Commit
·
dcacd5e
1
Parent(s):
8b30921
Upload model
Browse files- base_model.py +16 -0
- blocks.py +383 -0
- config.json +12 -0
- configuration_dptdepth.py +24 -0
- modeling_dptdepth.py +36 -0
- models.py +126 -0
- pytorch_model.bin +3 -0
- vit.py +576 -0
base_model.py
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
class BaseModel(torch.nn.Module):
|
| 5 |
+
def load(self, path):
|
| 6 |
+
"""Load model from file.
|
| 7 |
+
|
| 8 |
+
Args:
|
| 9 |
+
path (str): file path
|
| 10 |
+
"""
|
| 11 |
+
parameters = torch.load(path, map_location=torch.device("cpu"))
|
| 12 |
+
|
| 13 |
+
if "optimizer" in parameters:
|
| 14 |
+
parameters = parameters["model"]
|
| 15 |
+
|
| 16 |
+
self.load_state_dict(parameters)
|
blocks.py
ADDED
|
@@ -0,0 +1,383 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
|
| 4 |
+
from .vit import (
|
| 5 |
+
_make_pretrained_vitb_rn50_384,
|
| 6 |
+
_make_pretrained_vitl16_384,
|
| 7 |
+
_make_pretrained_vitb16_384,
|
| 8 |
+
forward_vit,
|
| 9 |
+
)
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def _make_encoder(
|
| 13 |
+
backbone,
|
| 14 |
+
features,
|
| 15 |
+
use_pretrained,
|
| 16 |
+
groups=1,
|
| 17 |
+
expand=False,
|
| 18 |
+
exportable=True,
|
| 19 |
+
hooks=None,
|
| 20 |
+
use_vit_only=False,
|
| 21 |
+
use_readout="ignore",
|
| 22 |
+
enable_attention_hooks=False,
|
| 23 |
+
):
|
| 24 |
+
if backbone == "vitl16_384":
|
| 25 |
+
pretrained = _make_pretrained_vitl16_384(
|
| 26 |
+
use_pretrained,
|
| 27 |
+
hooks=hooks,
|
| 28 |
+
use_readout=use_readout,
|
| 29 |
+
enable_attention_hooks=enable_attention_hooks,
|
| 30 |
+
)
|
| 31 |
+
scratch = _make_scratch(
|
| 32 |
+
[256, 512, 1024, 1024], features, groups=groups, expand=expand
|
| 33 |
+
) # ViT-L/16 - 85.0% Top1 (backbone)
|
| 34 |
+
elif backbone == "vitb_rn50_384":
|
| 35 |
+
pretrained = _make_pretrained_vitb_rn50_384(
|
| 36 |
+
use_pretrained,
|
| 37 |
+
hooks=hooks,
|
| 38 |
+
use_vit_only=use_vit_only,
|
| 39 |
+
use_readout=use_readout,
|
| 40 |
+
enable_attention_hooks=enable_attention_hooks,
|
| 41 |
+
)
|
| 42 |
+
scratch = _make_scratch(
|
| 43 |
+
[256, 512, 768, 768], features, groups=groups, expand=expand
|
| 44 |
+
) # ViT-H/16 - 85.0% Top1 (backbone)
|
| 45 |
+
elif backbone == "vitb16_384":
|
| 46 |
+
pretrained = _make_pretrained_vitb16_384(
|
| 47 |
+
use_pretrained,
|
| 48 |
+
hooks=hooks,
|
| 49 |
+
use_readout=use_readout,
|
| 50 |
+
enable_attention_hooks=enable_attention_hooks,
|
| 51 |
+
)
|
| 52 |
+
scratch = _make_scratch(
|
| 53 |
+
[96, 192, 384, 768], features, groups=groups, expand=expand
|
| 54 |
+
) # ViT-B/16 - 84.6% Top1 (backbone)
|
| 55 |
+
elif backbone == "resnext101_wsl":
|
| 56 |
+
pretrained = _make_pretrained_resnext101_wsl(use_pretrained)
|
| 57 |
+
scratch = _make_scratch(
|
| 58 |
+
[256, 512, 1024, 2048], features, groups=groups, expand=expand
|
| 59 |
+
) # efficientnet_lite3
|
| 60 |
+
else:
|
| 61 |
+
print(f"Backbone '{backbone}' not implemented")
|
| 62 |
+
assert False
|
| 63 |
+
|
| 64 |
+
return pretrained, scratch
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def _make_scratch(in_shape, out_shape, groups=1, expand=False):
|
| 68 |
+
scratch = nn.Module()
|
| 69 |
+
|
| 70 |
+
out_shape1 = out_shape
|
| 71 |
+
out_shape2 = out_shape
|
| 72 |
+
out_shape3 = out_shape
|
| 73 |
+
out_shape4 = out_shape
|
| 74 |
+
if expand == True:
|
| 75 |
+
out_shape1 = out_shape
|
| 76 |
+
out_shape2 = out_shape * 2
|
| 77 |
+
out_shape3 = out_shape * 4
|
| 78 |
+
out_shape4 = out_shape * 8
|
| 79 |
+
|
| 80 |
+
scratch.layer1_rn = nn.Conv2d(
|
| 81 |
+
in_shape[0],
|
| 82 |
+
out_shape1,
|
| 83 |
+
kernel_size=3,
|
| 84 |
+
stride=1,
|
| 85 |
+
padding=1,
|
| 86 |
+
bias=False,
|
| 87 |
+
groups=groups,
|
| 88 |
+
)
|
| 89 |
+
scratch.layer2_rn = nn.Conv2d(
|
| 90 |
+
in_shape[1],
|
| 91 |
+
out_shape2,
|
| 92 |
+
kernel_size=3,
|
| 93 |
+
stride=1,
|
| 94 |
+
padding=1,
|
| 95 |
+
bias=False,
|
| 96 |
+
groups=groups,
|
| 97 |
+
)
|
| 98 |
+
scratch.layer3_rn = nn.Conv2d(
|
| 99 |
+
in_shape[2],
|
| 100 |
+
out_shape3,
|
| 101 |
+
kernel_size=3,
|
| 102 |
+
stride=1,
|
| 103 |
+
padding=1,
|
| 104 |
+
bias=False,
|
| 105 |
+
groups=groups,
|
| 106 |
+
)
|
| 107 |
+
scratch.layer4_rn = nn.Conv2d(
|
| 108 |
+
in_shape[3],
|
| 109 |
+
out_shape4,
|
| 110 |
+
kernel_size=3,
|
| 111 |
+
stride=1,
|
| 112 |
+
padding=1,
|
| 113 |
+
bias=False,
|
| 114 |
+
groups=groups,
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
return scratch
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
def _make_resnet_backbone(resnet):
|
| 121 |
+
pretrained = nn.Module()
|
| 122 |
+
pretrained.layer1 = nn.Sequential(
|
| 123 |
+
resnet.conv1, resnet.bn1, resnet.relu, resnet.maxpool, resnet.layer1
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
pretrained.layer2 = resnet.layer2
|
| 127 |
+
pretrained.layer3 = resnet.layer3
|
| 128 |
+
pretrained.layer4 = resnet.layer4
|
| 129 |
+
|
| 130 |
+
return pretrained
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
def _make_pretrained_resnext101_wsl(use_pretrained):
|
| 134 |
+
resnet = torch.hub.load("facebookresearch/WSL-Images", "resnext101_32x8d_wsl")
|
| 135 |
+
return _make_resnet_backbone(resnet)
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
class Interpolate(nn.Module):
|
| 139 |
+
"""Interpolation module."""
|
| 140 |
+
|
| 141 |
+
def __init__(self, scale_factor, mode, align_corners=False):
|
| 142 |
+
"""Init.
|
| 143 |
+
|
| 144 |
+
Args:
|
| 145 |
+
scale_factor (float): scaling
|
| 146 |
+
mode (str): interpolation mode
|
| 147 |
+
"""
|
| 148 |
+
super(Interpolate, self).__init__()
|
| 149 |
+
|
| 150 |
+
self.interp = nn.functional.interpolate
|
| 151 |
+
self.scale_factor = scale_factor
|
| 152 |
+
self.mode = mode
|
| 153 |
+
self.align_corners = align_corners
|
| 154 |
+
|
| 155 |
+
def forward(self, x):
|
| 156 |
+
"""Forward pass.
|
| 157 |
+
|
| 158 |
+
Args:
|
| 159 |
+
x (tensor): input
|
| 160 |
+
|
| 161 |
+
Returns:
|
| 162 |
+
tensor: interpolated data
|
| 163 |
+
"""
|
| 164 |
+
|
| 165 |
+
x = self.interp(
|
| 166 |
+
x,
|
| 167 |
+
scale_factor=self.scale_factor,
|
| 168 |
+
mode=self.mode,
|
| 169 |
+
align_corners=self.align_corners,
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
return x
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
class ResidualConvUnit(nn.Module):
|
| 176 |
+
"""Residual convolution module."""
|
| 177 |
+
|
| 178 |
+
def __init__(self, features):
|
| 179 |
+
"""Init.
|
| 180 |
+
|
| 181 |
+
Args:
|
| 182 |
+
features (int): number of features
|
| 183 |
+
"""
|
| 184 |
+
super().__init__()
|
| 185 |
+
|
| 186 |
+
self.conv1 = nn.Conv2d(
|
| 187 |
+
features, features, kernel_size=3, stride=1, padding=1, bias=True
|
| 188 |
+
)
|
| 189 |
+
|
| 190 |
+
self.conv2 = nn.Conv2d(
|
| 191 |
+
features, features, kernel_size=3, stride=1, padding=1, bias=True
|
| 192 |
+
)
|
| 193 |
+
|
| 194 |
+
self.relu = nn.ReLU(inplace=True)
|
| 195 |
+
|
| 196 |
+
def forward(self, x):
|
| 197 |
+
"""Forward pass.
|
| 198 |
+
|
| 199 |
+
Args:
|
| 200 |
+
x (tensor): input
|
| 201 |
+
|
| 202 |
+
Returns:
|
| 203 |
+
tensor: output
|
| 204 |
+
"""
|
| 205 |
+
out = self.relu(x)
|
| 206 |
+
out = self.conv1(out)
|
| 207 |
+
out = self.relu(out)
|
| 208 |
+
out = self.conv2(out)
|
| 209 |
+
|
| 210 |
+
return out + x
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
class FeatureFusionBlock(nn.Module):
|
| 214 |
+
"""Feature fusion block."""
|
| 215 |
+
|
| 216 |
+
def __init__(self, features):
|
| 217 |
+
"""Init.
|
| 218 |
+
|
| 219 |
+
Args:
|
| 220 |
+
features (int): number of features
|
| 221 |
+
"""
|
| 222 |
+
super(FeatureFusionBlock, self).__init__()
|
| 223 |
+
|
| 224 |
+
self.resConfUnit1 = ResidualConvUnit(features)
|
| 225 |
+
self.resConfUnit2 = ResidualConvUnit(features)
|
| 226 |
+
|
| 227 |
+
def forward(self, *xs):
|
| 228 |
+
"""Forward pass.
|
| 229 |
+
|
| 230 |
+
Returns:
|
| 231 |
+
tensor: output
|
| 232 |
+
"""
|
| 233 |
+
output = xs[0]
|
| 234 |
+
|
| 235 |
+
if len(xs) == 2:
|
| 236 |
+
output += self.resConfUnit1(xs[1])
|
| 237 |
+
|
| 238 |
+
output = self.resConfUnit2(output)
|
| 239 |
+
|
| 240 |
+
output = nn.functional.interpolate(
|
| 241 |
+
output, scale_factor=2, mode="bilinear", align_corners=True
|
| 242 |
+
)
|
| 243 |
+
|
| 244 |
+
return output
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
class ResidualConvUnit_custom(nn.Module):
|
| 248 |
+
"""Residual convolution module."""
|
| 249 |
+
|
| 250 |
+
def __init__(self, features, activation, bn):
|
| 251 |
+
"""Init.
|
| 252 |
+
|
| 253 |
+
Args:
|
| 254 |
+
features (int): number of features
|
| 255 |
+
"""
|
| 256 |
+
super().__init__()
|
| 257 |
+
|
| 258 |
+
self.bn = bn
|
| 259 |
+
|
| 260 |
+
self.groups = 1
|
| 261 |
+
|
| 262 |
+
self.conv1 = nn.Conv2d(
|
| 263 |
+
features,
|
| 264 |
+
features,
|
| 265 |
+
kernel_size=3,
|
| 266 |
+
stride=1,
|
| 267 |
+
padding=1,
|
| 268 |
+
bias=not self.bn,
|
| 269 |
+
groups=self.groups,
|
| 270 |
+
)
|
| 271 |
+
|
| 272 |
+
self.conv2 = nn.Conv2d(
|
| 273 |
+
features,
|
| 274 |
+
features,
|
| 275 |
+
kernel_size=3,
|
| 276 |
+
stride=1,
|
| 277 |
+
padding=1,
|
| 278 |
+
bias=not self.bn,
|
| 279 |
+
groups=self.groups,
|
| 280 |
+
)
|
| 281 |
+
|
| 282 |
+
if self.bn == True:
|
| 283 |
+
self.bn1 = nn.BatchNorm2d(features)
|
| 284 |
+
self.bn2 = nn.BatchNorm2d(features)
|
| 285 |
+
|
| 286 |
+
self.activation = activation
|
| 287 |
+
|
| 288 |
+
self.skip_add = nn.quantized.FloatFunctional()
|
| 289 |
+
|
| 290 |
+
def forward(self, x):
|
| 291 |
+
"""Forward pass.
|
| 292 |
+
|
| 293 |
+
Args:
|
| 294 |
+
x (tensor): input
|
| 295 |
+
|
| 296 |
+
Returns:
|
| 297 |
+
tensor: output
|
| 298 |
+
"""
|
| 299 |
+
|
| 300 |
+
out = self.activation(x)
|
| 301 |
+
out = self.conv1(out)
|
| 302 |
+
if self.bn == True:
|
| 303 |
+
out = self.bn1(out)
|
| 304 |
+
|
| 305 |
+
out = self.activation(out)
|
| 306 |
+
out = self.conv2(out)
|
| 307 |
+
if self.bn == True:
|
| 308 |
+
out = self.bn2(out)
|
| 309 |
+
|
| 310 |
+
if self.groups > 1:
|
| 311 |
+
out = self.conv_merge(out)
|
| 312 |
+
|
| 313 |
+
return self.skip_add.add(out, x)
|
| 314 |
+
|
| 315 |
+
# return out + x
|
| 316 |
+
|
| 317 |
+
|
| 318 |
+
class FeatureFusionBlock_custom(nn.Module):
|
| 319 |
+
"""Feature fusion block."""
|
| 320 |
+
|
| 321 |
+
def __init__(
|
| 322 |
+
self,
|
| 323 |
+
features,
|
| 324 |
+
activation,
|
| 325 |
+
deconv=False,
|
| 326 |
+
bn=False,
|
| 327 |
+
expand=False,
|
| 328 |
+
align_corners=True,
|
| 329 |
+
):
|
| 330 |
+
"""Init.
|
| 331 |
+
|
| 332 |
+
Args:
|
| 333 |
+
features (int): number of features
|
| 334 |
+
"""
|
| 335 |
+
super(FeatureFusionBlock_custom, self).__init__()
|
| 336 |
+
|
| 337 |
+
self.deconv = deconv
|
| 338 |
+
self.align_corners = align_corners
|
| 339 |
+
|
| 340 |
+
self.groups = 1
|
| 341 |
+
|
| 342 |
+
self.expand = expand
|
| 343 |
+
out_features = features
|
| 344 |
+
if self.expand == True:
|
| 345 |
+
out_features = features // 2
|
| 346 |
+
|
| 347 |
+
self.out_conv = nn.Conv2d(
|
| 348 |
+
features,
|
| 349 |
+
out_features,
|
| 350 |
+
kernel_size=1,
|
| 351 |
+
stride=1,
|
| 352 |
+
padding=0,
|
| 353 |
+
bias=True,
|
| 354 |
+
groups=1,
|
| 355 |
+
)
|
| 356 |
+
|
| 357 |
+
self.resConfUnit1 = ResidualConvUnit_custom(features, activation, bn)
|
| 358 |
+
self.resConfUnit2 = ResidualConvUnit_custom(features, activation, bn)
|
| 359 |
+
|
| 360 |
+
self.skip_add = nn.quantized.FloatFunctional()
|
| 361 |
+
|
| 362 |
+
def forward(self, *xs):
|
| 363 |
+
"""Forward pass.
|
| 364 |
+
|
| 365 |
+
Returns:
|
| 366 |
+
tensor: output
|
| 367 |
+
"""
|
| 368 |
+
output = xs[0]
|
| 369 |
+
|
| 370 |
+
if len(xs) == 2:
|
| 371 |
+
res = self.resConfUnit1(xs[1])
|
| 372 |
+
output = self.skip_add.add(output, res)
|
| 373 |
+
# output += res
|
| 374 |
+
|
| 375 |
+
output = self.resConfUnit2(output)
|
| 376 |
+
|
| 377 |
+
output = nn.functional.interpolate(
|
| 378 |
+
output, scale_factor=2, mode="bilinear", align_corners=self.align_corners
|
| 379 |
+
)
|
| 380 |
+
|
| 381 |
+
output = self.out_conv(output)
|
| 382 |
+
|
| 383 |
+
return output
|
config.json
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"DPTDepthModel"
|
| 4 |
+
],
|
| 5 |
+
"auto_map": {
|
| 6 |
+
"AutoConfig": "configuration_dptdepth.DPTDepthConfig",
|
| 7 |
+
"AutoModel": "modeling_dptdepth.DPTDepthModel"
|
| 8 |
+
},
|
| 9 |
+
"model_type": "dptdepth",
|
| 10 |
+
"torch_dtype": "float32",
|
| 11 |
+
"transformers_version": "4.27.3"
|
| 12 |
+
}
|
configuration_dptdepth.py
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List
|
| 2 |
+
|
| 3 |
+
from transformers import PretrainedConfig
|
| 4 |
+
|
| 5 |
+
"""
|
| 6 |
+
The configuration of a model is an object that
|
| 7 |
+
will contain all the necessary information to build the model.
|
| 8 |
+
The three important things to remember when writing you own configuration are the following:
|
| 9 |
+
- you have to inherit from PretrainedConfig,
|
| 10 |
+
- the __init__ of your PretrainedConfig must accept any kwargs,
|
| 11 |
+
- those kwargs need to be passed to the superclass __init__.
|
| 12 |
+
"""
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class DPTDepthConfig(PretrainedConfig):
|
| 16 |
+
|
| 17 |
+
"""
|
| 18 |
+
Defining a model_type for your configuration is not mandatory,
|
| 19 |
+
unless you want to register your model with the auto classes."""
|
| 20 |
+
|
| 21 |
+
model_type = "dptdepth"
|
| 22 |
+
|
| 23 |
+
def __init__(self, **kwargs):
|
| 24 |
+
super().__init__(**kwargs)
|
modeling_dptdepth.py
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Dict, Optional
|
| 2 |
+
|
| 3 |
+
from torch import Tensor, nn
|
| 4 |
+
from transformers import PreTrainedModel
|
| 5 |
+
|
| 6 |
+
from .configuration_dptdepth import DPTDepthConfig
|
| 7 |
+
from .models import DPTDepthModel as DPTDepth
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class DPTDepthModel(PreTrainedModel):
|
| 11 |
+
"""
|
| 12 |
+
The line that sets the config_class is not mandatory,
|
| 13 |
+
unless you want to register your model with the auto classes
|
| 14 |
+
"""
|
| 15 |
+
|
| 16 |
+
config_class = DPTDepthConfig
|
| 17 |
+
|
| 18 |
+
def __init__(self, config: DPTDepthConfig):
|
| 19 |
+
super().__init__(config)
|
| 20 |
+
self.model = DPTDepth()
|
| 21 |
+
self.loss = nn.L1Loss()
|
| 22 |
+
|
| 23 |
+
"""
|
| 24 |
+
You can have your model return anything you want,
|
| 25 |
+
but returning a dictionary with the loss included when labels are passed,
|
| 26 |
+
will make your model directly usable inside the Trainer class.
|
| 27 |
+
Using another output format is fine as long as you are planning on
|
| 28 |
+
using your own training loop or another library for training.
|
| 29 |
+
"""
|
| 30 |
+
|
| 31 |
+
def forward(self, rgbs: Tensor, gts: Optional[Tensor] = None) -> Dict[str, Tensor]:
|
| 32 |
+
logits = self.model(rgbs)
|
| 33 |
+
if gts is not None:
|
| 34 |
+
loss = self.loss(logits, gts)
|
| 35 |
+
return {"loss": loss, "logits": logits}
|
| 36 |
+
return {"logits": logits}
|
models.py
ADDED
|
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
from torch import Tensor
|
| 4 |
+
|
| 5 |
+
from .base_model import BaseModel
|
| 6 |
+
from .blocks import (
|
| 7 |
+
FeatureFusionBlock_custom,
|
| 8 |
+
Interpolate,
|
| 9 |
+
_make_encoder,
|
| 10 |
+
forward_vit,
|
| 11 |
+
)
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def _make_fusion_block(features, use_bn):
|
| 15 |
+
return FeatureFusionBlock_custom(
|
| 16 |
+
features,
|
| 17 |
+
nn.ReLU(False),
|
| 18 |
+
deconv=False,
|
| 19 |
+
bn=use_bn,
|
| 20 |
+
expand=False,
|
| 21 |
+
align_corners=True,
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class DPT(BaseModel):
|
| 26 |
+
def __init__(
|
| 27 |
+
self,
|
| 28 |
+
head,
|
| 29 |
+
features=256,
|
| 30 |
+
backbone="vitb_rn50_384",
|
| 31 |
+
readout="project",
|
| 32 |
+
channels_last=False,
|
| 33 |
+
use_bn=False,
|
| 34 |
+
enable_attention_hooks=False,
|
| 35 |
+
):
|
| 36 |
+
|
| 37 |
+
super(DPT, self).__init__()
|
| 38 |
+
|
| 39 |
+
self.channels_last = channels_last
|
| 40 |
+
|
| 41 |
+
hooks = {
|
| 42 |
+
"vitb_rn50_384": [0, 1, 8, 11],
|
| 43 |
+
"vitb16_384": [2, 5, 8, 11],
|
| 44 |
+
"vitl16_384": [5, 11, 17, 23],
|
| 45 |
+
}
|
| 46 |
+
|
| 47 |
+
# Instantiate backbone and reassemble blocks
|
| 48 |
+
self.pretrained, self.scratch = _make_encoder(
|
| 49 |
+
backbone,
|
| 50 |
+
features,
|
| 51 |
+
False, # Set to true of you want to train from scratch, uses ImageNet weights
|
| 52 |
+
groups=1,
|
| 53 |
+
expand=False,
|
| 54 |
+
exportable=False,
|
| 55 |
+
hooks=hooks[backbone],
|
| 56 |
+
use_readout=readout,
|
| 57 |
+
enable_attention_hooks=enable_attention_hooks,
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
self.scratch.refinenet1 = _make_fusion_block(features, use_bn)
|
| 61 |
+
self.scratch.refinenet2 = _make_fusion_block(features, use_bn)
|
| 62 |
+
self.scratch.refinenet3 = _make_fusion_block(features, use_bn)
|
| 63 |
+
self.scratch.refinenet4 = _make_fusion_block(features, use_bn)
|
| 64 |
+
|
| 65 |
+
self.scratch.output_conv = head
|
| 66 |
+
|
| 67 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 68 |
+
if self.channels_last == True:
|
| 69 |
+
x.contiguous(memory_format=torch.channels_last)
|
| 70 |
+
|
| 71 |
+
layer_1, layer_2, layer_3, layer_4 = forward_vit(self.pretrained, x)
|
| 72 |
+
|
| 73 |
+
layer_1_rn = self.scratch.layer1_rn(layer_1)
|
| 74 |
+
layer_2_rn = self.scratch.layer2_rn(layer_2)
|
| 75 |
+
layer_3_rn = self.scratch.layer3_rn(layer_3)
|
| 76 |
+
layer_4_rn = self.scratch.layer4_rn(layer_4)
|
| 77 |
+
|
| 78 |
+
path_4 = self.scratch.refinenet4(layer_4_rn)
|
| 79 |
+
path_3 = self.scratch.refinenet3(path_4, layer_3_rn)
|
| 80 |
+
path_2 = self.scratch.refinenet2(path_3, layer_2_rn)
|
| 81 |
+
path_1 = self.scratch.refinenet1(path_2, layer_1_rn)
|
| 82 |
+
|
| 83 |
+
out = self.scratch.output_conv(path_1)
|
| 84 |
+
|
| 85 |
+
return out
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
class DPTDepthModel(DPT):
|
| 89 |
+
def __init__(
|
| 90 |
+
self, path=None, non_negative=True, scale=1.0, shift=0.0, invert=False, **kwargs
|
| 91 |
+
):
|
| 92 |
+
features = kwargs["features"] if "features" in kwargs else 256
|
| 93 |
+
|
| 94 |
+
self.scale = scale
|
| 95 |
+
self.shift = shift
|
| 96 |
+
self.invert = invert
|
| 97 |
+
|
| 98 |
+
head = nn.Sequential(
|
| 99 |
+
nn.Conv2d(features, features // 2, kernel_size=3, stride=1, padding=1),
|
| 100 |
+
Interpolate(scale_factor=2, mode="bilinear", align_corners=True),
|
| 101 |
+
nn.Conv2d(features // 2, 32, kernel_size=3, stride=1, padding=1),
|
| 102 |
+
nn.ReLU(True),
|
| 103 |
+
nn.Conv2d(32, 1, kernel_size=1, stride=1, padding=0),
|
| 104 |
+
nn.ReLU(True) if non_negative else nn.Identity(),
|
| 105 |
+
nn.Identity(),
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
super().__init__(head, **kwargs)
|
| 109 |
+
|
| 110 |
+
if path is not None:
|
| 111 |
+
self.load(path)
|
| 112 |
+
|
| 113 |
+
def forward(self, x: Tensor) -> Tensor:
|
| 114 |
+
"""Input x of shape [b, c, h, w]
|
| 115 |
+
Return tensor of shape [b, c, h, w]
|
| 116 |
+
"""
|
| 117 |
+
inv_depth = super().forward(x)
|
| 118 |
+
|
| 119 |
+
if self.invert:
|
| 120 |
+
depth = self.scale * inv_depth + self.shift
|
| 121 |
+
depth[depth < 1e-8] = 1e-8
|
| 122 |
+
depth = 1.0 / depth
|
| 123 |
+
return depth
|
| 124 |
+
else:
|
| 125 |
+
return inv_depth
|
| 126 |
+
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:545a6e1dd3258ae359ccc400e2bf0e39f7411e9a6c8f55b1e60017b47125b1ab
|
| 3 |
+
size 492713165
|
vit.py
ADDED
|
@@ -0,0 +1,576 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import timm
|
| 4 |
+
import types
|
| 5 |
+
import math
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
activations = {}
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def get_activation(name):
|
| 13 |
+
def hook(model, input, output):
|
| 14 |
+
activations[name] = output
|
| 15 |
+
|
| 16 |
+
return hook
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
attention = {}
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def get_attention(name):
|
| 23 |
+
def hook(module, input, output):
|
| 24 |
+
x = input[0]
|
| 25 |
+
B, N, C = x.shape
|
| 26 |
+
qkv = (
|
| 27 |
+
module.qkv(x)
|
| 28 |
+
.reshape(B, N, 3, module.num_heads, C // module.num_heads)
|
| 29 |
+
.permute(2, 0, 3, 1, 4)
|
| 30 |
+
)
|
| 31 |
+
q, k, v = (
|
| 32 |
+
qkv[0],
|
| 33 |
+
qkv[1],
|
| 34 |
+
qkv[2],
|
| 35 |
+
) # make torchscript happy (cannot use tensor as tuple)
|
| 36 |
+
|
| 37 |
+
attn = (q @ k.transpose(-2, -1)) * module.scale
|
| 38 |
+
|
| 39 |
+
attn = attn.softmax(dim=-1) # [:,:,1,1:]
|
| 40 |
+
attention[name] = attn
|
| 41 |
+
|
| 42 |
+
return hook
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def get_mean_attention_map(attn, token, shape):
|
| 46 |
+
attn = attn[:, :, token, 1:]
|
| 47 |
+
attn = attn.unflatten(2, torch.Size([shape[2] // 16, shape[3] // 16])).float()
|
| 48 |
+
attn = torch.nn.functional.interpolate(
|
| 49 |
+
attn, size=shape[2:], mode="bicubic", align_corners=False
|
| 50 |
+
).squeeze(0)
|
| 51 |
+
|
| 52 |
+
all_attn = torch.mean(attn, 0)
|
| 53 |
+
|
| 54 |
+
return all_attn
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
class Slice(nn.Module):
|
| 58 |
+
def __init__(self, start_index=1):
|
| 59 |
+
super(Slice, self).__init__()
|
| 60 |
+
self.start_index = start_index
|
| 61 |
+
|
| 62 |
+
def forward(self, x):
|
| 63 |
+
return x[:, self.start_index :]
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
class AddReadout(nn.Module):
|
| 67 |
+
def __init__(self, start_index=1):
|
| 68 |
+
super(AddReadout, self).__init__()
|
| 69 |
+
self.start_index = start_index
|
| 70 |
+
|
| 71 |
+
def forward(self, x):
|
| 72 |
+
if self.start_index == 2:
|
| 73 |
+
readout = (x[:, 0] + x[:, 1]) / 2
|
| 74 |
+
else:
|
| 75 |
+
readout = x[:, 0]
|
| 76 |
+
return x[:, self.start_index :] + readout.unsqueeze(1)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
class ProjectReadout(nn.Module):
|
| 80 |
+
def __init__(self, in_features, start_index=1):
|
| 81 |
+
super(ProjectReadout, self).__init__()
|
| 82 |
+
self.start_index = start_index
|
| 83 |
+
|
| 84 |
+
self.project = nn.Sequential(nn.Linear(2 * in_features, in_features), nn.GELU())
|
| 85 |
+
|
| 86 |
+
def forward(self, x):
|
| 87 |
+
readout = x[:, 0].unsqueeze(1).expand_as(x[:, self.start_index :])
|
| 88 |
+
features = torch.cat((x[:, self.start_index :], readout), -1)
|
| 89 |
+
|
| 90 |
+
return self.project(features)
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
class Transpose(nn.Module):
|
| 94 |
+
def __init__(self, dim0, dim1):
|
| 95 |
+
super(Transpose, self).__init__()
|
| 96 |
+
self.dim0 = dim0
|
| 97 |
+
self.dim1 = dim1
|
| 98 |
+
|
| 99 |
+
def forward(self, x):
|
| 100 |
+
x = x.transpose(self.dim0, self.dim1)
|
| 101 |
+
return x
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
def forward_vit(pretrained, x):
|
| 105 |
+
b, c, h, w = x.shape
|
| 106 |
+
|
| 107 |
+
glob = pretrained.model.forward_flex(x)
|
| 108 |
+
|
| 109 |
+
layer_1 = pretrained.activations["1"]
|
| 110 |
+
layer_2 = pretrained.activations["2"]
|
| 111 |
+
layer_3 = pretrained.activations["3"]
|
| 112 |
+
layer_4 = pretrained.activations["4"]
|
| 113 |
+
|
| 114 |
+
layer_1 = pretrained.act_postprocess1[0:2](layer_1)
|
| 115 |
+
layer_2 = pretrained.act_postprocess2[0:2](layer_2)
|
| 116 |
+
layer_3 = pretrained.act_postprocess3[0:2](layer_3)
|
| 117 |
+
layer_4 = pretrained.act_postprocess4[0:2](layer_4)
|
| 118 |
+
|
| 119 |
+
unflatten = nn.Sequential(
|
| 120 |
+
nn.Unflatten(
|
| 121 |
+
2,
|
| 122 |
+
torch.Size(
|
| 123 |
+
[
|
| 124 |
+
h // pretrained.model.patch_size[1],
|
| 125 |
+
w // pretrained.model.patch_size[0],
|
| 126 |
+
]
|
| 127 |
+
),
|
| 128 |
+
)
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
if layer_1.ndim == 3:
|
| 132 |
+
layer_1 = unflatten(layer_1)
|
| 133 |
+
if layer_2.ndim == 3:
|
| 134 |
+
layer_2 = unflatten(layer_2)
|
| 135 |
+
if layer_3.ndim == 3:
|
| 136 |
+
layer_3 = unflatten(layer_3)
|
| 137 |
+
if layer_4.ndim == 3:
|
| 138 |
+
layer_4 = unflatten(layer_4)
|
| 139 |
+
|
| 140 |
+
layer_1 = pretrained.act_postprocess1[3 : len(pretrained.act_postprocess1)](layer_1)
|
| 141 |
+
layer_2 = pretrained.act_postprocess2[3 : len(pretrained.act_postprocess2)](layer_2)
|
| 142 |
+
layer_3 = pretrained.act_postprocess3[3 : len(pretrained.act_postprocess3)](layer_3)
|
| 143 |
+
layer_4 = pretrained.act_postprocess4[3 : len(pretrained.act_postprocess4)](layer_4)
|
| 144 |
+
|
| 145 |
+
return layer_1, layer_2, layer_3, layer_4
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
def _resize_pos_embed(self, posemb, gs_h, gs_w):
|
| 149 |
+
posemb_tok, posemb_grid = (
|
| 150 |
+
posemb[:, : self.start_index],
|
| 151 |
+
posemb[0, self.start_index :],
|
| 152 |
+
)
|
| 153 |
+
|
| 154 |
+
gs_old = int(math.sqrt(len(posemb_grid)))
|
| 155 |
+
|
| 156 |
+
posemb_grid = posemb_grid.reshape(1, gs_old, gs_old, -1).permute(0, 3, 1, 2)
|
| 157 |
+
posemb_grid = F.interpolate(posemb_grid, size=(gs_h, gs_w), mode="bilinear")
|
| 158 |
+
posemb_grid = posemb_grid.permute(0, 2, 3, 1).reshape(1, gs_h * gs_w, -1)
|
| 159 |
+
|
| 160 |
+
posemb = torch.cat([posemb_tok, posemb_grid], dim=1)
|
| 161 |
+
|
| 162 |
+
return posemb
|
| 163 |
+
|
| 164 |
+
|
| 165 |
+
def forward_flex(self, x):
|
| 166 |
+
b, c, h, w = x.shape
|
| 167 |
+
|
| 168 |
+
pos_embed = self._resize_pos_embed(
|
| 169 |
+
self.pos_embed, h // self.patch_size[1], w // self.patch_size[0]
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
B = x.shape[0]
|
| 173 |
+
|
| 174 |
+
if hasattr(self.patch_embed, "backbone"):
|
| 175 |
+
x = self.patch_embed.backbone(x)
|
| 176 |
+
if isinstance(x, (list, tuple)):
|
| 177 |
+
x = x[-1] # last feature if backbone outputs list/tuple of features
|
| 178 |
+
|
| 179 |
+
x = self.patch_embed.proj(x).flatten(2).transpose(1, 2)
|
| 180 |
+
|
| 181 |
+
if getattr(self, "dist_token", None) is not None:
|
| 182 |
+
cls_tokens = self.cls_token.expand(
|
| 183 |
+
B, -1, -1
|
| 184 |
+
) # stole cls_tokens impl from Phil Wang, thanks
|
| 185 |
+
dist_token = self.dist_token.expand(B, -1, -1)
|
| 186 |
+
x = torch.cat((cls_tokens, dist_token, x), dim=1)
|
| 187 |
+
else:
|
| 188 |
+
cls_tokens = self.cls_token.expand(
|
| 189 |
+
B, -1, -1
|
| 190 |
+
) # stole cls_tokens impl from Phil Wang, thanks
|
| 191 |
+
x = torch.cat((cls_tokens, x), dim=1)
|
| 192 |
+
|
| 193 |
+
x = x + pos_embed
|
| 194 |
+
x = self.pos_drop(x)
|
| 195 |
+
|
| 196 |
+
for blk in self.blocks:
|
| 197 |
+
x = blk(x)
|
| 198 |
+
|
| 199 |
+
x = self.norm(x)
|
| 200 |
+
|
| 201 |
+
return x
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
def get_readout_oper(vit_features, features, use_readout, start_index=1):
|
| 205 |
+
if use_readout == "ignore":
|
| 206 |
+
readout_oper = [Slice(start_index)] * len(features)
|
| 207 |
+
elif use_readout == "add":
|
| 208 |
+
readout_oper = [AddReadout(start_index)] * len(features)
|
| 209 |
+
elif use_readout == "project":
|
| 210 |
+
readout_oper = [
|
| 211 |
+
ProjectReadout(vit_features, start_index) for out_feat in features
|
| 212 |
+
]
|
| 213 |
+
else:
|
| 214 |
+
assert (
|
| 215 |
+
False
|
| 216 |
+
), "wrong operation for readout token, use_readout can be 'ignore', 'add', or 'project'"
|
| 217 |
+
|
| 218 |
+
return readout_oper
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
def _make_vit_b16_backbone(
|
| 222 |
+
model,
|
| 223 |
+
features=[96, 192, 384, 768],
|
| 224 |
+
size=[384, 384],
|
| 225 |
+
hooks=[2, 5, 8, 11],
|
| 226 |
+
vit_features=768,
|
| 227 |
+
use_readout="ignore",
|
| 228 |
+
start_index=1,
|
| 229 |
+
enable_attention_hooks=False,
|
| 230 |
+
):
|
| 231 |
+
pretrained = nn.Module()
|
| 232 |
+
|
| 233 |
+
pretrained.model = model
|
| 234 |
+
pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
|
| 235 |
+
pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
|
| 236 |
+
pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
|
| 237 |
+
pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
|
| 238 |
+
|
| 239 |
+
pretrained.activations = activations
|
| 240 |
+
|
| 241 |
+
if enable_attention_hooks:
|
| 242 |
+
pretrained.model.blocks[hooks[0]].attn.register_forward_hook(
|
| 243 |
+
get_attention("attn_1")
|
| 244 |
+
)
|
| 245 |
+
pretrained.model.blocks[hooks[1]].attn.register_forward_hook(
|
| 246 |
+
get_attention("attn_2")
|
| 247 |
+
)
|
| 248 |
+
pretrained.model.blocks[hooks[2]].attn.register_forward_hook(
|
| 249 |
+
get_attention("attn_3")
|
| 250 |
+
)
|
| 251 |
+
pretrained.model.blocks[hooks[3]].attn.register_forward_hook(
|
| 252 |
+
get_attention("attn_4")
|
| 253 |
+
)
|
| 254 |
+
pretrained.attention = attention
|
| 255 |
+
|
| 256 |
+
readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
|
| 257 |
+
|
| 258 |
+
# 32, 48, 136, 384
|
| 259 |
+
pretrained.act_postprocess1 = nn.Sequential(
|
| 260 |
+
readout_oper[0],
|
| 261 |
+
Transpose(1, 2),
|
| 262 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
| 263 |
+
nn.Conv2d(
|
| 264 |
+
in_channels=vit_features,
|
| 265 |
+
out_channels=features[0],
|
| 266 |
+
kernel_size=1,
|
| 267 |
+
stride=1,
|
| 268 |
+
padding=0,
|
| 269 |
+
),
|
| 270 |
+
nn.ConvTranspose2d(
|
| 271 |
+
in_channels=features[0],
|
| 272 |
+
out_channels=features[0],
|
| 273 |
+
kernel_size=4,
|
| 274 |
+
stride=4,
|
| 275 |
+
padding=0,
|
| 276 |
+
bias=True,
|
| 277 |
+
dilation=1,
|
| 278 |
+
groups=1,
|
| 279 |
+
),
|
| 280 |
+
)
|
| 281 |
+
|
| 282 |
+
pretrained.act_postprocess2 = nn.Sequential(
|
| 283 |
+
readout_oper[1],
|
| 284 |
+
Transpose(1, 2),
|
| 285 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
| 286 |
+
nn.Conv2d(
|
| 287 |
+
in_channels=vit_features,
|
| 288 |
+
out_channels=features[1],
|
| 289 |
+
kernel_size=1,
|
| 290 |
+
stride=1,
|
| 291 |
+
padding=0,
|
| 292 |
+
),
|
| 293 |
+
nn.ConvTranspose2d(
|
| 294 |
+
in_channels=features[1],
|
| 295 |
+
out_channels=features[1],
|
| 296 |
+
kernel_size=2,
|
| 297 |
+
stride=2,
|
| 298 |
+
padding=0,
|
| 299 |
+
bias=True,
|
| 300 |
+
dilation=1,
|
| 301 |
+
groups=1,
|
| 302 |
+
),
|
| 303 |
+
)
|
| 304 |
+
|
| 305 |
+
pretrained.act_postprocess3 = nn.Sequential(
|
| 306 |
+
readout_oper[2],
|
| 307 |
+
Transpose(1, 2),
|
| 308 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
| 309 |
+
nn.Conv2d(
|
| 310 |
+
in_channels=vit_features,
|
| 311 |
+
out_channels=features[2],
|
| 312 |
+
kernel_size=1,
|
| 313 |
+
stride=1,
|
| 314 |
+
padding=0,
|
| 315 |
+
),
|
| 316 |
+
)
|
| 317 |
+
|
| 318 |
+
pretrained.act_postprocess4 = nn.Sequential(
|
| 319 |
+
readout_oper[3],
|
| 320 |
+
Transpose(1, 2),
|
| 321 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
| 322 |
+
nn.Conv2d(
|
| 323 |
+
in_channels=vit_features,
|
| 324 |
+
out_channels=features[3],
|
| 325 |
+
kernel_size=1,
|
| 326 |
+
stride=1,
|
| 327 |
+
padding=0,
|
| 328 |
+
),
|
| 329 |
+
nn.Conv2d(
|
| 330 |
+
in_channels=features[3],
|
| 331 |
+
out_channels=features[3],
|
| 332 |
+
kernel_size=3,
|
| 333 |
+
stride=2,
|
| 334 |
+
padding=1,
|
| 335 |
+
),
|
| 336 |
+
)
|
| 337 |
+
|
| 338 |
+
pretrained.model.start_index = start_index
|
| 339 |
+
pretrained.model.patch_size = [16, 16]
|
| 340 |
+
|
| 341 |
+
# We inject this function into the VisionTransformer instances so that
|
| 342 |
+
# we can use it with interpolated position embeddings without modifying the library source.
|
| 343 |
+
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
|
| 344 |
+
pretrained.model._resize_pos_embed = types.MethodType(
|
| 345 |
+
_resize_pos_embed, pretrained.model
|
| 346 |
+
)
|
| 347 |
+
|
| 348 |
+
return pretrained
|
| 349 |
+
|
| 350 |
+
|
| 351 |
+
def _make_vit_b_rn50_backbone(
|
| 352 |
+
model,
|
| 353 |
+
features=[256, 512, 768, 768],
|
| 354 |
+
size=[384, 384],
|
| 355 |
+
hooks=[0, 1, 8, 11],
|
| 356 |
+
vit_features=768,
|
| 357 |
+
use_vit_only=False,
|
| 358 |
+
use_readout="ignore",
|
| 359 |
+
start_index=1,
|
| 360 |
+
enable_attention_hooks=False,
|
| 361 |
+
):
|
| 362 |
+
pretrained = nn.Module()
|
| 363 |
+
|
| 364 |
+
pretrained.model = model
|
| 365 |
+
|
| 366 |
+
if use_vit_only == True:
|
| 367 |
+
pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1"))
|
| 368 |
+
pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2"))
|
| 369 |
+
else:
|
| 370 |
+
pretrained.model.patch_embed.backbone.stages[0].register_forward_hook(
|
| 371 |
+
get_activation("1")
|
| 372 |
+
)
|
| 373 |
+
pretrained.model.patch_embed.backbone.stages[1].register_forward_hook(
|
| 374 |
+
get_activation("2")
|
| 375 |
+
)
|
| 376 |
+
|
| 377 |
+
pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3"))
|
| 378 |
+
pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4"))
|
| 379 |
+
|
| 380 |
+
if enable_attention_hooks:
|
| 381 |
+
pretrained.model.blocks[2].attn.register_forward_hook(get_attention("attn_1"))
|
| 382 |
+
pretrained.model.blocks[5].attn.register_forward_hook(get_attention("attn_2"))
|
| 383 |
+
pretrained.model.blocks[8].attn.register_forward_hook(get_attention("attn_3"))
|
| 384 |
+
pretrained.model.blocks[11].attn.register_forward_hook(get_attention("attn_4"))
|
| 385 |
+
pretrained.attention = attention
|
| 386 |
+
|
| 387 |
+
pretrained.activations = activations
|
| 388 |
+
|
| 389 |
+
readout_oper = get_readout_oper(vit_features, features, use_readout, start_index)
|
| 390 |
+
|
| 391 |
+
if use_vit_only == True:
|
| 392 |
+
pretrained.act_postprocess1 = nn.Sequential(
|
| 393 |
+
readout_oper[0],
|
| 394 |
+
Transpose(1, 2),
|
| 395 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
| 396 |
+
nn.Conv2d(
|
| 397 |
+
in_channels=vit_features,
|
| 398 |
+
out_channels=features[0],
|
| 399 |
+
kernel_size=1,
|
| 400 |
+
stride=1,
|
| 401 |
+
padding=0,
|
| 402 |
+
),
|
| 403 |
+
nn.ConvTranspose2d(
|
| 404 |
+
in_channels=features[0],
|
| 405 |
+
out_channels=features[0],
|
| 406 |
+
kernel_size=4,
|
| 407 |
+
stride=4,
|
| 408 |
+
padding=0,
|
| 409 |
+
bias=True,
|
| 410 |
+
dilation=1,
|
| 411 |
+
groups=1,
|
| 412 |
+
),
|
| 413 |
+
)
|
| 414 |
+
|
| 415 |
+
pretrained.act_postprocess2 = nn.Sequential(
|
| 416 |
+
readout_oper[1],
|
| 417 |
+
Transpose(1, 2),
|
| 418 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
| 419 |
+
nn.Conv2d(
|
| 420 |
+
in_channels=vit_features,
|
| 421 |
+
out_channels=features[1],
|
| 422 |
+
kernel_size=1,
|
| 423 |
+
stride=1,
|
| 424 |
+
padding=0,
|
| 425 |
+
),
|
| 426 |
+
nn.ConvTranspose2d(
|
| 427 |
+
in_channels=features[1],
|
| 428 |
+
out_channels=features[1],
|
| 429 |
+
kernel_size=2,
|
| 430 |
+
stride=2,
|
| 431 |
+
padding=0,
|
| 432 |
+
bias=True,
|
| 433 |
+
dilation=1,
|
| 434 |
+
groups=1,
|
| 435 |
+
),
|
| 436 |
+
)
|
| 437 |
+
else:
|
| 438 |
+
pretrained.act_postprocess1 = nn.Sequential(
|
| 439 |
+
nn.Identity(), nn.Identity(), nn.Identity()
|
| 440 |
+
)
|
| 441 |
+
pretrained.act_postprocess2 = nn.Sequential(
|
| 442 |
+
nn.Identity(), nn.Identity(), nn.Identity()
|
| 443 |
+
)
|
| 444 |
+
|
| 445 |
+
pretrained.act_postprocess3 = nn.Sequential(
|
| 446 |
+
readout_oper[2],
|
| 447 |
+
Transpose(1, 2),
|
| 448 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
| 449 |
+
nn.Conv2d(
|
| 450 |
+
in_channels=vit_features,
|
| 451 |
+
out_channels=features[2],
|
| 452 |
+
kernel_size=1,
|
| 453 |
+
stride=1,
|
| 454 |
+
padding=0,
|
| 455 |
+
),
|
| 456 |
+
)
|
| 457 |
+
|
| 458 |
+
pretrained.act_postprocess4 = nn.Sequential(
|
| 459 |
+
readout_oper[3],
|
| 460 |
+
Transpose(1, 2),
|
| 461 |
+
nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])),
|
| 462 |
+
nn.Conv2d(
|
| 463 |
+
in_channels=vit_features,
|
| 464 |
+
out_channels=features[3],
|
| 465 |
+
kernel_size=1,
|
| 466 |
+
stride=1,
|
| 467 |
+
padding=0,
|
| 468 |
+
),
|
| 469 |
+
nn.Conv2d(
|
| 470 |
+
in_channels=features[3],
|
| 471 |
+
out_channels=features[3],
|
| 472 |
+
kernel_size=3,
|
| 473 |
+
stride=2,
|
| 474 |
+
padding=1,
|
| 475 |
+
),
|
| 476 |
+
)
|
| 477 |
+
|
| 478 |
+
pretrained.model.start_index = start_index
|
| 479 |
+
pretrained.model.patch_size = [16, 16]
|
| 480 |
+
|
| 481 |
+
# We inject this function into the VisionTransformer instances so that
|
| 482 |
+
# we can use it with interpolated position embeddings without modifying the library source.
|
| 483 |
+
pretrained.model.forward_flex = types.MethodType(forward_flex, pretrained.model)
|
| 484 |
+
|
| 485 |
+
# We inject this function into the VisionTransformer instances so that
|
| 486 |
+
# we can use it with interpolated position embeddings without modifying the library source.
|
| 487 |
+
pretrained.model._resize_pos_embed = types.MethodType(
|
| 488 |
+
_resize_pos_embed, pretrained.model
|
| 489 |
+
)
|
| 490 |
+
|
| 491 |
+
return pretrained
|
| 492 |
+
|
| 493 |
+
|
| 494 |
+
def _make_pretrained_vitb_rn50_384(
|
| 495 |
+
pretrained,
|
| 496 |
+
use_readout="ignore",
|
| 497 |
+
hooks=None,
|
| 498 |
+
use_vit_only=False,
|
| 499 |
+
enable_attention_hooks=False,
|
| 500 |
+
):
|
| 501 |
+
model = timm.create_model("vit_base_resnet50_384", pretrained=pretrained)
|
| 502 |
+
|
| 503 |
+
hooks = [0, 1, 8, 11] if hooks == None else hooks
|
| 504 |
+
return _make_vit_b_rn50_backbone(
|
| 505 |
+
model,
|
| 506 |
+
features=[256, 512, 768, 768],
|
| 507 |
+
size=[384, 384],
|
| 508 |
+
hooks=hooks,
|
| 509 |
+
use_vit_only=use_vit_only,
|
| 510 |
+
use_readout=use_readout,
|
| 511 |
+
enable_attention_hooks=enable_attention_hooks,
|
| 512 |
+
)
|
| 513 |
+
|
| 514 |
+
|
| 515 |
+
def _make_pretrained_vitl16_384(
|
| 516 |
+
pretrained, use_readout="ignore", hooks=None, enable_attention_hooks=False
|
| 517 |
+
):
|
| 518 |
+
model = timm.create_model("vit_large_patch16_384", pretrained=pretrained)
|
| 519 |
+
|
| 520 |
+
hooks = [5, 11, 17, 23] if hooks == None else hooks
|
| 521 |
+
return _make_vit_b16_backbone(
|
| 522 |
+
model,
|
| 523 |
+
features=[256, 512, 1024, 1024],
|
| 524 |
+
hooks=hooks,
|
| 525 |
+
vit_features=1024,
|
| 526 |
+
use_readout=use_readout,
|
| 527 |
+
enable_attention_hooks=enable_attention_hooks,
|
| 528 |
+
)
|
| 529 |
+
|
| 530 |
+
|
| 531 |
+
def _make_pretrained_vitb16_384(
|
| 532 |
+
pretrained, use_readout="ignore", hooks=None, enable_attention_hooks=False
|
| 533 |
+
):
|
| 534 |
+
model = timm.create_model("vit_base_patch16_384", pretrained=pretrained)
|
| 535 |
+
|
| 536 |
+
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
| 537 |
+
return _make_vit_b16_backbone(
|
| 538 |
+
model,
|
| 539 |
+
features=[96, 192, 384, 768],
|
| 540 |
+
hooks=hooks,
|
| 541 |
+
use_readout=use_readout,
|
| 542 |
+
enable_attention_hooks=enable_attention_hooks,
|
| 543 |
+
)
|
| 544 |
+
|
| 545 |
+
|
| 546 |
+
def _make_pretrained_deitb16_384(
|
| 547 |
+
pretrained, use_readout="ignore", hooks=None, enable_attention_hooks=False
|
| 548 |
+
):
|
| 549 |
+
model = timm.create_model("vit_deit_base_patch16_384", pretrained=pretrained)
|
| 550 |
+
|
| 551 |
+
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
| 552 |
+
return _make_vit_b16_backbone(
|
| 553 |
+
model,
|
| 554 |
+
features=[96, 192, 384, 768],
|
| 555 |
+
hooks=hooks,
|
| 556 |
+
use_readout=use_readout,
|
| 557 |
+
enable_attention_hooks=enable_attention_hooks,
|
| 558 |
+
)
|
| 559 |
+
|
| 560 |
+
|
| 561 |
+
def _make_pretrained_deitb16_distil_384(
|
| 562 |
+
pretrained, use_readout="ignore", hooks=None, enable_attention_hooks=False
|
| 563 |
+
):
|
| 564 |
+
model = timm.create_model(
|
| 565 |
+
"vit_deit_base_distilled_patch16_384", pretrained=pretrained
|
| 566 |
+
)
|
| 567 |
+
|
| 568 |
+
hooks = [2, 5, 8, 11] if hooks == None else hooks
|
| 569 |
+
return _make_vit_b16_backbone(
|
| 570 |
+
model,
|
| 571 |
+
features=[96, 192, 384, 768],
|
| 572 |
+
hooks=hooks,
|
| 573 |
+
use_readout=use_readout,
|
| 574 |
+
start_index=2,
|
| 575 |
+
enable_attention_hooks=enable_attention_hooks,
|
| 576 |
+
)
|