|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """Tokenization classes for RWKV5.""" | 
					
						
						|  |  | 
					
						
						|  | import json | 
					
						
						|  | import os | 
					
						
						|  | from typing import TYPE_CHECKING, List, Optional, Tuple, Union | 
					
						
						|  |  | 
					
						
						|  | from transformers.tokenization_utils import PreTrainedTokenizer | 
					
						
						|  | from transformers.tokenization_utils_base import ( | 
					
						
						|  | BatchEncoding, | 
					
						
						|  | EncodedInput, | 
					
						
						|  | TextInput, | 
					
						
						|  | TruncationStrategy, | 
					
						
						|  | ) | 
					
						
						|  | from transformers.utils import PaddingStrategy, TensorType, logging, to_py_obj | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if TYPE_CHECKING: | 
					
						
						|  | from transformers.pipelines.conversational import Conversation | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  | VOCAB_FILES_NAMES = { | 
					
						
						|  | "vocab_file": "rwkv_vocab_v20230424.txt", | 
					
						
						|  | } | 
					
						
						|  | PRETRAINED_VOCAB_FILES_MAP = { | 
					
						
						|  | "vocab_file": { | 
					
						
						|  | "RWKV/rwkv-5-world-169m": "https://huggingface.co/RWKV/rwkv-5-world-169m/blob/main/rwkv_vocab_v20230424.txt", | 
					
						
						|  | }, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class TRIE: | 
					
						
						|  | __slots__ = tuple("ch,to,values,front".split(",")) | 
					
						
						|  | to: list | 
					
						
						|  | values: set | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, front=None, ch=None): | 
					
						
						|  | self.ch = ch | 
					
						
						|  | self.to = [None for ch in range(256)] | 
					
						
						|  | self.values = set() | 
					
						
						|  | self.front = front | 
					
						
						|  |  | 
					
						
						|  | def __repr__(self): | 
					
						
						|  | fr = self | 
					
						
						|  | ret = [] | 
					
						
						|  | while fr is not None: | 
					
						
						|  | if fr.ch is not None: | 
					
						
						|  | ret.append(fr.ch) | 
					
						
						|  | fr = fr.front | 
					
						
						|  | return "<TRIE %s %s>" % (ret[::-1], self.values) | 
					
						
						|  |  | 
					
						
						|  | def add(self, key: bytes, idx: int = 0, val=None): | 
					
						
						|  | if idx == len(key): | 
					
						
						|  | if val is None: | 
					
						
						|  | val = key | 
					
						
						|  | self.values.add(val) | 
					
						
						|  | return self | 
					
						
						|  | ch = key[idx] | 
					
						
						|  | if self.to[ch] is None: | 
					
						
						|  | self.to[ch] = TRIE(front=self, ch=ch) | 
					
						
						|  | return self.to[ch].add(key, idx=idx + 1, val=val) | 
					
						
						|  |  | 
					
						
						|  | def find_longest(self, key: bytes, idx: int = 0): | 
					
						
						|  | u: TRIE = self | 
					
						
						|  | ch: int = key[idx] | 
					
						
						|  |  | 
					
						
						|  | while u.to[ch] is not None: | 
					
						
						|  | u = u.to[ch] | 
					
						
						|  | idx += 1 | 
					
						
						|  | if u.values: | 
					
						
						|  | ret = idx, u, u.values | 
					
						
						|  | if idx == len(key): | 
					
						
						|  | break | 
					
						
						|  | ch = key[idx] | 
					
						
						|  | return ret | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class RWKVWorldTokenizer(PreTrainedTokenizer): | 
					
						
						|  | vocab_files_names = VOCAB_FILES_NAMES | 
					
						
						|  | model_input_names = ["input_ids", "attention_mask"] | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, vocab_file, errors="replace", pad_token="0", **kwargs): | 
					
						
						|  | self.add_bos_token = False | 
					
						
						|  | self.encoder = {} | 
					
						
						|  | sorted = [] | 
					
						
						|  | with open(vocab_file, "r", encoding="utf-8") as f: | 
					
						
						|  | lines = f.readlines() | 
					
						
						|  | for l in lines: | 
					
						
						|  | idx = int(l[: l.index(" ")]) | 
					
						
						|  | x = eval(l[l.index(" ") : l.rindex(" ")]) | 
					
						
						|  | x = x.encode("utf-8") if isinstance(x, str) else x | 
					
						
						|  | assert isinstance(x, bytes) | 
					
						
						|  | assert len(x) == int(l[l.rindex(" ") :]) | 
					
						
						|  | sorted += [x] | 
					
						
						|  | self.encoder[idx] = x | 
					
						
						|  |  | 
					
						
						|  | self.decoder = {} | 
					
						
						|  | for k, v in self.encoder.items(): | 
					
						
						|  | self.decoder[v] = int(k) | 
					
						
						|  |  | 
					
						
						|  | self.trie = TRIE() | 
					
						
						|  | for t, i in self.decoder.items(): | 
					
						
						|  | _ = self.trie.add(t, val=(t, i)) | 
					
						
						|  | self.errors = errors | 
					
						
						|  | self.cache = {} | 
					
						
						|  | self.first_max_length = 0 | 
					
						
						|  | super().__init__( | 
					
						
						|  | errors=errors, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def eos_token_id(self) -> Optional[int]: | 
					
						
						|  | return 0 | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def eot_token_id(self) -> Optional[int]: | 
					
						
						|  | return 0 | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def pad_token_id(self) -> Optional[int]: | 
					
						
						|  | return 0 | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def vocab_size(self): | 
					
						
						|  | return len(self.encoder) | 
					
						
						|  |  | 
					
						
						|  | def get_vocab(self): | 
					
						
						|  | return dict(self.encoder, **self.added_tokens_encoder) | 
					
						
						|  |  | 
					
						
						|  | def add_tokens(self, new_tokens, special_tokens: bool = False): | 
					
						
						|  | for token in new_tokens: | 
					
						
						|  | token_id = self.convert_tokens_to_ids(token) | 
					
						
						|  | self.added_tokens_decoder[token_id] = token | 
					
						
						|  |  | 
					
						
						|  | def convert_ids_to_tokens(self, ids, skip_special_tokens=False): | 
					
						
						|  | if isinstance(ids, int): | 
					
						
						|  | ids = [ids] | 
					
						
						|  | tokens = [] | 
					
						
						|  | for id_ in ids: | 
					
						
						|  | if id_ in self.added_tokens_decoder: | 
					
						
						|  | tokens.append(self.added_tokens_decoder[id_]) | 
					
						
						|  | else: | 
					
						
						|  | tokens.append(self._convert_id_to_token(id_)) | 
					
						
						|  | return tokens | 
					
						
						|  |  | 
					
						
						|  | def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): | 
					
						
						|  | if self.add_bos_token: | 
					
						
						|  | bos_token_ids = [self.bos_token_id] | 
					
						
						|  | else: | 
					
						
						|  | bos_token_ids = [] | 
					
						
						|  |  | 
					
						
						|  | output = bos_token_ids + token_ids_0 | 
					
						
						|  |  | 
					
						
						|  | if token_ids_1 is None: | 
					
						
						|  | return output | 
					
						
						|  |  | 
					
						
						|  | return output + bos_token_ids + token_ids_1 | 
					
						
						|  |  | 
					
						
						|  | def get_special_tokens_mask( | 
					
						
						|  | self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False | 
					
						
						|  | ) -> List[int]: | 
					
						
						|  | """ | 
					
						
						|  | Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding | 
					
						
						|  | special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | token_ids_0 (`List[int]`): | 
					
						
						|  | List of IDs. | 
					
						
						|  | token_ids_1 (`List[int]`, *optional*): | 
					
						
						|  | Optional second list of IDs for sequence pairs. | 
					
						
						|  | already_has_special_tokens (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether or not the token list is already formatted with special tokens for the model. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. | 
					
						
						|  | """ | 
					
						
						|  | if already_has_special_tokens: | 
					
						
						|  | return super().get_special_tokens_mask( | 
					
						
						|  | token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if not self.add_bos_token: | 
					
						
						|  | return super().get_special_tokens_mask( | 
					
						
						|  | token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=False | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if token_ids_1 is None: | 
					
						
						|  | return [1] + ([0] * len(token_ids_0)) | 
					
						
						|  | return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) | 
					
						
						|  |  | 
					
						
						|  | def encodeBytes(self, src: bytes): | 
					
						
						|  | idx: int = 0 | 
					
						
						|  | tokens = [] | 
					
						
						|  | while idx < len(src): | 
					
						
						|  | _idx: int = idx | 
					
						
						|  | idx, _, values = self.trie.find_longest(src, idx) | 
					
						
						|  | assert idx != _idx | 
					
						
						|  | _, token = next(iter(values)) | 
					
						
						|  | tokens.append(token) | 
					
						
						|  | return tokens | 
					
						
						|  |  | 
					
						
						|  | def decodeBytes(self, tokens): | 
					
						
						|  | return b"".join(map(lambda i: self.encoder[i], tokens)) | 
					
						
						|  |  | 
					
						
						|  | def _tokenize(self, text, **kwargs): | 
					
						
						|  | """Tokenize a string.""" | 
					
						
						|  | return self.encodeBytes(text.encode("utf-8")) | 
					
						
						|  |  | 
					
						
						|  | def _decode_tokens(self, tokens): | 
					
						
						|  | try: | 
					
						
						|  | return self.decodeBytes(tokens).decode("utf-8") | 
					
						
						|  | except Exception: | 
					
						
						|  | return "\ufffd" | 
					
						
						|  |  | 
					
						
						|  | def _decode( | 
					
						
						|  | self, | 
					
						
						|  | token_ids: Union[int, List[int]], | 
					
						
						|  | skip_special_tokens: bool = False, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> str: | 
					
						
						|  | def remove_zeros_from_first_segment(token_ids, first_max_length): | 
					
						
						|  | first_segment = token_ids[:first_max_length] | 
					
						
						|  | first_segment_cleaned = [token for token in first_segment if token != 0] | 
					
						
						|  | return first_segment_cleaned + token_ids[first_max_length:] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | token_ids = to_py_obj(token_ids) | 
					
						
						|  | token_ids = remove_zeros_from_first_segment(token_ids, self.first_max_length) | 
					
						
						|  | if isinstance(token_ids, int): | 
					
						
						|  | if token_ids in self.all_special_ids and skip_special_tokens: | 
					
						
						|  | return "" | 
					
						
						|  | return self.encoder.get(token_ids, self.unk_token) | 
					
						
						|  | elif isinstance(token_ids, list): | 
					
						
						|  | self.first_max_length | 
					
						
						|  | out_str = "" | 
					
						
						|  | out_last = 0 | 
					
						
						|  | out_tokens = [] | 
					
						
						|  | for i, token in enumerate(token_ids): | 
					
						
						|  | if token == 0: | 
					
						
						|  | break | 
					
						
						|  | out_tokens += [token] | 
					
						
						|  | tmp = self._decode_tokens(out_tokens[out_last:]) | 
					
						
						|  | if "\ufffd" not in tmp: | 
					
						
						|  | out_str += tmp | 
					
						
						|  | out_last = i + 1 | 
					
						
						|  | return out_str | 
					
						
						|  | else: | 
					
						
						|  | return token_ids | 
					
						
						|  |  | 
					
						
						|  | def _convert_token_to_id(self, token): | 
					
						
						|  | """Converts a token (str) in an id using the vocab.""" | 
					
						
						|  | return self.encoder.get(token, self.encoder.get(self.unk_token)) | 
					
						
						|  |  | 
					
						
						|  | def _convert_id_to_token(self, index): | 
					
						
						|  | """Converts an index (integer) in a token (str) using the vocab.""" | 
					
						
						|  | return self.decoder.get(index) | 
					
						
						|  |  | 
					
						
						|  | def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: | 
					
						
						|  | if not os.path.exists(save_directory): | 
					
						
						|  | os.mkdir(save_directory) | 
					
						
						|  | if not os.path.isdir(save_directory): | 
					
						
						|  | logger.error(f"Vocabulary path ({save_directory}) should be a directory") | 
					
						
						|  | return | 
					
						
						|  | vocab_file = os.path.join( | 
					
						
						|  | save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | with open(vocab_file, "w", encoding="utf-8") as f: | 
					
						
						|  | for idx, x in self.encoder.items(): | 
					
						
						|  | if isinstance(x, str): | 
					
						
						|  | x = x.decode("utf-8") | 
					
						
						|  | line = f"{idx} {repr(x)} {len(x)}\n" | 
					
						
						|  | f.write(line) | 
					
						
						|  |  | 
					
						
						|  | return (vocab_file,) | 
					
						
						|  |  | 
					
						
						|  | def prepare_for_tokenization(self, text, **kwargs): | 
					
						
						|  | return (text, kwargs) | 
					
						
						|  |  | 
					
						
						|  | def _get_padding_truncation_strategies( | 
					
						
						|  | self, padding=False, truncation=None, max_length=None, pad_to_multiple_of=None, verbose=True, **kwargs | 
					
						
						|  | ): | 
					
						
						|  | return PaddingStrategy.LONGEST, TruncationStrategy.DO_NOT_TRUNCATE, -1, kwargs | 
					
						
						|  |  | 
					
						
						|  | def _encode_plus( | 
					
						
						|  | self, | 
					
						
						|  | text: Union[TextInput, EncodedInput], | 
					
						
						|  | add_special_tokens: bool = True, | 
					
						
						|  | padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, | 
					
						
						|  | truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, | 
					
						
						|  | max_length: Optional[int] = None, | 
					
						
						|  | stride: int = 0, | 
					
						
						|  | pad_to_multiple_of: Optional[int] = None, | 
					
						
						|  | return_tensors: Optional[Union[str, TensorType]] = None, | 
					
						
						|  | return_token_type_ids: Optional[bool] = None, | 
					
						
						|  | return_attention_mask: Optional[bool] = None, | 
					
						
						|  | return_overflowing_tokens: bool = False, | 
					
						
						|  | return_special_tokens_mask: bool = False, | 
					
						
						|  | return_offsets_mapping: bool = False, | 
					
						
						|  | return_length: bool = False, | 
					
						
						|  | verbose: bool = True, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> BatchEncoding: | 
					
						
						|  | def get_input_ids(text, max_length=None, pad_token_id=0): | 
					
						
						|  | def pad_sequence(seq, max_len, pad_tok): | 
					
						
						|  | return [pad_tok] * (max_len - len(seq)) + seq | 
					
						
						|  |  | 
					
						
						|  | if isinstance(text, str): | 
					
						
						|  | tokens = self._tokenize(text) | 
					
						
						|  | if max_length is not None: | 
					
						
						|  | tokens = pad_sequence(tokens, max_length, pad_token_id) | 
					
						
						|  | return tokens | 
					
						
						|  |  | 
					
						
						|  | elif isinstance(text, list) and len(text) > 0 and isinstance(text[0], str): | 
					
						
						|  | tokenized_texts = [self._tokenize(t) for t in text] | 
					
						
						|  | if max_length is None: | 
					
						
						|  | max_length = max(len(t) for t in tokenized_texts) | 
					
						
						|  | return [pad_sequence(t, max_length, pad_token_id) for t in tokenized_texts] | 
					
						
						|  |  | 
					
						
						|  | elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int): | 
					
						
						|  | if max_length is not None and len(text) < max_length: | 
					
						
						|  | return pad_sequence(text, max_length, pad_token_id) | 
					
						
						|  | return text | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "Input is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if return_offsets_mapping: | 
					
						
						|  | raise NotImplementedError( | 
					
						
						|  | "return_offset_mapping is not available when using Python tokenizers. " | 
					
						
						|  | "To use this feature, change your tokenizer to one deriving from " | 
					
						
						|  | "transformers.PreTrainedTokenizerFast. " | 
					
						
						|  | "More information on available tokenizers at " | 
					
						
						|  | "https://github.com/huggingface/transformers/pull/2674" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | first_ids = get_input_ids(text) | 
					
						
						|  |  | 
					
						
						|  | return self.prepare_for_model( | 
					
						
						|  | first_ids, | 
					
						
						|  | pair_ids=None, | 
					
						
						|  | add_special_tokens=add_special_tokens, | 
					
						
						|  | padding=padding_strategy.value, | 
					
						
						|  | truncation=truncation_strategy.value, | 
					
						
						|  | max_length=max_length, | 
					
						
						|  | stride=stride, | 
					
						
						|  | pad_to_multiple_of=pad_to_multiple_of, | 
					
						
						|  | return_tensors=return_tensors, | 
					
						
						|  | prepend_batch_axis=True, | 
					
						
						|  | return_attention_mask=return_attention_mask, | 
					
						
						|  | return_token_type_ids=return_token_type_ids, | 
					
						
						|  | return_overflowing_tokens=return_overflowing_tokens, | 
					
						
						|  | return_special_tokens_mask=return_special_tokens_mask, | 
					
						
						|  | return_length=return_length, | 
					
						
						|  | verbose=verbose, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _batch_encode_plus( | 
					
						
						|  | self, | 
					
						
						|  | batch_text_or_text_pairs: Union[ | 
					
						
						|  | List[TextInput], | 
					
						
						|  | List[EncodedInput], | 
					
						
						|  | ], | 
					
						
						|  | add_special_tokens: bool = True, | 
					
						
						|  | padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, | 
					
						
						|  | truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, | 
					
						
						|  | max_length: Optional[int] = None, | 
					
						
						|  | stride: int = 0, | 
					
						
						|  | pad_to_multiple_of: Optional[int] = None, | 
					
						
						|  | return_tensors: Optional[Union[str, TensorType]] = None, | 
					
						
						|  | return_token_type_ids: Optional[bool] = None, | 
					
						
						|  | return_attention_mask: Optional[bool] = None, | 
					
						
						|  | return_overflowing_tokens: bool = False, | 
					
						
						|  | return_special_tokens_mask: bool = False, | 
					
						
						|  | return_offsets_mapping: bool = False, | 
					
						
						|  | return_length: bool = False, | 
					
						
						|  | verbose: bool = True, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> BatchEncoding: | 
					
						
						|  | def get_input_ids(text, max_length=None, pad_token_id=0): | 
					
						
						|  | def pad_sequence(seq, max_len, pad_tok): | 
					
						
						|  | return [pad_tok] * (max_len - len(seq)) + seq | 
					
						
						|  |  | 
					
						
						|  | if isinstance(text, str): | 
					
						
						|  | tokens = self._tokenize(text) | 
					
						
						|  | if max_length is not None: | 
					
						
						|  | tokens = pad_sequence(tokens, max_length, pad_token_id) | 
					
						
						|  | return tokens | 
					
						
						|  |  | 
					
						
						|  | elif isinstance(text, list) and len(text) > 0 and isinstance(text[0], str): | 
					
						
						|  | tokenized_texts = [self._tokenize(t) for t in text] | 
					
						
						|  | if max_length is None: | 
					
						
						|  | max_length = max(len(t) for t in tokenized_texts) | 
					
						
						|  | return [pad_sequence(t, max_length, pad_token_id) for t in tokenized_texts] | 
					
						
						|  |  | 
					
						
						|  | elif isinstance(text, (list, tuple)) and len(text) > 0 and isinstance(text[0], int): | 
					
						
						|  | if max_length is not None and len(text) < max_length: | 
					
						
						|  | return pad_sequence(text, max_length, pad_token_id) | 
					
						
						|  | return text | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "Input is not valid. Should be a string, a list/tuple of strings or a list/tuple of integers." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if return_offsets_mapping: | 
					
						
						|  | raise NotImplementedError( | 
					
						
						|  | "return_offset_mapping is not available when using Python tokenizers. " | 
					
						
						|  | "To use this feature, change your tokenizer to one deriving from " | 
					
						
						|  | "transformers.PreTrainedTokenizerFast." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | first_max_length = 0 | 
					
						
						|  | second_max_length = 0 | 
					
						
						|  | for ids_or_pair_ids in batch_text_or_text_pairs: | 
					
						
						|  | if not isinstance(ids_or_pair_ids, (list, tuple)): | 
					
						
						|  | ids, pair_ids = ids_or_pair_ids, None | 
					
						
						|  | else: | 
					
						
						|  | ids, pair_ids = ids_or_pair_ids | 
					
						
						|  | first_ids = get_input_ids(ids) | 
					
						
						|  | second_ids = get_input_ids(pair_ids) if pair_ids is not None else None | 
					
						
						|  | first_max_length = max(first_max_length, len(first_ids)) | 
					
						
						|  | if second_ids is not None: | 
					
						
						|  | second_max_length = max(second_max_length, len(second_ids)) | 
					
						
						|  |  | 
					
						
						|  | self.first_max_length = first_max_length | 
					
						
						|  | input_ids = [] | 
					
						
						|  | for ids_or_pair_ids in batch_text_or_text_pairs: | 
					
						
						|  | if not isinstance(ids_or_pair_ids, (list, tuple)): | 
					
						
						|  | ids, pair_ids = ids_or_pair_ids, None | 
					
						
						|  | else: | 
					
						
						|  | ids, pair_ids = ids_or_pair_ids | 
					
						
						|  |  | 
					
						
						|  | first_ids = get_input_ids(ids, max_length=first_max_length) | 
					
						
						|  | second_ids = get_input_ids(pair_ids, max_length=second_max_length) if pair_ids is not None else None | 
					
						
						|  | input_ids.append((first_ids, second_ids)) | 
					
						
						|  |  | 
					
						
						|  | batch_outputs = self._batch_prepare_for_model( | 
					
						
						|  | input_ids, | 
					
						
						|  | add_special_tokens=add_special_tokens, | 
					
						
						|  | padding_strategy=padding_strategy, | 
					
						
						|  | truncation_strategy=truncation_strategy, | 
					
						
						|  | max_length=max_length, | 
					
						
						|  | stride=stride, | 
					
						
						|  | pad_to_multiple_of=pad_to_multiple_of, | 
					
						
						|  | return_attention_mask=return_attention_mask, | 
					
						
						|  | return_token_type_ids=return_token_type_ids, | 
					
						
						|  | return_overflowing_tokens=return_overflowing_tokens, | 
					
						
						|  | return_special_tokens_mask=return_special_tokens_mask, | 
					
						
						|  | return_length=return_length, | 
					
						
						|  | return_tensors=return_tensors, | 
					
						
						|  | verbose=verbose, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return BatchEncoding(batch_outputs) | 
					
						
						|  |  | 
					
						
						|  | def decode( | 
					
						
						|  | self, | 
					
						
						|  | token_ids: Union[int, List[int]], | 
					
						
						|  | skip_special_tokens: bool = False, | 
					
						
						|  | clean_up_tokenization_spaces: bool = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> str: | 
					
						
						|  | """ | 
					
						
						|  | Converts a sequence of ids in a string, using the tokenizer and vocabulary with options to remove special | 
					
						
						|  | tokens and clean up tokenization spaces. | 
					
						
						|  |  | 
					
						
						|  | Similar to doing `self.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids))`. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | token_ids (`Union[int, List[int], np.ndarray, torch.Tensor, tf.Tensor]`): | 
					
						
						|  | List of tokenized input ids. Can be obtained using the `__call__` method. | 
					
						
						|  | skip_special_tokens (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether or not to remove special tokens in the decoding. | 
					
						
						|  | clean_up_tokenization_spaces (`bool`, *optional*): | 
					
						
						|  | Whether or not to clean up the tokenization spaces. If `None`, will default to | 
					
						
						|  | `self.clean_up_tokenization_spaces`. | 
					
						
						|  | kwargs (additional keyword arguments, *optional*): | 
					
						
						|  | Will be passed to the underlying model specific decode method. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | `str`: The decoded sentence. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | return self._decode( | 
					
						
						|  | token_ids=token_ids, | 
					
						
						|  | skip_special_tokens=skip_special_tokens, | 
					
						
						|  | clean_up_tokenization_spaces=clean_up_tokenization_spaces, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def batch_decode( | 
					
						
						|  | self, | 
					
						
						|  | sequences: Union[List[int], List[List[int]]], | 
					
						
						|  | skip_special_tokens: bool = False, | 
					
						
						|  | clean_up_tokenization_spaces: bool = None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> List[str]: | 
					
						
						|  | """ | 
					
						
						|  | Convert a list of lists of token ids into a list of strings by calling decode. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | sequences (`Union[List[int], List[List[int]], np.ndarray, torch.Tensor, tf.Tensor]`): | 
					
						
						|  | List of tokenized input ids. Can be obtained using the `__call__` method. | 
					
						
						|  | skip_special_tokens (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether or not to remove special tokens in the decoding. | 
					
						
						|  | clean_up_tokenization_spaces (`bool`, *optional*): | 
					
						
						|  | Whether or not to clean up the tokenization spaces. If `None`, will default to | 
					
						
						|  | `self.clean_up_tokenization_spaces`. | 
					
						
						|  | kwargs (additional keyword arguments, *optional*): | 
					
						
						|  | Will be passed to the underlying model specific decode method. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | `List[str]`: The list of decoded sentences. | 
					
						
						|  | """ | 
					
						
						|  | return [ | 
					
						
						|  | self.decode( | 
					
						
						|  | seq, | 
					
						
						|  | skip_special_tokens=skip_special_tokens, | 
					
						
						|  | clean_up_tokenization_spaces=clean_up_tokenization_spaces, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  | for seq in sequences | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | def _build_conversation_input_ids(self, conversation: "Conversation") -> List[int]: | 
					
						
						|  | input_ids = [] | 
					
						
						|  | for is_user, text in conversation.iter_texts(): | 
					
						
						|  | input_ids.extend(self.encode(text, add_special_tokens=False) + [self.eos_token_id]) | 
					
						
						|  | if len(input_ids) > self.model_max_length: | 
					
						
						|  | input_ids = input_ids[-self.model_max_length :] | 
					
						
						|  | return input_ids | 
					
						
						|  |  |