Update README.md
Browse files
README.md
CHANGED
|
@@ -1,4 +1,102 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: mit
|
| 3 |
-
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
pipeline_tag: image-to-image
|
| 4 |
+
library_name: diffusers
|
| 5 |
+
---
|
| 6 |
+
|
| 7 |
+
<h1 align="center">
|
| 8 |
+
REPA-E for T2I: End-to-End Tuned VAEs for Supercharging Text-to-Image Diffusion Transformers
|
| 9 |
+
</h1>
|
| 10 |
+
|
| 11 |
+
<p align="center">
|
| 12 |
+
<a href="https://scholar.google.com.au/citations?user=GQzvqS4AAAAJ" target="_blank">Xingjian Leng</a><sup>1,2*</sup>   <b>·</b>  
|
| 13 |
+
<a href="https://1jsingh.github.io/" target="_blank">Jaskirat Singh</a><sup>1</sup>   <b>·</b>  
|
| 14 |
+
<a href="https://rynmurdock.github.io/" target="_blank">Ryan Murdock</a><sup>2</sup>   <b>·</b>  
|
| 15 |
+
<a href="https://www.ethansmith2000.com/" target="_blank">Ethan Smith</a><sup>2</sup>   <b>·</b>  
|
| 16 |
+
<a href="https://xiaoyang-rebecca.github.io/cv/" target="_blank">Rebecca Li</a><sup>2</sup>   <b>·</b>  
|
| 17 |
+
<a href="https://www.sainingxie.com/" target="_blank">Saining Xie</a><sup>3</sup>  <b>·</b>  
|
| 18 |
+
<a href="https://zheng-lab-anu.github.io/" target="_blank">Liang Zheng</a><sup>1</sup> 
|
| 19 |
+
</p>
|
| 20 |
+
|
| 21 |
+
<p align="center">
|
| 22 |
+
<sup>1</sup> Australian National University   <sup>2</sup>Canva   <sup>3</sup>New York University   <br>
|
| 23 |
+
<sub><sup>*</sup>Done during internship at Canva  </sub>
|
| 24 |
+
</p>
|
| 25 |
+
|
| 26 |
+
<p align="center">
|
| 27 |
+
<a href="https://arxiv.org/abs/2504.10483" target="_blank">π REPA-E Paper</a>   |  
|
| 28 |
+
<a href="https://end2end-diffusion.github.io/repa-e-t2i/" target="_blank">π Blog Post</a>   |  
|
| 29 |
+
<a href="https://huggingface.co/REPA-E" target="_blank">π€ Models</a>
|
| 30 |
+
</p>
|
| 31 |
+
|
| 32 |
+
---
|
| 33 |
+
|
| 34 |
+
## π Overall
|
| 35 |
+
|
| 36 |
+
<p>
|
| 37 |
+
We present REPA-E for T2I, a family of end-to-end tuned VAEs designed to supercharge text-to-image generation training. These models consistently outperform Qwen-Image-VAE across all benchmarks (COCO-30K, DPG-Bench, GenAI-Bench, GenEval, and MJHQ-30K) without requiring any additional representation alignment losses.
|
| 38 |
+
</p>
|
| 39 |
+
|
| 40 |
+
<p>
|
| 41 |
+
For training, we adopt the <a href="https://github.com/End2End-Diffusion/REPA-E" target="_blank"><strong>official REPA-E training code</strong></a> to optimize the
|
| 42 |
+
<a href="https://huggingface.co/Qwen/Qwen-Image" target="_blank">Qwen-Image-VAE</a> for <strong>80 epochs</strong> with a batch size of <strong>256</strong> on the <strong>ImageNet-256</strong> dataset.
|
| 43 |
+
The REPA-E training effectively refines the VAEβs latent-space structure and enables faster convergence in downstream text-to-image latent diffusion model training.
|
| 44 |
+
</p>
|
| 45 |
+
|
| 46 |
+
<p>
|
| 47 |
+
This repository provides <code>diffusers</code>-compatible weights for the <strong>end-to-end trained Qwen-Image-VAE</strong>. In addition, we release <strong>end-to-end trained variants</strong> of several other widely used VAEs to facilitate research and integration within text-to-image diffusion frameworks.
|
| 48 |
+
</p>
|
| 49 |
+
|
| 50 |
+
### π§© End-to-End Trained VAE Releases
|
| 51 |
+
|
| 52 |
+
| Model | Link |
|
| 53 |
+
|---|---|
|
| 54 |
+
| FLUX-VAE (E2E-trained) | π€ [HF Model Page](https://huggingface.co/REPA-E/e2e-flux-vae) |
|
| 55 |
+
| SD-3.5-VAE (E2E-trained) | π€ [HF Model Page](https://huggingface.co/REPA-E/e2e-sd3.5-vae) |
|
| 56 |
+
| Qwen-Image-VAE (E2E-trained) | π€ [HF Model Page](https://huggingface.co/REPA-E/e2e-qwenimage-vae) |
|
| 57 |
+
|
| 58 |
+
## π¦ Requirements
|
| 59 |
+
The following packages are required to load and run the REPA-E VAEs with the `diffusers` library:
|
| 60 |
+
|
| 61 |
+
```bash
|
| 62 |
+
pip install diffusers>=0.33.0
|
| 63 |
+
pip install torch>=2.3.1
|
| 64 |
+
```
|
| 65 |
+
|
| 66 |
+
## π Example Usage
|
| 67 |
+
Below is a minimal example showing how to load and use the REPA-E end-to-end trained Qwen-Image-VAE with `diffusers`:
|
| 68 |
+
|
| 69 |
+
```python
|
| 70 |
+
from io import BytesIO
|
| 71 |
+
import requests
|
| 72 |
+
|
| 73 |
+
from diffusers import AutoencoderKLQwenImage
|
| 74 |
+
import numpy as np
|
| 75 |
+
import torch
|
| 76 |
+
from PIL import Image
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
response = requests.get("https://s3.amazonaws.com/masters.galleries.prod.dpreview.com/2935392.jpg?X-Amz-Expires=3600&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAUIXIAMA3N436PSEA/20251019/us-east-1/s3/aws4_request&X-Amz-Date=20251019T103721Z&X-Amz-SignedHeaders=host&X-Amz-Signature=219dc5f98e5c2e5f3b72587716f75889b8f45b0a01f1bd08dbbc44106e484144")
|
| 80 |
+
device = "cuda"
|
| 81 |
+
|
| 82 |
+
image = torch.from_numpy(
|
| 83 |
+
np.array(
|
| 84 |
+
Image.open(BytesIO(response.content)).resize((512, 512))
|
| 85 |
+
)
|
| 86 |
+
).permute(2, 0, 1).unsqueeze(0).to(torch.float32) / 127.5 - 1
|
| 87 |
+
image = image.to(device)
|
| 88 |
+
|
| 89 |
+
vae = AutoencoderKLQwenImage.from_pretrained("REPA-E/e2e-qwenimage-vae").to(device)
|
| 90 |
+
|
| 91 |
+
# QwenImage VAE expects an additional dimension for `num_frames`
|
| 92 |
+
image_ = image.unsqueeze(2)
|
| 93 |
+
|
| 94 |
+
with torch.no_grad():
|
| 95 |
+
latents = vae.encode(image_).latent_dist.sample()
|
| 96 |
+
reconstructed = vae.decode(latents).sample
|
| 97 |
+
|
| 98 |
+
# Squeeze the extra frame dimension
|
| 99 |
+
latents = latents.squeeze(2)
|
| 100 |
+
reconstructed = reconstructed.squeeze(2)
|
| 101 |
+
|
| 102 |
+
```
|