, |
|
dtype=torch.int32, |
|
), |
|
requires_grad=False, |
|
) |
|
layer.register_parameter("w2_qweight", w2_qweight) |
|
set_weight_attrs(w2_qweight, extra_weight_attrs) |
|
|
|
w13_scales = torch.nn.Parameter( |
|
torch.empty(num_experts, |
|
scales_size13, |
|
2 * intermediate_size_per_partition, |
|
dtype=params_dtype), |
|
requires_grad=False, |
|
) |
|
layer.register_parameter("w13_scales", w13_scales) |
|
set_weight_attrs(w13_scales, extra_weight_attrs) |
|
|
|
w2_scales = torch.nn.Parameter( |
|
torch.empty(num_experts, |
|
scales_size2, |
|
hidden_size, |
|
dtype=params_dtype), |
|
requires_grad=False, |
|
) |
|
layer.register_parameter("w2_scales", w2_scales) |
|
set_weight_attrs(w2_scales, extra_weight_attrs) |
|
|
|
set_weight_attrs(w2_scales, |
|
{"load_full_w2": self.quant_config.desc_act}) |
|
|
|
w13_qzeros = torch.nn.Parameter( |
|
torch.empty(num_experts, |
|
scales_size13, |
|
2 * intermediate_size_per_partition // |
|
self.quant_config.pack_factor, |
|
dtype=params_dtype), |
|
requires_grad=False, |
|
) |
|
layer.register_parameter("w13_qzeros", w13_qzeros) |
|
set_weight_attrs(w13_qzeros, extra_weight_attrs) |
|
|
|
w2_qzeros = torch.nn.Parameter( |
|
torch.empty(num_experts, |
|
scales_size2, |
|
hidden_size // self.quant_config.pack_factor, |
|
dtype=params_dtype), |
|
requires_grad=False, |
|
) |
|
layer.register_parameter("w2_qzeros", w2_qzeros) |
|
set_weight_attrs(w2_qzeros, extra_weight_attrs) |
|
|
|
set_weight_attrs(w2_qzeros, |
|
{"load_full_w2": self.quant_config.desc_act}) |
|
w13_g_idx = torch.nn.Parameter( |
|
torch.empty( |
|
num_experts, |
|
hidden_size, |
|
dtype=torch.int32, |
|
), |
|
requires_grad=False, |
|
) |
|
layer.register_parameter("w13_g_idx", w13_g_idx) |
|
set_weight_attrs(w13_g_idx, extra_weight_attrs) |
|
w2_g_idx = torch.nn.Parameter( |
|
torch.empty( |
|
num_experts, |
|
intermediate_size_per_partition, |
|
dtype=torch.int32, |
|
), |
|
requires_grad=False, |
|
) |
|
layer.register_parameter("w2_g_idx", w2_g_idx) |
|
set_weight_attrs(w2_g_idx, extra_weight_attrs) |
|
w13_g_idx_sort_indices = torch.nn.Parameter( |
|
torch.empty( |
|
num_experts, |
|
hidden_size, |
|
dtype=torch.int32, |
|
), |
|
requires_grad=False, |
|
) |
|
layer.register_parameter("w13_g_idx_sort_indices", |
|
w13_g_idx_sort_indices) |
|
set_weight_attrs(w13_g_idx_sort_indices, extra_weight_attrs) |
|
w2_g_idx_sort_indices = torch.nn.Parameter( |
|
torch.empty( |
|
num_experts, |
|
intermediate_size_per_partition, |
|
dtype=torch.int32, |
|
), |
|
requires_grad=False, |
|
) |
|
layer.register_parameter("w2_g_idx_sort_indices", |
|
w2_g_idx_sort_indices) |
|
set_weight_attrs(w2_g_idx_sort_indices, extra_weight_attrs) |
|
|
|
device = layer.w13_qweight.device |
|
layer.workspace = marlin_make_workspace_new(device, 4) |
|
|
|
def process_weights_after_loading(self, layer: torch.nn.Module) -> None: |
|
|
|
|
|
if self.quant_config.desc_act: |
|
|
|
num_experts = layer.w13_g_idx.shape[0] |
|
w13_g_idx_sort_indices = torch.empty_like(layer.w13_g_idx) |
|
w2_g_idx_sort_indices = torch.empty_like(layer.w2_g_idx) |
|
w13_sorted_g_idx = torch.empty_like(layer.w13_g_idx) |
|
w2_sorted_g_idx = torch.empty_like(layer.w2_g_idx) |
|
for e in range(num_experts): |
|
w13_g_idx_sort_indices[e] = torch.argsort( |
|
layer.w13_g_idx[e]).to(torch.int32) |
|
w2_g_idx_sort_indices[e] = torch.argsort(layer.w2_g_idx[e]).to( |
|
torch.int32) |
|
w13_sorted_g_idx[e] = layer.w13_g_idx[e][ |
|
w13_g_idx_sort_indices[e]] |
|
w2_sorted_g_idx[e] = layer.w2_g_idx[e][ |
|
w2_g_idx_sort_indices[e]] |
|
replace_parameter(layer, "w13_g_idx", w13_sorted_g_idx) |
|
replace_parameter(layer, "w2_g_idx", w2_sorted_g_idx) |
|
replace_parameter(layer, "w13_g_idx_sort_indices", |
|
w13_g_idx_sort_indices) |
|
replace_parameter(layer, "w2_g_idx_sort_indices", |
|
w2_g_idx_sort_indices) |
|
else: |
|
|
|
num_experts = layer.w13_g_idx.shape[0] |
|
device = layer.w13_g_idx.device |
|
layer.w13_g_idx = torch.nn.Parameter( |
|
torch.empty((num_experts, 0), dtype=torch.int32, |
|
device=device), |
|
requires_grad=False, |
|
) |
|
layer.w2_g_idx = torch.nn.Parameter( |
|
torch.empty((num_experts, 0), dtype=torch.int32, |
|
device=device), |
|
requires_grad=False, |
|
) |
|
layer.w13_g_idx_sort_indices = torch.nn.Parameter( |
|
torch.empty((num_experts, 0), dtype=torch.int32, |
|
device=device), |
|
requires_grad=False, |
|
) |
|
layer.w2_g_idx_sort_indices = torch.nn.Parameter( |
|
torch.empty((num_experts, 0), dtype=torch.int32, |
|
device=device), |
|
requires_grad=False, |
|
) |
|
|
|
marlin_w13_qweight = ops.gptq_marlin_moe_repack( |
|
layer.w13_qweight, |
|
layer.w13_g_idx_sort_indices, |
|
layer.w13_qweight.shape[1] * self.quant_config.pack_factor, |
|
layer.w13_qweight.shape[2], |
|
self.quant_config.quant_type.size_bits, |
|
) |
|
replace_parameter(layer, "w13_qweight", marlin_w13_qweight) |
|
marlin_w2_qweight = ops.gptq_marlin_moe_repack( |
|
layer.w2_qweight, |
|
layer.w2_g_idx_sort_indices, |
|
layer.w2_qweight.shape[1] * self.quant_config.pack_factor, |
|
layer.w2_qweight.shape[2], |
|
self.quant_config.quant_type.size_bits, |
|
) |
|
replace_parameter(layer, "w2_qweight", marlin_w2_qweight) |
|
|
|
marlin_w13_scales = marlin_moe_permute_scales( |
|
s=layer.w13_scales, |
|
size_k=layer.intermediate_size_per_partition, |
|
size_n=layer.w13_scales.shape[2], |
|
group_size=self.quant_config.group_size, |
|
) |
|
replace_parameter(layer, "w13_scales", marlin_w13_scales) |
|
marlin_w2_scales = marlin_moe_permute_scales( |
|
s=layer.w2_scales, |
|
size_k=layer.w2_scales.shape[1] * |
|
(self.quant_config.group_size if self.quant_config.group_size != -1 |
|
else self.quant_config.pack_factor), |
|
size_n=layer.w2_scales.shape[2], |
|
group_size=self.quant_config.group_size, |
|
) |
|
replace_parameter(layer, "w2_scales", marlin_w2_scales) |
|
|
|
def apply( |
|
self, |
|
layer: torch.nn.Module, |
|
x: torch.Tensor, |
|
router_logits: torch.Tensor, |
|
top_k: int, |
|
renormalize: bool, |
|
use_grouped_topk: bool = False, |
|
topk_group: Optional[int] = None, |
|
num_expert_group: Optional[int] = None, |
|
global_num_experts: int = -1, |
|
expert_map: Optional[torch.Tensor] = None, |
|
custom_routing_function: Optional[Callable] = None, |
|
scoring_func: str = "softmax", |
|
e_score_correction_bias: Optional[torch.Tensor] = None, |
|
apply_router_weight_on_input: bool = False, |
|
activation: str = "silu", |
|
) -> torch.Tensor: |
|
assert activation == "silu", "Only SiLU activation is supported." |
|
if apply_router_weight_on_input: |
|
raise NotImplementedError( |
|
"Apply router weight on input is not supported for " |
|
"fused Marlin MoE method.") |
|
|
|
topk_weights, topk_ids = FusedMoE.select_experts( |
|
hidden_states=x, |
|
router_logits=router_logits, |
|
use_grouped_topk=use_grouped_topk, |
|
top_k=top_k, |
|
renormalize=renormalize, |
|
topk_group=topk_group, |
|
num_expert_group=num_expert_group, |
|
custom_routing_function=custom_routing_function, |
|
scoring_func=scoring_func, |
|
e_score_correction_bias=e_score_correction_bias) |
|
|
|
return torch.ops.vllm.fused_marlin_moe( |
|
x, |
|
layer.w13_qweight, |
|
layer.w2_qweight, |
|
layer.w13_scales, |
|
layer.w2_scales, |
|
router_logits, |
|
topk_weights, |
|
topk_ids, |
|
quant_type_id=self.quant_type.id, |
|
global_num_experts=global_num_experts, |
|
expert_map=expert_map, |
|
g_idx1=layer.w13_g_idx, |
|
g_idx2=layer.w2_g_idx, |
|
sort_indices1=layer.w13_g_idx_sort_indices, |
|
sort_indices2=layer.w2_g_idx_sort_indices, |
|
workspace=layer.workspace, |
|
is_k_full=self.is_k_full) |
|
|