File size: 3,768 Bytes
2a42f96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
---
language:
- multilingual
license: mit
license_link: https://huggingface.co/moonshotai/Kimi-Dev-72B/blob/main/LICENSE.md
library_name: transformers
pipeline_tag: text-generation
tags:
- GPTQ
- Int8
- vLLM
- code
- swebench
- software
- issue-resolving
base_model:
- moonshotai/Kimi-Dev-72B
base_model_relation: quantized
---
# Kimi-Dev-72B-GPTQ-Int8
Base model: [moonshotai/Kimi-Dev-72B](https://huggingface.co/moonshotai/Kimi-Dev-72B)
<i>Calibrate using the https://huggingface.co/datasets/timdettmers/openassistant-guanaco/blob/main/openassistant_best_replies_eval.jsonl dataset.</i>
<br>
<i>The quantization configuration is as follows</i>
```
quant_config = QuantizeConfig(bits=8, group_size=128, desc_act=False)
```
### 【vLLM Startup Command】
```
vllm serve JunHowie/Kimi-Dev-72B-GPTQ-Int8
```
### 【Model Download】
```python
from huggingface_hub import snapshot_download
snapshot_download('JunHowie/Kimi-Dev-72B-GPTQ-Int8', cache_dir="your_local_path")
```
### 【Overview】
<!-- # Kimi-Dev -->
<div align="center">
<img src="./assets/main_logo.png" alt="Kimi Logo" width="400" />
<h2><a href="https://moonshotai.github.io/Kimi-Dev/">
Introducing Kimi-Dev: <br>A Strong and Open-source Coding LLM for Issue Resolution</a></h2>
</a></h2>
<b>Kimi-Dev Team</b>
<br>
</div>
<div align="center">
<a href="">
<b>📄 Tech Report (Coming soon...)</b>
</a> |
<a href="https://github.com/MoonshotAI/Kimi-Dev">
<b>📄 Github</b>
</a>
</div>
<br>
<br>
<!-- https://github.com/MoonshotAI/Kimi-Dev -->
We introduce Kimi-Dev-72B, our new open-source coding LLM for software engineering tasks. Kimi-Dev-72B achieves a new state-of-the-art on SWE-bench Verified among open-source models.
- Kimi-Dev-72B achieves 60.4% performance on SWE-bench Verified. It surpasses the runner-up, setting a new state-of-the-art result among open-source models.
- Kimi-Dev-72B is optimized via large-scale reinforcement learning. It autonomously patches real repositories in Docker and gains rewards only when the entire test suite passes. This ensures correct and robust solutions, aligning with real-world development standards.
- Kimi-Dev-72B is available for download and deployment on Hugging Face and GitHub. We welcome developers and researchers to explore its capabilities and contribute to development.
<div align="center">
<img src="./assets/open_performance_white.png" alt="Kimi Logo" width="600" />
<p><b>Performance of Open-source Models on SWE-bench Verified.</b></p>
</div>
## Quick Start
```
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "moonshotai/Kimi-Dev-72B"
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
prompt = "Give me a short introduction to large language model."
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
```
## Citation
```
@misc{kimi_dev_72b_2025,
title = {Introducing Kimi-Dev: A Strong and Open-source Coding LLM for Issue Resolution},
author = {{Kimi-Dev Team}},
year = {2025},
month = {June},
url = {\url{https://www.moonshot.cn/Kimi-Dev}}
}
``` |