File size: 88,084 Bytes
b9c622a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
"""
modeling_prismatic.py

Core HuggingFace-style PrismaticPreTrainedModel and PrismaticForConditionalGeneration class definitions.
Inherits from the default `transformers.PretrainedModel`. Meant to be standalone and self-contained,
but exactly replicate the logic in `prismatic.models.vlms.prismatic.py`.
"""

import logging
from dataclasses import dataclass
from functools import partial
from typing import Any, Callable, ClassVar, Dict, List, Optional, Tuple, Union

import numpy as np
import timm
import tokenizers
import torch
import torch.nn as nn
import transformers
from timm.models.vision_transformer import LayerScale
from transformers import AutoModelForCausalLM, PretrainedConfig, PreTrainedModel
from transformers.modeling_outputs import ModelOutput

from prismatic.training.train_utils import (
    get_current_action_mask,
    get_next_actions_mask,
)
from prismatic.vla.constants import (
    ACTION_DIM,
    ACTION_PROPRIO_NORMALIZATION_TYPE,
    ACTION_TOKEN_BEGIN_IDX,
    IGNORE_INDEX,
    NUM_ACTIONS_CHUNK,
    STOP_INDEX,
    NormalizationType,
)

from .configuration_prismatic import OpenVLAConfig, PrismaticConfig

# Set up logger
logger = logging.getLogger(__name__)


# === Utility Functions for Monkey-Patching ===
def unpack_tuple(fn: Callable[[Any], Tuple[Any]]) -> Callable[[Any], Any]:
    def wrapper(*args: Any, **kwargs: Any) -> Any:
        result = fn(*args, **kwargs)
        return result[0] if isinstance(result, tuple) else result

    return wrapper


# HF Transformers overwrites parameters with names containing `gamma`; we're going to patch VisionBackbone.LayerScale.
#   =>> TIMM :: https://github.com/huggingface/pytorch-image-models/blob/main/timm/models/vision_transformer.py#L109
#   =>> Transformers :: https://github.com/huggingface/transformers/blob/main/src/transformers/modeling_utils.py#L3960
def _ls_new_forward(self, x: torch.Tensor) -> torch.Tensor:
    return x.mul_(self.scale_factor) if self.inplace else x * self.scale_factor


def ls_apply_patch(ls_module: LayerScale):
    ls_module.scale_factor = nn.Parameter(ls_module.gamma.clone())
    ls_module.forward = _ls_new_forward.__get__(ls_module, LayerScale)
    del ls_module.gamma


# === Prismatic Vision Backbone (nn.Module) Definitions (w/ Fused Backbone Support) ===
class PrismaticVisionBackbone(nn.Module):
    """
    Vision backbone for Prismatic models that handles image feature extraction.

    Supports both single backbone (e.g., SigLIP) and fused backbone (e.g., SigLIP + DINOv2) configurations.
    For fused backbones, features from both models are concatenated along the feature dimension.
    """

    def __init__(
        self,
        use_fused_vision_backbone: bool,
        image_sizes: List[int],
        timm_model_ids: List[str],
        timm_override_act_layers: List[Optional[str]],
    ) -> None:
        """
        Initialize the vision backbone.

        Args:
            use_fused_vision_backbone: Whether to use two backbones and fuse their features
            image_sizes: List of image sizes for each backbone
            timm_model_ids: List of TIMM model IDs to use for each backbone
            timm_override_act_layers: List of activation layer overrides for each backbone
        """
        super().__init__()
        self.use_fused_vision_backbone = use_fused_vision_backbone
        self.num_images_in_input = 1  # Default value, can be overridden later

        # Validate number of (fused) vision backbones
        if len(timm_model_ids) > 2:
            raise ValueError("Prismatic models only support up to 2 (fused) vision backbones!")

        # Create primary featurizer
        self.featurizer = self._create_featurizer(
            model_id=timm_model_ids[0], img_size=image_sizes[0], act_layer=timm_override_act_layers[0]
        )
        self.embed_dim = self.featurizer.embed_dim

        # Create secondary featurizer if using fused backbone
        if self.use_fused_vision_backbone:
            self.fused_featurizer = self._create_featurizer(
                model_id=timm_model_ids[1], img_size=image_sizes[1], act_layer=timm_override_act_layers[1]
            )
            self.embed_dim += self.fused_featurizer.embed_dim

        # Patch LayerScale modules for HF compatibility
        self._patch_layer_scales()

    def _create_featurizer(self, model_id: str, img_size: int, act_layer: Optional[str]) -> nn.Module:
        """
        Create a TIMM-based featurizer model with appropriate configurations.

        Args:
            model_id: The TIMM model ID to load
            img_size: Input image size for the model
            act_layer: Override for the activation layer type

        Returns:
            A configured featurizer model
        """
        featurizer = timm.create_model(
            model_id,
            pretrained=False,
            num_classes=0,
            img_size=img_size,
            act_layer=act_layer,
        )

        # Monkey-patch the forward function to extract the second-to-last layer features
        num_blocks = len(featurizer.blocks)
        featurizer.forward = unpack_tuple(partial(featurizer.get_intermediate_layers, n={num_blocks - 2}))

        return featurizer

    def _patch_layer_scales(self) -> None:
        """
        Patch all LayerScale modules to be compatible with HF's parameter naming.

        HF Transformers overwrites parameters with names containing 'gamma',
        so we need to rename and modify the forward method.
        """
        # Patch primary featurizer
        for module in self.featurizer.modules():
            if isinstance(module, LayerScale):
                ls_apply_patch(module)

        # Patch secondary featurizer if it exists
        if self.use_fused_vision_backbone:
            for module in self.fused_featurizer.modules():
                if isinstance(module, LayerScale):
                    ls_apply_patch(module)

    def get_num_patches(self) -> int:
        """
        Returns the number of vision patches output by the vision backbone.

        Returns:
            Number of patches per image
        """
        return self.featurizer.patch_embed.num_patches

    def get_num_images_in_input(self) -> int:
        """
        Returns the number of input images for the vision backbone.

        Returns:
            Number of images expected in the input
        """
        return self.num_images_in_input

    def set_num_images_in_input(self, num_images_in_input: int) -> None:
        """
        Sets the number of input images for the vision backbone.

        Args:
            num_images_in_input: Number of images to expect in the input
        """
        self.num_images_in_input = num_images_in_input

    def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
        """
        Implements the forward pass for the vision backbone.

        If `self.use_fused_vision_backbone == True`, uses both SigLIP and DINOv2 transformers to extract visual features
        (otherwise uses SigLIP only). Allows multi-image inputs (but only for fused vision backbone).

        Args:
            pixel_values (torch.Tensor): Pixels for input image(s), (B, C, H, W).
        """
        if self.num_images_in_input == 1:
            if not self.use_fused_vision_backbone:
                return self.featurizer(pixel_values)

            # Split `pixel_values :: [bsz, 2 * 3, resolution, resolution]` =>> featurize =>> channel stack
            img, img_fused = torch.split(pixel_values, [3, 3], dim=1)
            patches, patches_fused = self.featurizer(img), self.fused_featurizer(img_fused)

            return torch.cat([patches, patches_fused], dim=2)

        else:
            assert self.use_fused_vision_backbone, "Multi-image inputs require using fused backbone!"

            # Split `pixel_values` into individual images (each with 6 channels: 3 for SigLIP + 3 for DINOv2)
            images = torch.split(pixel_values, [6] * self.num_images_in_input, dim=1)

            # Process each image and collect patches
            all_patches = []
            for img in images:
                # Split each image further into two stacks of channels (each with 3 channels)
                img_regular, img_fused = torch.split(img, [3, 3], dim=1)

                # Get patches from both SigLIP and DINOv2 vision transformers
                patches = self.featurizer(img_regular)
                patches_fused = self.fused_featurizer(img_fused)

                # Concatenate SigLIP and DINOv2 patches along the hidden dimension
                combined_patches = torch.cat([patches, patches_fused], dim=2)
                all_patches.append(combined_patches)

            # Concatenate all patches along the patch dimension
            return torch.cat(all_patches, dim=1)


# === Prismatic Projector (nn.Module) Definitions ===
class PrismaticProjector(nn.Module):
    def __init__(self, use_fused_vision_backbone: bool, vision_dim: int, llm_dim: int) -> None:
        super().__init__()
        self.use_fused_vision_backbone = use_fused_vision_backbone
        self.vision_dim, self.llm_dim = vision_dim, llm_dim

        # Switch on `use_fused_vision_backbone` =>> use slightly different MLPs and projection factors!
        if not self.use_fused_vision_backbone:
            self.fc1 = nn.Linear(self.vision_dim, self.llm_dim, bias=True)
            self.fc2 = nn.Linear(self.llm_dim, self.llm_dim, bias=True)
            self.act_fn1 = nn.GELU()
        else:
            initial_projection_dim = 4 * vision_dim
            self.fc1 = nn.Linear(self.vision_dim, initial_projection_dim, bias=True)
            self.fc2 = nn.Linear(initial_projection_dim, self.llm_dim, bias=True)
            self.fc3 = nn.Linear(self.llm_dim, self.llm_dim, bias=True)
            self.act_fn1 = nn.GELU()
            self.act_fn2 = nn.GELU()

    def forward(self, img_patches: torch.Tensor) -> torch.Tensor:
        if not self.use_fused_vision_backbone:
            projected_features = self.fc1(img_patches)
            projected_features = self.act_fn1(projected_features)
            projected_features = self.fc2(projected_features)
        else:
            projected_features = self.fc1(img_patches)
            projected_features = self.act_fn1(projected_features)
            projected_features = self.fc2(projected_features)
            projected_features = self.act_fn2(projected_features)
            projected_features = self.fc3(projected_features)

        return projected_features


# === Main HF Class Definitions ===
@dataclass
class PrismaticCausalLMOutputWithPast(ModelOutput):
    """Base class for Prismatic casual (visually-conditioned) language model outputs; also exposes visual features."""

    loss: Optional[torch.FloatTensor] = None
    logits: torch.FloatTensor = None
    past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
    hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
    attentions: Optional[Tuple[torch.FloatTensor]] = None

    # Additions for VLMs
    projector_features: Optional[torch.FloatTensor] = None


class PrismaticPreTrainedModel(PreTrainedModel):
    config_class: PretrainedConfig = PrismaticConfig
    base_model_prefix: str = "model"
    supports_gradient_checkpointing: bool = True

    _no_split_modules: ClassVar[List[str]] = ["PrismaticProjector"]
    _skip_keys_device_placement: str = "past_key_values"
    _supports_flash_attn_2: bool = True

    def _init_weights(self, module: nn.Module) -> None:
        # Important :: this HF ported version is *not* meant for training from scratch; only inference and fine-tuning!
        #   => As such, this init_weights code is not correct; if training VLMs from scratch, use the main codebase at
        #      https://github.com/TRI-ML/prismatic-vlms
        std = (
            self.config.initializer_range
            if hasattr(self.config, "initializer_range")
            else self.config.text_config.initializer_range
        )

        if hasattr(module, "class_embedding"):
            module.class_embedding.data.normal_(mean=0.0, std=std)

        if isinstance(module, (nn.Linear, nn.Conv2d)):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()

    @property
    def _supports_sdpa(self) -> bool:
        """Check LLM supports SDPA Attention"""
        return self.language_model._supports_sdpa


class PrismaticForConditionalGeneration(PrismaticPreTrainedModel):
    def __init__(self, config: PrismaticConfig) -> None:
        super().__init__(config)

        # [Validation] Lightweight Validate on `config` Fields + Dependency Versions
        if config.use_fused_vision_backbone is None:
            raise ValueError("Missing config field `use_fused_vision_backbone`")

        if timm.__version__ not in {"0.9.10", "0.9.11", "0.9.12", "0.9.16"}:
            raise NotImplementedError(
                "TIMM Version must be >= 0.9.10 and < 1.0.0 (breaking); please raise a GitHub Issue "
                "if you urgently need support for latest TIMM versions."
            )

        if (transformers.__version__ != "4.40.1") or (tokenizers.__version__ != "0.19.1"):
            logger.warning(
                f"Expected `transformers==4.40.1` and `tokenizers==0.19.1` but got "
                f"`transformers=={transformers.__version__}` and `tokenizers=={tokenizers.__version__}`; "
                f"there might be inference-time regressions due to dependency changes. If in doubt, please"
                f"use the above versions."
            )

        # Instantiate PrismaticVisionBackbone (w/ Potential Fused Backbone)
        self.vision_backbone = PrismaticVisionBackbone(
            config.use_fused_vision_backbone, config.image_sizes, config.timm_model_ids, config.timm_override_act_layers
        )

        # Create Multimodal Projector
        self.projector = PrismaticProjector(
            config.use_fused_vision_backbone,
            vision_dim=self.vision_backbone.embed_dim,
            llm_dim=config.text_config.hidden_size,
        )

        # Instantiate LLM Backbone
        self.language_model = AutoModelForCausalLM.from_config(
            config.text_config, attn_implementation=config._attn_implementation
        )
        self.vocab_size = config.text_config.vocab_size
        self.pad_token_id = config.pad_token_id
        self.llm_dim = config.text_config.hidden_size

        # HF Boilerplate =>> initializes weights via `_init_weights()` and sets gradient checkpointing
        self.post_init()

    # === `PreTrainedModel` Boilerplate ===
    def get_input_embeddings(self) -> nn.Module:
        return self.language_model.get_input_embeddings()

    def set_input_embeddings(self, value: nn.Module) -> None:
        self.language_model.set_input_embeddings(value)

    def get_output_embeddings(self) -> nn.Module:
        return self.language_model.get_output_embeddings()

    def set_output_embeddings(self, new_embeddings: nn.Module) -> None:
        self.language_model.set_output_embeddings(new_embeddings)

    def get_decoder(self) -> nn.Module:
        return self.language_model.get_decoder()

    def set_decoder(self, decoder: nn.Module) -> None:
        self.language_model.set_decoder(decoder)

    def tie_weights(self) -> None:
        self.language_model.tie_weights()  # Note: `Llama-2` and `Mistral` don't tie weights (no-op)

    def resize_token_embeddings(
        self, new_num_tokens: Optional[int] = None, pad_to_multiple_of: Optional[int] = None
    ) -> nn.Embedding:
        updated_embeddings = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)

        # Update config/instance variables
        self.config.text_config.vocab_size = updated_embeddings.num_embeddings
        self.vocab_size = updated_embeddings.num_embeddings

        return updated_embeddings

    def _replace_input_embeddings(self, input_embeddings, all_actions_mask, noisy_action_features):
        """
        Replace embeddings in input_embeddings at positions where all_actions_mask is True
        with embeddings from noisy_action_features, using vectorized operations.

        Args:
            input_embeddings: Tensor of shape (B, S, D)
            all_actions_mask: Boolean tensor of shape (B, S)
            noisy_action_features: Tensor of shape (B, K, D) where K is the number of True values in mask per sample

        Returns:
            Modified input_embeddings tensor
        """
        # Clone input to avoid modifying the original tensor
        new_input_embeddings = input_embeddings.clone()

        # Create a tensor with the same shape of input_embeddings to hold the noisy action features
        repositioned_noisy_action_features = torch.zeros_like(input_embeddings)

        # Create batch indices for splicing
        batch_indices = torch.arange(input_embeddings.shape[0], device=input_embeddings.device)
        batch_indices = batch_indices.unsqueeze(1).expand(-1, noisy_action_features.shape[1])

        # Get indices where mask is True for each sample
        masked_indices = torch.stack([torch.where(mask)[0] for mask in all_actions_mask])

        # Move the noisy action features into their correct positions
        repositioned_noisy_action_features[batch_indices, masked_indices] = noisy_action_features

        # Combine original input embeddings and noisy action embeddings using the mask
        new_input_embeddings = torch.where(
            all_actions_mask.unsqueeze(-1), repositioned_noisy_action_features, new_input_embeddings
        )

        return new_input_embeddings

    def _process_action_masks(self, labels):
        """Helper to get action masks from labels"""
        current_action_mask = get_current_action_mask(labels)
        next_actions_mask = get_next_actions_mask(labels)
        all_actions_mask = current_action_mask | next_actions_mask  # (B, seq_len)
        return all_actions_mask

    def _process_vision_features(self, pixel_values, language_embeddings=None, use_film=False):
        """Process vision features with optional FiLM conditioning"""
        if use_film:
            # FiLM: Infuse language inputs into visual features
            patch_features = self.vision_backbone(pixel_values, language_embeddings)  # (bsz, 256 * num_images, D)
        else:
            patch_features = self.vision_backbone(pixel_values)  # (bsz, 256 * num_images, D)

        # Project patch embeddings into language embedding space
        return self.projector(patch_features)

    def _process_proprio_features(self, projected_patch_embeddings, proprio, proprio_projector):
        """Process proprioceptive features and append to vision features"""
        if proprio_projector is not None and proprio is not None:
            # projected_patch_embeddings: (bsz, num_patches * num_images, llm_dim)
            # proprio: (bsz, proprio_dim) or (propro_dim,)
            proprio = proprio.reshape(projected_patch_embeddings.shape[0], -1)  # (bsz, proprio_dim)
            proprio_features = proprio_projector(proprio)  # (bsz, llm_dim)
            proprio_features = proprio_features.unsqueeze(dim=1)  # (bsz, 1, llm_dim)
            # For simplicity, just append proprio token to the end of projected vision patch tokens
            return torch.cat((projected_patch_embeddings, proprio_features), dim=1)
        return projected_patch_embeddings

    def _build_multimodal_attention(self, input_embeddings, projected_patch_embeddings, attention_mask):
        """Build multimodal embeddings and attention mask"""
        # Update attention mask
        projected_patch_attention_mask = None
        if attention_mask is not None:
            projected_patch_attention_mask = torch.full(
                (projected_patch_embeddings.shape[0], projected_patch_embeddings.shape[1]),
                fill_value=True,
                dtype=attention_mask.dtype,
                device=attention_mask.device,
            )

        # Build multimodal embeddings & attention mask; insert embeddings after <BOS> token (1:)
        multimodal_embeddings = torch.cat(
            [input_embeddings[:, :1, :], projected_patch_embeddings, input_embeddings[:, 1:, :]], dim=1
        )

        multimodal_attention_mask = None
        if attention_mask is not None:
            multimodal_attention_mask = torch.cat(
                [attention_mask[:, :1], projected_patch_attention_mask, attention_mask[:, 1:]], dim=1
            )

        return multimodal_embeddings, multimodal_attention_mask

    def _build_multimodal_labels(self, labels, projected_patch_embeddings):
        """Build multimodal labels with IGNORE_INDEX for patch embeddings"""
        if labels is not None:
            projected_patch_labels = torch.full(
                (projected_patch_embeddings.shape[0], projected_patch_embeddings.shape[1]),
                fill_value=IGNORE_INDEX,
                dtype=labels.dtype,
                device=labels.device,
            )
            return torch.cat([labels[:, :1], projected_patch_labels, labels[:, 1:]], dim=1)
        return None

    # === Core Prismatic VLM `forward()` Logic ===
    # def forward(
    #     self,
    #     input_ids: Optional[torch.LongTensor] = None,
    #     attention_mask: Optional[torch.Tensor] = None,
    #     pixel_values: Optional[torch.FloatTensor] = None,
    #     labels: Optional[torch.LongTensor] = None,
    #     inputs_embeds: Optional[torch.FloatTensor] = None,
    #     past_key_values: Optional[List[torch.FloatTensor]] = None,
    #     use_cache: Optional[bool] = None,
    #     output_attentions: Optional[bool] = None,
    #     output_hidden_states: Optional[bool] = None,
    #     output_projector_features: Optional[bool] = None,
    #     return_dict: Optional[bool] = None,
    #     proprio=None,
    #     proprio_projector=None,
    #     noisy_actions=None,
    #     noisy_action_projector=None,
    #     diffusion_timestep_embeddings=None,
    #     use_film: bool = False,
    # ) -> Union[Tuple, PrismaticCausalLMOutputWithPast]:
    #     """Run a forward pass through the VLM, returning a PrismaticCausalLMOutputWithPast instance."""
    #     output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
    #     output_hidden_states = (
    #         output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
    #     )
    #     output_projector_features = output_projector_features if output_projector_features is not None else False
    #     return_dict = return_dict if return_dict is not None else self.config.use_return_dict

    #     # Respect `use_cache` only if not training (even if `gradient_checkpointing` is off)
    #     use_cache = use_cache and not self.training

    #     # Instantiate Placeholder for Projector Features
    #     projected_patch_embeddings = None

    #     # === Handle Generation with Cache (`input_ids.shape[1] == 1`) =>> requires `past_keys_values` ===
    #     if input_ids.shape[1] == 1:
    #         assert input_ids.shape[0] == 1, "Generation is only currently supported for batch size of 1!"
    #         assert past_key_values is not None, "You must provide `past_key_values` during cached generation!"
    #         assert labels is None, "Unexpected key `labels` provided during cached generation!"

    #         language_model_output = self.language_model(
    #             input_ids=input_ids,
    #             attention_mask=None,
    #             position_ids=None,
    #             past_key_values=past_key_values,
    #             inputs_embeds=None,
    #             labels=None,
    #             use_cache=use_cache,
    #             output_attentions=output_attentions,
    #             output_hidden_states=output_hidden_states,
    #             return_dict=return_dict,
    #         )

    #     # === Handle Unimodal Forward ===
    #     elif pixel_values is None:
    #         assert (input_ids is not None) and (inputs_embeds is None), "Missing `input_ids` in language-only forward!"
    #         assert past_key_values is None, "Unexpected key `past_key_values` provided during language-only forward!"

    #         language_model_output = self.language_model(
    #             input_ids=input_ids,
    #             attention_mask=attention_mask,
    #             position_ids=None,
    #             past_key_values=None,
    #             inputs_embeds=None,
    #             labels=labels,
    #             use_cache=use_cache,
    #             output_attentions=output_attentions,
    #             output_hidden_states=output_hidden_states,
    #             return_dict=return_dict,
    #         )

    #     # === Handle Multimodal Forward ===
    #     elif (input_ids.shape[0] == pixel_values.shape[0]) or (inputs_embeds.shape[0] == pixel_values.shape[0]):
    #         assert past_key_values is None, "Unexpected key `past_key_values` provided during multimodal forward!"
            
    #         #test
    #         
    #         #test end
                
    #         # Get input embeddings (from language model embeddings)
    #         input_embeddings = self.get_input_embeddings()(input_ids)  # (B, seq_len, D)

    #         # Extract action masks
    #         all_actions_mask = self._process_action_masks(labels)

    #         # Extract the language portion of the input embeddings (i.e. remove the action tokens portion)
    #         language_embeddings = input_embeddings[~all_actions_mask].reshape(
    #             input_embeddings.shape[0], -1, input_embeddings.shape[2]
    #         )  # (B, lang_seq_len, llm_dim)

    #         # Get visual features
    #         projected_patch_embeddings = self._process_vision_features(pixel_values, language_embeddings, use_film)

    #         # Add proprioceptive state if provided
    #         projected_patch_embeddings = self._process_proprio_features(
    #             projected_patch_embeddings, proprio, proprio_projector
    #         )

    #         # [Diffusion] Add diffusion timestep embedding if provided
    #         if diffusion_timestep_embeddings is not None:
    #             # For simplicity, just append diffusion timestep embedding to the end of projected vision patch tokens
    #             projected_patch_embeddings = torch.cat(
    #                 (projected_patch_embeddings, diffusion_timestep_embeddings), dim=1
    #             )

    #         # Process action embeddings
    #         if noisy_actions is not None:
    #             # Get mask corresponding to all action tokens
    #             all_actions_mask = self._process_action_masks(labels)

    #             # Reshape noisy actions into individual action tokens
    #             # noisy_actions: (B, chunk_len, action_dim) -> (B, chunk_len * action_dim, 1)
    #             B = noisy_actions.shape[0]
    #             noisy_actions = noisy_actions.reshape(B, -1).unsqueeze(-1)

    #             # Project noisy action tokens into language model embedding space
    #             noisy_action_features = noisy_action_projector(noisy_actions)  # (B, chunk_len * action_dim, llm_dim)

    #             # Replace embeddings of the action tokens with noisy action embeddings
    #             input_embeddings = self._replace_input_embeddings(
    #                 input_embeddings, all_actions_mask, noisy_action_features
    #             )
    #         else:
    #             # Replace the embeddings of the action tokens with zeros
    #             # (Later on, the positional embeddings will be added to them)
    #             all_actions_mask = all_actions_mask.unsqueeze(-1)  # (B, seq_len, 1)
    #             input_embeddings = input_embeddings * ~all_actions_mask

    #         # Build multimodal embeddings & attention mask
    #         multimodal_embeddings, multimodal_attention_mask = self._build_multimodal_attention(
    #             input_embeddings, projected_patch_embeddings, attention_mask
    #         )

    #         # Build labels for multimodal sequence if needed
    #         multimodal_labels = self._build_multimodal_labels(labels, projected_patch_embeddings)

    #         # Dispatch to language model
    #         language_model_output = self.language_model(
    #             input_ids=None,
    #             attention_mask=multimodal_attention_mask,
    #             position_ids=None,
    #             past_key_values=None,
    #             inputs_embeds=multimodal_embeddings,
    #             labels=multimodal_labels,
    #             use_cache=use_cache,
    #             output_attentions=output_attentions,
    #             output_hidden_states=output_hidden_states,
    #             return_dict=return_dict,
    #         )

    #     # === Otherwise =>> Assume Invalid! ===
    #     elif (input_ids.shape[0] != pixel_values.shape[0]) or (inputs_embeds.shape[0] != pixel_values.shape[0]):
    #         raise ValueError("Non-homogenous batch of (text, image) input -- forward() does not support mixed batches!")

    #     else:
    #         raise ValueError(
    #             "Invalid PrismaticForConditionalGeneration `forward()` call with provided arguments:\n"
    #             f"=> `input_ids` = {input_ids is not None}\n"
    #             f"=> `attention_mask` = {attention_mask is not None}\n"
    #             f"=> `pixel_values` = {pixel_values is not None}\n"
    #             f"=> `labels` = {labels is not None}\n"
    #             f"=> `input_embeds` = {inputs_embeds is not None}\n"
    #             f"=> `past_key_values` = {past_key_values is not None}\n"
    #             f"=> `use_cache` = {use_cache}"
    #         )

    #     # Unpack `language_model_output` and return PrismaticCausalLMOutputWithPast (or tuple if not `return_dict`)
    #     if not return_dict:
    #         if output_projector_features and (projected_patch_embeddings is not None):
    #             return *language_model_output, projected_patch_embeddings

    #         return language_model_output

    #     return PrismaticCausalLMOutputWithPast(
    #         loss=language_model_output.loss,
    #         logits=language_model_output.logits,
    #         past_key_values=language_model_output.past_key_values,
    #         hidden_states=language_model_output.hidden_states,
    #         attentions=language_model_output.attentions,
    #         projector_features=projected_patch_embeddings,
    #     )

    # === GenerationMixin Methods ===
    def prepare_inputs_for_generation(
        self,
        input_ids: Optional[torch.Tensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        pixel_values: Optional[torch.FloatTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        **kwargs: str,
    ) -> Dict[str, torch.Tensor]:
        """Borrowed from `LlamaForCausalLM` and simplified for batch size = 1; mirrors original PrismaticVLM logic."""
        if ((input_ids is not None) and (input_ids.shape[0] > 1)) or (
            (inputs_embeds is not None) and (inputs_embeds.shape[0] > 1)
        ):
            raise ValueError("Generation with batch size > 1 is not currently supported!")

        # Handle `past_key_values` (cache) =>> assume `input_ids` just has unprocessed tokens
        if past_key_values is not None:
            input_ids = input_ids[:, -1:]

        # If `input_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"input_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        # Make sure `pixel_values` are preserved in `model_inputs`
        model_inputs.update(
            {
                "attention_mask": attention_mask,
                "pixel_values": pixel_values,
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
            }
        )

        return model_inputs

    # Defer to Language Model (all handle this differently, with different return types)
    def _reorder_cache(self, *args, **kwargs) -> Any:
        return self.language_model._reorder_cache(*args, **kwargs)
    
    def _prepare_input_for_action_prediction_verl(self, input_ids, attention_mask):
        """Prepares input for action prediction by adding necessary tokens"""
        # Add (ACTION_DIM * NUM_ACTIONS_CHUNK) placeholder tokens to input_ids to simulate action tokens
        placeholder_action_token_ids = (
            torch.ones((input_ids.shape[0], ACTION_DIM * NUM_ACTIONS_CHUNK)).to(input_ids.device).to(input_ids.dtype)
        )
        input_ids = torch.cat([input_ids, placeholder_action_token_ids], dim=-1)

        # Add stop token to sequence (needed in non-causal bi-directional self-attention, as it appears at train time)
        stop_token_id = torch.ones((input_ids.shape[0], 1)).to(input_ids.device).to(input_ids.dtype) * STOP_INDEX
        input_ids = torch.cat([input_ids, stop_token_id], dim=-1)

        # Extend the attention mask to fit the new shape of input
        # Note: Only batch size == 1 supported right now
        mask_extension = (
            torch.ones((attention_mask.shape[0], input_ids.shape[-1] - attention_mask.shape[-1]))
            .to(attention_mask.device)
            .to(attention_mask.dtype)
        )
        attention_mask = torch.cat([attention_mask, mask_extension], dim=-1)

        return input_ids, attention_mask

    def _prepare_labels_for_action_prediction_verl(self, labels, input_ids):
        """Creates labels tensor for action prediction if not provided"""
        # Extend labels tensor with fake action labels
        ARBITRARY_ACTION_TOKEN_IDX = ACTION_TOKEN_BEGIN_IDX + 1
        labels_extension = (
            torch.ones((labels.shape[0], input_ids.shape[-1] - labels.shape[-1])).to(labels.device).to(labels.dtype)
            * ARBITRARY_ACTION_TOKEN_IDX
        )
        labels = torch.cat([labels, labels_extension], dim=-1)

        # Replace last label token with stop token
        labels[:, -1] = STOP_INDEX

        return labels
    
    def _verl_discrete_compute_logits(
        self,
        input_embeddings,
        all_actions_mask,
        projected_patch_embeddings,
        attention_mask,
        labels,
        NUM_PATCHES,
        NUM_PROMPT_TOKENS,
        action_head=None,
    ):#contintue!!!!!
        """Run L1 regression-based continuous action prediction or discrete action tokens prediction."""
        # Zero out action token embeddings
        all_actions_mask = all_actions_mask.unsqueeze(-1)  # (B, seq_len, 1)
        input_embeddings = input_embeddings * ~all_actions_mask

        # Build multimodal embeddings and attention mask
        multimodal_embeddings, multimodal_attention_mask = self._build_multimodal_attention(
            input_embeddings, projected_patch_embeddings, attention_mask
        )

        # Forward pass through language model
        language_model_output = self.language_model(
            input_ids=None,
            attention_mask=multimodal_attention_mask,
            position_ids=None,
            past_key_values=None,
            inputs_embeds=multimodal_embeddings,
            labels=None,
            use_cache=None,
            output_attentions=False,
            output_hidden_states=False,
            return_dict=True,
        )

        # Extract hidden states for action tokens
        #last_hidden_states = language_model_output.hidden_states[-1]  # (B, seq_len, D)
        # actions_hidden_states = last_hidden_states[
        #     :,
        #     NUM_PATCHES + NUM_PROMPT_TOKENS : NUM_PATCHES + NUM_PROMPT_TOKENS + ACTION_DIM * NUM_ACTIONS_CHUNK,
        #     :,
        # ]  # (B, act_chunk_len, D)

        # Handle different prediction methods
        # if action_head is not None:
        #     # L1 regression prediction
        #     normalized_actions = action_head.predict_action(actions_hidden_states)
        #     normalized_actions = normalized_actions.reshape(NUM_ACTIONS_CHUNK, ACTION_DIM)
        #     normalized_actions = normalized_actions.float().cpu().detach().numpy()
        # else:
        # Discrete token-based prediction
      
        compute_logits = language_model_output.logits[
                    :,
                    NUM_PATCHES + NUM_PROMPT_TOKENS : NUM_PATCHES + NUM_PROMPT_TOKENS + ACTION_DIM * NUM_ACTIONS_CHUNK,
                ]
            
        return  compute_logits
    
    # def forward(
    #     self,
    #     input_ids: Optional[torch.LongTensor] = None,
    #     unnorm_key: Optional[str] = None,
    #     proprio=None,
    #     proprio_projector=None,
    #     action_head=None,
    #     noisy_action_projector=None,
    #     use_film: bool = False,
    #     **kwargs: str,
    # ) :
    #     """Predict actions from input sequence, with options for different prediction methods.

    #     Args:
    #         input_ids: Input token ids
    #         unnorm_key: Key for unnormalization statistics
    #         proprio: Proprioceptive features
    #         proprio_projector: Projector for proprioceptive features
    #         action_head: Optional head for L1 regression or diffusion-based prediction
    #         noisy_action_projector: Projector for noisy actions in diffusion-based prediction
    #         use_film: Whether to use FiLM conditioning
    #         **kwargs: Additional arguments including pixel_values and attention_mask

    #     Returns:
    #         Tuple of (unnormalized_actions, action_hidden_states)
    #     """
    #     # If the special empty token ('') does not already appear after the colon (':') token in the prompt
    #     # (after "OUT:" or "ASSISTANT:"), insert it to match the inputs seen at training time
    #     # if not torch.all(input_ids[:, -1] == 29871):
    #     #     input_ids = torch.cat(
    #     #         (input_ids, torch.unsqueeze(torch.Tensor([29871]).long(), dim=0).to(input_ids.device)), dim=1
    #     #     )
    #     #print("!!!!!!!!!!!!!!Entering forward!!!!!!!!!!")
    #     pixel_values = kwargs["pixel_values"]
    #     attention_mask = kwargs["attention_mask"]
        
    #     # Create fake labels tensor (needed for action mask)
    #     labels = input_ids.clone()
    #     labels[:] = IGNORE_INDEX

    #     # Get number of tokens in prompt (excluding the start token)
    #     NUM_PROMPT_TOKENS = input_ids.shape[-1] - 1  # Subtract action tokens and stop token

    #     # Prepare inputs by adding necessary tokens
    #     #input_ids, attention_mask = self._prepare_input_for_action_prediction_verl(input_ids, attention_mask)
        
    #     #test
    #     placeholder_action_token_ids = (
    #         torch.ones((input_ids.shape[0], ACTION_DIM * NUM_ACTIONS_CHUNK)).to(input_ids.device).to(input_ids.dtype)
    #     )
    #     input_ids = torch.cat([input_ids, placeholder_action_token_ids], dim=-1)

    #     # Add stop token to sequence (needed in non-causal bi-directional self-attention, as it appears at train time)
    #     stop_token_id = torch.ones((input_ids.shape[0], 1)).to(input_ids.device).to(input_ids.dtype) * STOP_INDEX
    #     input_ids = torch.cat([input_ids, stop_token_id], dim=-1)

    #     # Extend the attention mask to fit the new shape of input
    #     # Note: Only batch size == 1 supported right now
    #     mask_extension = (
    #         torch.ones((attention_mask.shape[0], input_ids.shape[-1] - attention_mask.shape[-1]))
    #         .to(attention_mask.device)
    #         .to(attention_mask.dtype)
    #     )
    #     attention_mask = torch.cat([attention_mask, mask_extension], dim=-1)

    #     #return input_ids, attention_mask
        
    #     #test end
        

    #     # Update labels tensor for action mask computation later
    #     #labels = self._prepare_labels_for_action_prediction_verl(labels, input_ids)
    #     #test 
        
    #     ARBITRARY_ACTION_TOKEN_IDX = ACTION_TOKEN_BEGIN_IDX + 1
    #     labels_extension = (
    #         torch.ones((labels.shape[0], input_ids.shape[-1] - labels.shape[-1])).to(labels.device).to(labels.dtype)
    #         * ARBITRARY_ACTION_TOKEN_IDX
    #     )
    #     labels = torch.cat([labels, labels_extension], dim=-1)

    #     # Replace last label token with stop token
    #     labels[:, -1] = STOP_INDEX

    #     #return labels
        
    #     #test ed
       

    #     # Get input embeddings and action masks
        
        
        
    #     input_embeddings = self.get_input_embeddings()(input_ids)
        
        
    #     #all_actions_mask = self._process_action_masks(labels)
    #     #test
    #     #current_action_mask = get_current_action_mask(labels)
    #     newline_positions = labels != IGNORE_INDEX

    #     # Calculate cumulative sum to identify regions between newlines
    #     cumsum = torch.cumsum(newline_positions, dim=1)

    #     # Create the mask
    #     mask = (1 <= cumsum) & (cumsum <= ACTION_DIM)

    #     # Extract the action part only
    #     action_tokens_only_mask = labels > ACTION_TOKEN_BEGIN_IDX
    #     current_action_mask = action_tokens_only_mask * mask

    #     #next_actions_mask = get_next_actions_mask(labels)
    #     newline_positions = labels != IGNORE_INDEX

    #     # Calculate cumulative sum to identify regions between newlines
    #     cumsum = torch.cumsum(newline_positions, dim=1)

    #     # Create the mask
    #     mask = cumsum > ACTION_DIM

    #     # Extract the action part only
    #     action_tokens_only_mask = labels > ACTION_TOKEN_BEGIN_IDX
    #     next_actions_mask = action_tokens_only_mask * mask
        
    #     all_actions_mask = current_action_mask | next_actions_mask  # (B, seq_len)
        
    #     #test end
        
    #     # Extract language embeddings
    #     language_embeddings = input_embeddings[~all_actions_mask].reshape(
    #         input_embeddings.shape[0], -1, input_embeddings.shape[2]
    #     )

    #     # Process vision features
    #     #projected_patch_embeddings = self._process_vision_features(pixel_values, language_embeddings, use_film)
    #     #test
    #     if use_film:
    #         # FiLM: Infuse language inputs into visual features
    #         raise ValueError
    #         patch_features = self.vision_backbone(pixel_values, language_embeddings)  # (bsz, 256 * num_images, D)
    #     else:
    #         patch_features = self.vision_backbone(pixel_values)  # (bsz, 256 * num_images, D)

    #     projected_patch_embeddings = self.projector(patch_features)
    #     #test end
        
        
    #     # Add proprioceptive features if provided
    #     use_proprio = proprio_projector is not None and proprio is not None
    #     if use_proprio:
    #         proprio = torch.Tensor(proprio).to(projected_patch_embeddings.device, dtype=projected_patch_embeddings.dtype)
    #         projected_patch_embeddings = self._process_proprio_features(
    #             projected_patch_embeddings, proprio, proprio_projector
    #         )

    #     # Use diffusion if provided, otherwise use regression or discrete prediction
    #     use_diffusion = noisy_action_projector is not None and hasattr(action_head, "noise_scheduler")

    #     # Calculate number of patches (including proprio token and/or diffusion timestep embedding if present)
    #     NUM_PATCHES = self.vision_backbone.get_num_patches() * self.vision_backbone.get_num_images_in_input()
    #     if use_proprio:
    #         NUM_PATCHES += 1
    #     if use_diffusion:
    #         NUM_PATCHES += 1

    #     if use_diffusion:
    #         raise ValueError
    #         # Sample random noise with shape equal to output action, used as the starting state for reverse diffusion
    #         noise = torch.randn(
    #             size=(1, NUM_ACTIONS_CHUNK, ACTION_DIM), device=input_embeddings.device, dtype=input_embeddings.dtype
    #         )

    #         # Run diffusion-based prediction
    #         normalized_actions, actions_hidden_states = self._run_diffusion_prediction(
    #             input_embeddings,
    #             all_actions_mask,
    #             noise,
    #             action_head,
    #             projected_patch_embeddings,
    #             labels,
    #             attention_mask,
    #             NUM_PATCHES,
    #             NUM_PROMPT_TOKENS,
    #             noisy_action_projector,
    #         )
    #     else:
    #         # Run regression or discrete token-based prediction
    #         # compute_logits = self._verl_discrete_compute_logits(
    #         #     input_embeddings,
    #         #     all_actions_mask,
    #         #     projected_patch_embeddings,
    #         #     attention_mask,
    #         #     labels,
    #         #     NUM_PATCHES,
    #         #     NUM_PROMPT_TOKENS,
    #         #     action_head,
    #         # )
            
    #         #test
            
    #         all_actions_mask = all_actions_mask.unsqueeze(-1)  # (B, seq_len, 1)
    #         input_embeddings = input_embeddings * ~all_actions_mask

    #         # Build multimodal embeddings and attention mask
    #         # multimodal_embeddings, multimodal_attention_mask = self._build_multimodal_attention(
    #         #     input_embeddings, projected_patch_embeddings, attention_mask
    #         # )
    #         #test
            
    #         projected_patch_attention_mask = None
    #         if attention_mask is not None:
    #             projected_patch_attention_mask = torch.full(
    #                 (projected_patch_embeddings.shape[0], projected_patch_embeddings.shape[1]),
    #                 fill_value=True,
    #                 dtype=attention_mask.dtype,
    #                 device=attention_mask.device,
    #             )

    #         # Build multimodal embeddings & attention mask; insert embeddings after <BOS> token (1:)
    #         multimodal_embeddings = torch.cat(
    #             [input_embeddings[:, :1, :], projected_patch_embeddings, input_embeddings[:, 1:, :]], dim=1
    #         )

    #         multimodal_attention_mask = None
    #         if attention_mask is not None:
    #             multimodal_attention_mask = torch.cat(
    #                 [attention_mask[:, :1], projected_patch_attention_mask, attention_mask[:, 1:]], dim=1
    #             )

    #         #return multimodal_embeddings, multimodal_attention_mask
            
    #         #test end

    #         # Forward pass through language model
    #         language_model_output = self.language_model(
    #             input_ids=None,
    #             attention_mask=multimodal_attention_mask,
    #             position_ids=None,
    #             past_key_values=None,
    #             inputs_embeds=multimodal_embeddings,
    #             labels=None,
    #             use_cache=None,
    #             output_attentions=False,
    #             output_hidden_states=False,
    #             return_dict=True,
    #         )

        
    #         compute_logits = language_model_output.logits[
    #                     :,
    #                     NUM_PATCHES + NUM_PROMPT_TOKENS : NUM_PATCHES + NUM_PROMPT_TOKENS + ACTION_DIM * NUM_ACTIONS_CHUNK,
    #                 ]
                
    #         #test end

    #     return compute_logits
    
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        pixel_values=None,
        attention_mask=None,
        #labels=None,
        proprio=None,
        proprio_projector=None,
        action_head=None,
        noisy_action_projector=None,
        use_film: bool = False,
        **kwargs: str,
    ) :
        """Predict actions from input sequence, with options for different prediction methods.

        Args:
            input_ids: Input token ids
            unnorm_key: Key for unnormalization statistics
            proprio: Proprioceptive features
            proprio_projector: Projector for proprioceptive features
            action_head: Optional head for L1 regression or diffusion-based prediction
            noisy_action_projector: Projector for noisy actions in diffusion-based prediction
            use_film: Whether to use FiLM conditioning
            **kwargs: Additional arguments including pixel_values and attention_mask

        Returns:
            Tuple of (unnormalized_actions, action_hidden_states)
        """
        # If the special empty token ('') does not already appear after the colon (':') token in the prompt
        # (after "OUT:" or "ASSISTANT:"), insert it to match the inputs seen at training time
        # if not torch.all(input_ids[:, -1] == 29871):
        #     input_ids = torch.cat(
        #         (input_ids, torch.unsqueeze(torch.Tensor([29871]).long(), dim=0).to(input_ids.device)), dim=1
        #     )
        
        #pixel_values = kwargs["pixel_values"]
        #attention_mask = kwargs["attention_mask"]
        
        # Create fake labels tensor (needed for action mask)
        labels = input_ids.clone()
        labels[:] = IGNORE_INDEX

        # # Get number of tokens in prompt (excluding the start token)
        NUM_PROMPT_TOKENS = input_ids.shape[-1] - 1  # Subtract action tokens and stop token


        # # Prepare inputs by adding necessary tokens
        # #input_ids, attention_mask = self._prepare_input_for_action_prediction_verl(input_ids, attention_mask)
        
        # #test
        placeholder_action_token_ids = (
            torch.ones((input_ids.shape[0], ACTION_DIM * NUM_ACTIONS_CHUNK)).to(input_ids.device).to(input_ids.dtype)
        )
        input_ids = torch.cat([input_ids, placeholder_action_token_ids], dim=-1)

        # Add stop token to sequence (needed in non-causal bi-directional self-attention, as it appears at train time)
        stop_token_id = torch.ones((input_ids.shape[0], 1)).to(input_ids.device).to(input_ids.dtype) * STOP_INDEX
        input_ids = torch.cat([input_ids, stop_token_id], dim=-1)

        # Extend the attention mask to fit the new shape of input
        # Note: Only batch size == 1 supported right now
        mask_extension = (
            torch.ones((attention_mask.shape[0], input_ids.shape[-1] - attention_mask.shape[-1]))
            .to(attention_mask.device)
            .to(attention_mask.dtype)
        )
        attention_mask = torch.cat([attention_mask, mask_extension], dim=-1)

        ARBITRARY_ACTION_TOKEN_IDX = ACTION_TOKEN_BEGIN_IDX + 1
        labels_extension = (
            torch.ones((labels.shape[0], input_ids.shape[-1] - labels.shape[-1])).to(labels.device).to(labels.dtype)
            * ARBITRARY_ACTION_TOKEN_IDX
        )
        labels = torch.cat([labels, labels_extension], dim=-1)

        # # Replace last label token with stop token
        labels[:, -1] = STOP_INDEX

        
        # Get input embeddings and action masks
        
        #NUM_PROMPT_TOKENS = kwargs["num_prompt_tokens"]
        
        input_embeddings = self.get_input_embeddings()(input_ids)
        
        
        #all_actions_mask = self._process_action_masks(labels)
        #test
        #current_action_mask = get_current_action_mask(labels)
        newline_positions = labels != IGNORE_INDEX

        # Calculate cumulative sum to identify regions between newlines
        cumsum = torch.cumsum(newline_positions, dim=1)

        # Create the mask
        mask = (1 <= cumsum) & (cumsum <= ACTION_DIM)

        # Extract the action part only
        action_tokens_only_mask = labels > ACTION_TOKEN_BEGIN_IDX
        current_action_mask = action_tokens_only_mask * mask

        #next_actions_mask = get_next_actions_mask(labels)
        newline_positions = labels != IGNORE_INDEX

        # Calculate cumulative sum to identify regions between newlines
        cumsum = torch.cumsum(newline_positions, dim=1)

        # Create the mask
        mask = cumsum > ACTION_DIM

        # Extract the action part only
        action_tokens_only_mask = labels > ACTION_TOKEN_BEGIN_IDX
        next_actions_mask = action_tokens_only_mask * mask
        
        all_actions_mask = current_action_mask | next_actions_mask  # (B, seq_len)
        
        #test end
        
        # Extract language embeddings
        language_embeddings = input_embeddings[~all_actions_mask].reshape(
            input_embeddings.shape[0], -1, input_embeddings.shape[2]
        )

        # Process vision features
        #projected_patch_embeddings = self._process_vision_features(pixel_values, language_embeddings, use_film)
        #test
        if use_film:
            # FiLM: Infuse language inputs into visual features
            raise ValueError
            patch_features = self.vision_backbone(pixel_values, language_embeddings)  # (bsz, 256 * num_images, D)
        else:
            patch_features = self.vision_backbone(pixel_values)  # (bsz, 256 * num_images, D)

        projected_patch_embeddings = self.projector(patch_features)
        #test end
        
        
        # Add proprioceptive features if provided
        use_proprio = proprio_projector is not None and proprio is not None
        if use_proprio:
            proprio = torch.Tensor(proprio).to(projected_patch_embeddings.device, dtype=projected_patch_embeddings.dtype)
            projected_patch_embeddings = self._process_proprio_features(
                projected_patch_embeddings, proprio, proprio_projector
            )

        # Use diffusion if provided, otherwise use regression or discrete prediction
        use_diffusion = noisy_action_projector is not None and hasattr(action_head, "noise_scheduler")

        # Calculate number of patches (including proprio token and/or diffusion timestep embedding if present)
        NUM_PATCHES = self.vision_backbone.get_num_patches() * self.vision_backbone.get_num_images_in_input()
        if use_proprio:
            NUM_PATCHES += 1
        if use_diffusion:
            NUM_PATCHES += 1

        if use_diffusion:
            raise ValueError
            # Sample random noise with shape equal to output action, used as the starting state for reverse diffusion
            noise = torch.randn(
                size=(1, NUM_ACTIONS_CHUNK, ACTION_DIM), device=input_embeddings.device, dtype=input_embeddings.dtype
            )

            # Run diffusion-based prediction
            normalized_actions, actions_hidden_states = self._run_diffusion_prediction(
                input_embeddings,
                all_actions_mask,
                noise,
                action_head,
                projected_patch_embeddings,
                labels,
                attention_mask,
                NUM_PATCHES,
                NUM_PROMPT_TOKENS,
                noisy_action_projector,
            )
        else:
            # Run regression or discrete token-based prediction
            # compute_logits = self._verl_discrete_compute_logits(
            #     input_embeddings,
            #     all_actions_mask,
            #     projected_patch_embeddings,
            #     attention_mask,
            #     labels,
            #     NUM_PATCHES,
            #     NUM_PROMPT_TOKENS,
            #     action_head,
            # )
            
            #test
            
            all_actions_mask = all_actions_mask.unsqueeze(-1)  # (B, seq_len, 1)
            input_embeddings = input_embeddings * ~all_actions_mask

            # Build multimodal embeddings and attention mask
            # multimodal_embeddings, multimodal_attention_mask = self._build_multimodal_attention(
            #     input_embeddings, projected_patch_embeddings, attention_mask
            # )
            #test
            
            projected_patch_attention_mask = None
            if attention_mask is not None:
                projected_patch_attention_mask = torch.full(
                    (projected_patch_embeddings.shape[0], projected_patch_embeddings.shape[1]),
                    fill_value=True,
                    dtype=attention_mask.dtype,
                    device=attention_mask.device,
                )

            # Build multimodal embeddings & attention mask; insert embeddings after <BOS> token (1:)
            multimodal_embeddings = torch.cat(
                [input_embeddings[:, :1, :], projected_patch_embeddings, input_embeddings[:, 1:, :]], dim=1
            )

            multimodal_attention_mask = None
            if attention_mask is not None:
                multimodal_attention_mask = torch.cat(
                    [attention_mask[:, :1], projected_patch_attention_mask, attention_mask[:, 1:]], dim=1
                )

            #return multimodal_embeddings, multimodal_attention_mask
            
            #test end

            # Forward pass through language model
            language_model_output = self.language_model(
                input_ids=None,
                attention_mask=multimodal_attention_mask,
                position_ids=None,
                past_key_values=None,
                inputs_embeds=multimodal_embeddings,
                labels=None,
                use_cache=None,
                output_attentions=False,
                output_hidden_states=False,
                return_dict=True,
            )

        
            compute_logits = language_model_output.logits[
                        :,
                        NUM_PATCHES + NUM_PROMPT_TOKENS : NUM_PATCHES + NUM_PROMPT_TOKENS + ACTION_DIM * NUM_ACTIONS_CHUNK,
                    ]
                
            #test end

        return compute_logits
    
    
  
class OpenVLAForActionPrediction(PrismaticForConditionalGeneration):
    config_class: PretrainedConfig = OpenVLAConfig

    def __init__(self, config: OpenVLAConfig) -> None:
        super().__init__(config)
        self.norm_stats = config.norm_stats

        # Compute action bins
        self.bins = np.linspace(-1, 1, config.n_action_bins)
        self.bin_centers = (self.bins[:-1] + self.bins[1:]) / 2.0

        # Compute vocab size for de-tokenization -- revert added "multiple of"
        self.vocab_size = self.config.text_config.vocab_size - self.config.pad_to_multiple_of

    def _prepare_input_for_action_prediction(self, input_ids, attention_mask):
        """Prepares input for action prediction by adding necessary tokens"""
        # Add (ACTION_DIM * NUM_ACTIONS_CHUNK) placeholder tokens to input_ids to simulate action tokens
        placeholder_action_token_ids = (
            torch.ones((input_ids.shape[0], ACTION_DIM * NUM_ACTIONS_CHUNK)).to(input_ids.device).to(input_ids.dtype)
        )
        input_ids = torch.cat([input_ids, placeholder_action_token_ids], dim=-1)

        # Add stop token to sequence (needed in non-causal bi-directional self-attention, as it appears at train time)
        stop_token_id = torch.ones((input_ids.shape[0], 1)).to(input_ids.device).to(input_ids.dtype) * STOP_INDEX
        input_ids = torch.cat([input_ids, stop_token_id], dim=-1)

        # Extend the attention mask to fit the new shape of input
        # Note: Only batch size == 1 supported right now
        mask_extension = (
            torch.ones((attention_mask.shape[0], input_ids.shape[-1] - attention_mask.shape[-1]))
            .to(attention_mask.device)
            .to(attention_mask.dtype)
        )
        attention_mask = torch.cat([attention_mask, mask_extension], dim=-1)

        return input_ids, attention_mask

    def _prepare_labels_for_action_prediction(self, labels, input_ids):
        """Creates labels tensor for action prediction if not provided"""
        # Extend labels tensor with fake action labels
        ARBITRARY_ACTION_TOKEN_IDX = ACTION_TOKEN_BEGIN_IDX + 1
        labels_extension = (
            torch.ones((labels.shape[0], input_ids.shape[-1] - labels.shape[-1])).to(labels.device).to(labels.dtype)
            * ARBITRARY_ACTION_TOKEN_IDX
        )
        labels = torch.cat([labels, labels_extension], dim=-1)

        # Replace last label token with stop token
        labels[:, -1] = STOP_INDEX

        return labels

    def _unnormalize_actions(self, normalized_actions, unnorm_key=None):
        """Unnormalize actions using dataset statistics"""
        action_norm_stats = self.get_action_stats(unnorm_key)

        if ACTION_PROPRIO_NORMALIZATION_TYPE == NormalizationType.BOUNDS:
            mask = action_norm_stats.get("mask", np.ones_like(action_norm_stats["min"], dtype=bool))
            action_high, action_low = np.array(action_norm_stats["max"]), np.array(action_norm_stats["min"])
        elif ACTION_PROPRIO_NORMALIZATION_TYPE == NormalizationType.BOUNDS_Q99:
            mask = action_norm_stats.get("mask", np.ones_like(action_norm_stats["q01"], dtype=bool))
            action_high, action_low = np.array(action_norm_stats["q99"]), np.array(action_norm_stats["q01"])
        else:
            raise ValueError("Unsupported action/proprio normalization type detected!")

        actions = np.where(
            mask,
            0.5 * (normalized_actions + 1) * (action_high - action_low + 1e-8) + action_low,
            normalized_actions,
        )

        return actions

    def _run_diffusion_prediction(
        self,
        input_embeddings,
        all_actions_mask,
        noise,
        action_head,
        projected_patch_embeddings,
        labels,
        attention_mask,
        NUM_PATCHES,
        NUM_PROMPT_TOKENS,
        noisy_action_projector,
    ):
        """Run diffusion-based action prediction"""
        # Set diffusion timestep values
        action_head.noise_scheduler.set_timesteps(action_head.num_diffusion_steps)
        # Clone embedding for reuse in each timestep
        orig_projected_patch_embeddings = projected_patch_embeddings.clone()
        curr_noisy_actions = noise

        # Reverse diffusion: Iteratively denoise to generate action prediction
        for t in action_head.noise_scheduler.timesteps:
            # Get diffusion model's noise prediction (conditioned on VLA latent embedding, current noisy action
            # embedding, and diffusion timestep embedding)
            timesteps = torch.Tensor([t]).to(labels.device)
            diffusion_timestep_embeddings = (
                action_head.time_encoder(timesteps).to(curr_noisy_actions.dtype).to(curr_noisy_actions.device)
            )  # (B, llm_dim)
            diffusion_timestep_embeddings = diffusion_timestep_embeddings.unsqueeze(1)  # (B, 1, llm_dim)

            # [Diffusion] Replace the embeddings of the action tokens with noisy actions
            # (Later on, the positional embeddings will be added to them)

            # For simplicity, append diffusion timestep embedding to the end of projected vision tokens
            projected_patch_embeddings = torch.cat(
                (orig_projected_patch_embeddings, diffusion_timestep_embeddings), dim=1
            )

            # Reshape and project noisy actions into language embedding space
            B = curr_noisy_actions.shape[0]
            orig_curr_noisy_actions_shape = curr_noisy_actions.shape
            curr_noisy_actions = curr_noisy_actions.reshape(B, -1).unsqueeze(-1)
            noisy_action_features = noisy_action_projector(curr_noisy_actions)
            curr_noisy_actions = curr_noisy_actions.reshape(orig_curr_noisy_actions_shape)

            # Replace action token embeddings with noisy action embeddings
            input_embeddings = self._replace_input_embeddings(
                input_embeddings.clone(), all_actions_mask, noisy_action_features
            )

            # Build multimodal embeddings and attention mask
            multimodal_embeddings, multimodal_attention_mask = self._build_multimodal_attention(
                input_embeddings, projected_patch_embeddings, attention_mask
            )

            # Forward pass through language model
            language_model_output = self.language_model(
                input_ids=None,
                attention_mask=multimodal_attention_mask,
                position_ids=None,
                past_key_values=None,
                inputs_embeds=multimodal_embeddings,
                labels=None,
                use_cache=None,
                output_attentions=False,
                output_hidden_states=True,
                return_dict=True,
            )

            # Extract hidden states for action portion of response
            last_hidden_states = language_model_output.hidden_states[-1]  # (B, seq_len, D)
            actions_hidden_states = last_hidden_states[
                :,
                NUM_PATCHES + NUM_PROMPT_TOKENS : NUM_PATCHES + NUM_PROMPT_TOKENS + ACTION_DIM * NUM_ACTIONS_CHUNK,
                :,
            ]  # (B, act_chunk_len, D)

            # Predict noise and update noisy actions: x_t -> x_{t-1}
            noise_pred = action_head.predict_noise(actions_hidden_states)
            curr_noisy_actions = action_head.noise_scheduler.step(noise_pred, t, curr_noisy_actions).prev_sample

        curr_noisy_actions = curr_noisy_actions.reshape(NUM_ACTIONS_CHUNK, ACTION_DIM)

        # Return final actions
        return curr_noisy_actions.float().cpu().detach().numpy(), actions_hidden_states

    def _regression_or_discrete_prediction(
        self,
        input_embeddings,
        all_actions_mask,
        projected_patch_embeddings,
        attention_mask,
        labels,
        NUM_PATCHES,
        NUM_PROMPT_TOKENS,
        action_head=None,
    ):
        """Run L1 regression-based continuous action prediction or discrete action tokens prediction."""
        # Zero out action token embeddings
        all_actions_mask = all_actions_mask.unsqueeze(-1)  # (B, seq_len, 1)
        input_embeddings = input_embeddings * ~all_actions_mask

        # Build multimodal embeddings and attention mask
        multimodal_embeddings, multimodal_attention_mask = self._build_multimodal_attention(
            input_embeddings, projected_patch_embeddings, attention_mask
        )

        # Forward pass through language model
        language_model_output = self.language_model(
            input_ids=None,
            attention_mask=multimodal_attention_mask,
            position_ids=None,
            past_key_values=None,
            inputs_embeds=multimodal_embeddings,
            labels=None,
            use_cache=None,
            output_attentions=False,
            output_hidden_states=True,
            return_dict=True,
        )

        # Extract hidden states for action tokens
        last_hidden_states = language_model_output.hidden_states[-1]  # (B, seq_len, D)
        actions_hidden_states = last_hidden_states[
            :,
            NUM_PATCHES + NUM_PROMPT_TOKENS : NUM_PATCHES + NUM_PROMPT_TOKENS + ACTION_DIM * NUM_ACTIONS_CHUNK,
            :,
        ]  # (B, act_chunk_len, D)

        # Handle different prediction methods
        if action_head is not None:
            # L1 regression prediction
            normalized_actions = action_head.predict_action(actions_hidden_states)
            normalized_actions = normalized_actions.reshape(NUM_ACTIONS_CHUNK, ACTION_DIM)
            normalized_actions = normalized_actions.float().cpu().detach().numpy()
        else:
            # Discrete token-based prediction
            predicted_action_token_ids = (
                language_model_output.logits[
                    :,
                    NUM_PATCHES + NUM_PROMPT_TOKENS : NUM_PATCHES + NUM_PROMPT_TOKENS + ACTION_DIM * NUM_ACTIONS_CHUNK,
                ]
                .argmax(dim=2)
                .cpu()
                .numpy()
            )
            discretized_actions = self.vocab_size - predicted_action_token_ids
            discretized_actions = np.clip(discretized_actions - 1, a_min=0, a_max=self.bin_centers.shape[0] - 1)
            normalized_actions = self.bin_centers[discretized_actions]
            normalized_actions = normalized_actions.reshape(NUM_ACTIONS_CHUNK, ACTION_DIM)

        return normalized_actions, actions_hidden_states
    
    def _verl_discrete_prediction(
        self,
        input_embeddings,
        all_actions_mask,
        projected_patch_embeddings,
        attention_mask,
        labels,
        NUM_PATCHES,
        NUM_PROMPT_TOKENS,
        action_head=None,
        do_sample=True,
        temperature=1,
    ):
        """Run L1 regression-based continuous action prediction or discrete action tokens prediction."""
        # Zero out action token embeddings
        all_actions_mask = all_actions_mask.unsqueeze(-1)  # (B, seq_len, 1)
        input_embeddings = input_embeddings * ~all_actions_mask

        # Build multimodal embeddings and attention mask
        multimodal_embeddings, multimodal_attention_mask = self._build_multimodal_attention(
            input_embeddings, projected_patch_embeddings, attention_mask
        )

        # Forward pass through language model
        language_model_output = self.language_model(
            input_ids=None,
            attention_mask=multimodal_attention_mask,
            position_ids=None,
            past_key_values=None,
            inputs_embeds=multimodal_embeddings,
            labels=None,
            use_cache=None,
            output_attentions=False,
            output_hidden_states=False,
            return_dict=True,
        )

        # Extract hidden states for action tokens
        #last_hidden_states = language_model_output.hidden_states[-1]  # (B, seq_len, D)
        # actions_hidden_states = last_hidden_states[
        #     :,
        #     NUM_PATCHES + NUM_PROMPT_TOKENS : NUM_PATCHES + NUM_PROMPT_TOKENS + ACTION_DIM * NUM_ACTIONS_CHUNK,
        #     :,
        # ]  # (B, act_chunk_len, D)

        # Handle different prediction methods
        # if action_head is not None:
        #     # L1 regression prediction
        #     normalized_actions = action_head.predict_action(actions_hidden_states)
        #     normalized_actions = normalized_actions.reshape(NUM_ACTIONS_CHUNK, ACTION_DIM)
        #     normalized_actions = normalized_actions.float().cpu().detach().numpy()
        # else:
        # Discrete token-based prediction
        
        #test 
        # NUM_PROMPT_TOKENS = NUM_PROMPT_TOKENS + NUM_PATCHES
        # j = torch.arange(language_model_output.logits.shape[1], device=NUM_PROMPT_TOKENS.device)
        # start = NUM_PROMPT_TOKENS.unsqueeze(1)
        # end = start + ACTION_DIM * NUM_ACTIONS_CHUNK
        # mask_2d = (j >= start) & (j < end)
        # mask = mask_2d.unsqueeze(-1) 
        # actions_masks = mask.expand_as(language_model_output.logits)  
        
        
        NUM_PROMPT_TOKENS = NUM_PROMPT_TOKENS + NUM_PATCHES
        batch_size = language_model_output.logits.shape[0]
        device = language_model_output.logits.device

       
        start_indices = NUM_PROMPT_TOKENS.unsqueeze(1)  # [batch_size, 1]
        position_offsets = torch.arange(ACTION_DIM * NUM_ACTIONS_CHUNK, device=device).unsqueeze(0)  # [1, seq_length]
        seq_indices = start_indices + position_offsets  # [batch_size, ACTION_DIM*NUM_ACTIONS_CHUNK]
        #test end
        #test add
        #print("language_model_output",language_model_output.logits.shape[-1])
        #print("self.vocab_size",self.vocab_size) 32000
        #topk_values, topk_indices = torch.topk(language_model_output.logits, k=256, dim=-1)
        #print(topk_indices)
        #assert language_model_output.logits.shape[-1] == self.vocab_size
        #test add
        if do_sample == False:
            #org
            # reponse_ids = language_model_output.logits[
            #         :,
            #         NUM_PATCHES + NUM_PROMPT_TOKENS : NUM_PATCHES + NUM_PROMPT_TOKENS + ACTION_DIM * NUM_ACTIONS_CHUNK,
            #     ].argmax(dim=2)
            #reponse_ids = language_model_output.logits[actions_masks].argmax(dim=2)
            #org end
            
            #padding
            # reponse_ids = language_model_output.logits[
            #     torch.arange(batch_size, device=device).unsqueeze(-1),  
            #     seq_indices, 
            #     :
            # ].argmax(dim=2)  
            #padding end
            
            #padding + only get last 256 token
            reponse_ids_logits = language_model_output.logits[
                torch.arange(batch_size, device=device).unsqueeze(-1),  
                seq_indices, 
                :
            ]
            start_index = self.vocab_size - 256 
            response_last256 = reponse_ids_logits[..., -256-64:-64]  # Shape: [batch_size, seq_len, 256]
            last256_argmax = response_last256.argmax(dim=-1)  # Shape: [batch_size, seq_len]
            reponse_ids = last256_argmax + start_index  # Shape: [batch_size, seq_len]
            #padding + only get last 256 token end
            
            predicted_action_token_ids = reponse_ids.cpu().numpy()
                
        else:
            assert temperature>0
            #org 
            # action_logits  = language_model_output.logits[
            #         :,
            #         NUM_PATCHES + NUM_PROMPT_TOKENS : NUM_PATCHES + NUM_PROMPT_TOKENS + ACTION_DIM * NUM_ACTIONS_CHUNK,
            #     ]
            #action_logits = language_model_output.logits[actions_masks]
            #org end
            
            action_logits = language_model_output.logits[
                torch.arange(batch_size, device=device).unsqueeze(-1),  
                seq_indices, 
                :
            ]  
            # padding 
            # scaled_logits = action_logits / temperature
            # probs = torch.softmax(scaled_logits, dim=-1)
            # probs_flat = probs.reshape(-1, probs.shape[-1])  # (B*act_chunk_len, vocab_size)
            # sampled_indices_flat = torch.multinomial(probs_flat, num_samples=1)  # (B*act_chunk_len, 1)
            # reponse_ids = sampled_indices_flat.view(action_logits.shape[0], -1)
            # padding end 
            
            #padding + only get last 256 token
            action_logits_last256 = action_logits[..., -256-64:-64]
            scaled_logits = action_logits_last256 / temperature
            probs = torch.softmax(scaled_logits, dim=-1)
            assert probs.shape[-1] == 256
            probs_flat = probs.reshape(-1, probs.shape[-1])
            sampled_indices_flat = torch.multinomial(probs_flat, num_samples=1)
            original_ids_flat = sampled_indices_flat + (self.vocab_size - 256)
            reponse_ids = original_ids_flat.view(action_logits.shape[0], -1)
            #padding + only get last 256 token end
            
            predicted_action_token_ids = reponse_ids.cpu().numpy()
     
        discretized_actions = self.vocab_size - predicted_action_token_ids
        discretized_actions = np.clip(discretized_actions - 1, a_min=0, a_max=self.bin_centers.shape[0] - 1)
        normalized_actions = self.bin_centers[discretized_actions]
        #normalized_actions = normalized_actions.reshape(NUM_ACTIONS_CHUNK, ACTION_DIM)
        normalized_actions = normalized_actions.reshape(-1, ACTION_DIM)

        return normalized_actions, reponse_ids
        #return normalized_actions, actions_hidden_states

    


    def predict_action(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        unnorm_key: Optional[str] = None,
        proprio=None,
        proprio_projector=None,
        action_head=None,
        noisy_action_projector=None,
        use_film: bool = False,
        **kwargs: str,
    ) -> np.ndarray:
        """Predict actions from input sequence, with options for different prediction methods.

        Args:
            input_ids: Input token ids
            unnorm_key: Key for unnormalization statistics
            proprio: Proprioceptive features
            proprio_projector: Projector for proprioceptive features
            action_head: Optional head for L1 regression or diffusion-based prediction
            noisy_action_projector: Projector for noisy actions in diffusion-based prediction
            use_film: Whether to use FiLM conditioning
            **kwargs: Additional arguments including pixel_values and attention_mask

        Returns:
            Tuple of (unnormalized_actions, action_hidden_states)
        """
        # If the special empty token ('') does not already appear after the colon (':') token in the prompt
        # (after "OUT:" or "ASSISTANT:"), insert it to match the inputs seen at training time
        if not torch.all(input_ids[:, -1] == 29871):
            input_ids = torch.cat(
                (input_ids, torch.unsqueeze(torch.Tensor([29871]).long(), dim=0).to(input_ids.device)), dim=1
            )

        pixel_values = kwargs["pixel_values"]
        attention_mask = kwargs["attention_mask"]

        # Create fake labels tensor (needed for action mask)
        labels = input_ids.clone()
        labels[:] = IGNORE_INDEX

        # Get number of tokens in prompt (excluding the start token)
        NUM_PROMPT_TOKENS = input_ids.shape[-1] - 1  # Subtract action tokens and stop token

        # Prepare inputs by adding necessary tokens
        input_ids, attention_mask = self._prepare_input_for_action_prediction(input_ids, attention_mask)

        # Update labels tensor for action mask computation later
        labels = self._prepare_labels_for_action_prediction(labels, input_ids)

        # Get input embeddings and action masks
        input_embeddings = self.get_input_embeddings()(input_ids)
        all_actions_mask = self._process_action_masks(labels)

        # Extract language embeddings
        language_embeddings = input_embeddings[~all_actions_mask].reshape(
            input_embeddings.shape[0], -1, input_embeddings.shape[2]
        )

        # Process vision features
        projected_patch_embeddings = self._process_vision_features(pixel_values, language_embeddings, use_film)

        # Add proprioceptive features if provided
        use_proprio = proprio_projector is not None and proprio is not None
        if use_proprio:
            proprio = torch.Tensor(proprio).to(projected_patch_embeddings.device, dtype=projected_patch_embeddings.dtype)
            projected_patch_embeddings = self._process_proprio_features(
                projected_patch_embeddings, proprio, proprio_projector
            )

        # Use diffusion if provided, otherwise use regression or discrete prediction
        use_diffusion = noisy_action_projector is not None and hasattr(action_head, "noise_scheduler")

        # Calculate number of patches (including proprio token and/or diffusion timestep embedding if present)
        NUM_PATCHES = self.vision_backbone.get_num_patches() * self.vision_backbone.get_num_images_in_input()
        if use_proprio:
            NUM_PATCHES += 1
        if use_diffusion:
            NUM_PATCHES += 1

        if use_diffusion:
            # Sample random noise with shape equal to output action, used as the starting state for reverse diffusion
            noise = torch.randn(
                size=(1, NUM_ACTIONS_CHUNK, ACTION_DIM), device=input_embeddings.device, dtype=input_embeddings.dtype
            )

            # Run diffusion-based prediction
            normalized_actions, actions_hidden_states = self._run_diffusion_prediction(
                input_embeddings,
                all_actions_mask,
                noise,
                action_head,
                projected_patch_embeddings,
                labels,
                attention_mask,
                NUM_PATCHES,
                NUM_PROMPT_TOKENS,
                noisy_action_projector,
            )
        else:
            # Run regression or discrete token-based prediction
            normalized_actions, actions_hidden_states = self._regression_or_discrete_prediction(
                input_embeddings,
                all_actions_mask,
                projected_patch_embeddings,
                attention_mask,
                labels,
                NUM_PATCHES,
                NUM_PROMPT_TOKENS,
                action_head,
            )

        # Unnormalize predicted actions
        actions = self._unnormalize_actions(normalized_actions, unnorm_key)

        return actions, actions_hidden_states

    def generate_action_verl(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        unnorm_key: Optional[str] = None,
        proprio=None,
        proprio_projector=None,
        action_head=None,
        noisy_action_projector=None,
        use_film: bool = False,
        **kwargs: str,
    ) -> np.ndarray:
        """Predict actions from input sequence, with options for different prediction methods.

        Args:
            input_ids: Input token ids
            unnorm_key: Key for unnormalization statistics
            proprio: Proprioceptive features
            proprio_projector: Projector for proprioceptive features
            action_head: Optional head for L1 regression or diffusion-based prediction
            noisy_action_projector: Projector for noisy actions in diffusion-based prediction
            use_film: Whether to use FiLM conditioning
            **kwargs: Additional arguments including pixel_values and attention_mask

        Returns:
            Tuple of (unnormalized_actions, action_hidden_states)
        """
        # If the special empty token ('') does not already appear after the colon (':') token in the prompt
        # (after "OUT:" or "ASSISTANT:"), insert it to match the inputs seen at training time
        # if not torch.all(input_ids[:, -1] == 29871):
        #     input_ids = torch.cat(
        #         (input_ids, torch.unsqueeze(torch.Tensor([29871]).long(), dim=0).to(input_ids.device)), dim=1
        #     )

        pixel_values = kwargs["pixel_values"]
        attention_mask = kwargs["attention_mask"]
        do_sample = kwargs["do_sample"]
        temperature = kwargs["temperature"]
        
        # Create fake labels tensor (needed for action mask)
        labels = input_ids.clone()
        labels[:] = IGNORE_INDEX

        # Get number of tokens in prompt (excluding the start token)
        #NUM_PROMPT_TOKENS = input_ids.shape[-1] - 1  # Subtract action tokens and stop token
        #test
        padding_idx = kwargs["padding_idx"]
        num_prompt_tokens = input_ids.ne(padding_idx).sum(dim=1) - 1
        #test end
        

        # Prepare inputs by adding necessary tokens
        input_ids, attention_mask = self._prepare_input_for_action_prediction(input_ids, attention_mask)

        # Update labels tensor for action mask computation later
        labels = self._prepare_labels_for_action_prediction(labels, input_ids)
        
        #here to convert padding from before to last
        #test
        padding_mask = input_ids.ne(padding_idx)
        assert torch.all(padding_mask==attention_mask.ne(0))
        #print("in predict_action padding_mask:", padding_mask)
        padding_mask = padding_mask.int() 
        sorted_indices = torch.argsort(padding_mask, dim=1, descending=True, stable=True)
        input_ids = torch.gather(input_ids, 1, sorted_indices)
        attention_mask = torch.gather(attention_mask, 1, sorted_indices)
        labels = torch.gather(labels, 1, sorted_indices)
        assert use_film==False
        #test end
        

        # Get input embeddings and action masks
        input_embeddings = self.get_input_embeddings()(input_ids)
        all_actions_mask = self._process_action_masks(labels)

        # Extract language embeddings
        language_embeddings = input_embeddings[~all_actions_mask].reshape(
            input_embeddings.shape[0], -1, input_embeddings.shape[2]
        )

        # Process vision features
        projected_patch_embeddings = self._process_vision_features(pixel_values, language_embeddings, use_film)

        # Add proprioceptive features if provided
        use_proprio = proprio_projector is not None and proprio is not None
        if use_proprio:
            proprio = torch.Tensor(proprio).to(projected_patch_embeddings.device, dtype=projected_patch_embeddings.dtype)
            projected_patch_embeddings = self._process_proprio_features(
                projected_patch_embeddings, proprio, proprio_projector
            )

        # Use diffusion if provided, otherwise use regression or discrete prediction
        use_diffusion = noisy_action_projector is not None and hasattr(action_head, "noise_scheduler")

        # Calculate number of patches (including proprio token and/or diffusion timestep embedding if present)
        NUM_PATCHES = self.vision_backbone.get_num_patches() * self.vision_backbone.get_num_images_in_input()
        if use_proprio:
            NUM_PATCHES += 1
        if use_diffusion:
            NUM_PATCHES += 1

        if use_diffusion:
            raise ValueError
            # Sample random noise with shape equal to output action, used as the starting state for reverse diffusion
            noise = torch.randn(
                size=(1, NUM_ACTIONS_CHUNK, ACTION_DIM), device=input_embeddings.device, dtype=input_embeddings.dtype
            )

            # Run diffusion-based prediction
            normalized_actions, actions_hidden_states = self._run_diffusion_prediction(
                input_embeddings,
                all_actions_mask,
                noise,
                action_head,
                projected_patch_embeddings,
                labels,
                attention_mask,
                NUM_PATCHES,
                NUM_PROMPT_TOKENS,
                noisy_action_projector,
            )
        else:
            # Run regression or discrete token-based prediction
            normalized_actions, reponse_ids = self._verl_discrete_prediction(
                input_embeddings,
                all_actions_mask,
                projected_patch_embeddings,
                attention_mask,
                labels,
                NUM_PATCHES,
                num_prompt_tokens,
                action_head,
                do_sample=do_sample,
                temperature=temperature,
            )

        # Unnormalize predicted actions
        actions = self._unnormalize_actions(normalized_actions, unnorm_key)
        #verl add!
        actions = actions.reshape(-1 ,NUM_ACTIONS_CHUNK, ACTION_DIM)
        #
        return actions, reponse_ids

    
    
    @staticmethod
    def _check_unnorm_key(norm_stats: Dict[str, Dict[str, Any]], unnorm_key: Optional[str]) -> str:
        """Validate and resolve the unnormalization key for action statistics"""
        if unnorm_key is None:
            assert len(norm_stats) == 1, (
                f"Your model was trained on more than one dataset, "
                f"please pass a `unnorm_key` from the following options to choose the statistics "
                f"used for un-normalizing actions: {norm_stats.keys()}"
            )
            unnorm_key = next(iter(norm_stats.keys()))

        assert unnorm_key in norm_stats, (
            f"The `unnorm_key` you chose is not in the set of available dataset statistics, "
            f"please choose from: {norm_stats.keys()}"
        )
        return unnorm_key

    def get_action_dim(self, unnorm_key: Optional[str] = None) -> int:
        """Get the dimensionality of the policy's action space."""
        unnorm_key = self._check_unnorm_key(self.norm_stats, unnorm_key)
        return len(self.norm_stats[unnorm_key]["action"]["min"])

    def get_action_stats(self, unnorm_key: Optional[str] = None) -> Dict[str, Any]:
        """Get all the logged statistics for the given dataset."""
        unnorm_key = self._check_unnorm_key(self.norm_stats, unnorm_key)
        return self.norm_stats[unnorm_key]["action"]