v6-Finch-14B-HF / hf_rwkv_tokenizer.py
picocreator's picture
WIP reposetup (from rwkv-6-world-1b6)
27839c7
raw
history blame
9.47 kB
# coding=utf-8
# Copyright 2024 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes for RWKV6."""
import os
import re
from typing import TYPE_CHECKING, List, Optional, Tuple
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer
from transformers.utils import logging
if TYPE_CHECKING:
pass
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {
"vocab_file": "rwkv_vocab_v20230424.txt",
}
class TRIE:
__slots__ = tuple("ch,to,values,front".split(","))
to: list
values: set
def __init__(self, front=None, ch=None):
self.ch = ch
self.to = [None for ch in range(256)]
self.values = set()
self.front = front
def __repr__(self):
fr = self
ret = []
while fr != None:
if fr.ch != None:
ret.append(fr.ch)
fr = fr.front
return "<TRIE %s %s>" % (ret[::-1], self.values)
def add(self, key: bytes, idx: int = 0, val=None):
if idx == len(key):
if val is None:
val = key
self.values.add(val)
return self
ch = key[idx]
if self.to[ch] is None:
self.to[ch] = TRIE(front=self, ch=ch)
return self.to[ch].add(key, idx=idx + 1, val=val)
def find_longest(self, key: bytes, idx: int = 0):
u: TRIE = self
ch: int = key[idx]
while u.to[ch] is not None:
u = u.to[ch]
idx += 1
if u.values:
ret = idx, u, u.values
if idx == len(key):
break
ch = key[idx]
return ret
class RWKV_TOKENIZER:
def __init__(self, file_name):
self.idx2token = {}
sorted = [] # must be already sorted
with open(file_name, "r", encoding="utf-8") as f:
lines = f.readlines()
for l in lines:
idx = int(l[: l.index(" ")])
x = eval(l[l.index(" ") : l.rindex(" ")])
x = x.encode("utf-8") if isinstance(x, str) else x
assert isinstance(x, bytes)
assert len(x) == int(l[l.rindex(" ") :])
sorted += [x]
self.idx2token[idx] = x
self.token2idx = {}
for k, v in self.idx2token.items():
self.token2idx[v] = int(k)
self.root = TRIE()
for t, i in self.token2idx.items():
_ = self.root.add(t, val=(t, i))
def encodeBytes(self, src: bytes):
idx: int = 0
tokens = []
while idx < len(src):
_idx: int = idx
idx, _, values = self.root.find_longest(src, idx)
assert idx != _idx
_, token = next(iter(values))
tokens.append(token)
return tokens
def decodeBytes(self, tokens):
return b"".join(map(lambda i: self.idx2token[i], tokens))
def encode(self, src):
if isinstance(src, str):
return [self.encodeBytes(src.encode("utf-8"))]
elif isinstance(src, list):
return [self.encodeBytes(s.encode("utf-8")) for s in src]
def decode(self, tokens):
return [self.decodeBytes(batch).decode("utf-8") for batch in tokens]
# try:
# return self.decodeBytes(tokens).decode('utf-8')
# except:
# return '\ufffd' # bad utf-8
def printTokens(self, tokens):
for i in tokens:
s = self.idx2token[i]
try:
s = s.decode("utf-8")
except:
pass
print(f"{repr(s)}{i}", end=" ")
print()
class Rwkv6Tokenizer(PreTrainedTokenizer):
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self, vocab_file, bos_token="<s>", eos_token="<s>", unk_token="<s>", **kwargs
):
if not os.path.isfile(vocab_file):
raise ValueError(
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
" model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
)
with open(vocab_file, "r", encoding="utf-8") as reader:
tokens = reader.readlines()
if "add_bos_token" in kwargs:
self.add_bos_token = kwargs["add_bos_token"]
else:
self.add_bos_token = False
self.trie_tokenizer = RWKV_TOKENIZER(vocab_file)
vocab = self.trie_tokenizer.token2idx
self.encoder = vocab
self.decoder = {v: k for k, v in vocab.items()}
self._added_tokens_decoder = {0: AddedToken(str(bos_token))}
super().__init__(
bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, **kwargs
)
@property
def vocab_size(self):
return len(self.encoder)
def get_vocab(self):
vocab = {str(self.convert_ids_to_tokens(i)): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def _tokenize(self, text, split_special_tokens=False):
# return self.wordpiece_tokenizer.tokenize(text.encode("utf-8"))
return self.trie_tokenizer.encode(text)[0]
def _convert_token_to_id(self, token):
return token
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (byte) using the vocab."""
token = self.decoder.get(index, self.unk_token)
if isinstance(token, (bytes)):
token = token.decode("utf-8", errors="replace")
return token
def convert_tokens_to_string(self, tokens):
"""Converts a sequence of tokens (bytes) in a single string. Additional tokens are encoded to bytes"""
out_string = b"".join(
[k.encode(errors="replace") if isinstance(k, str) else k for k in tokens]
).decode("utf-8")
return out_string
def save_vocabulary(
self, save_directory: str, filename_prefix: Optional[str] = None
) -> Tuple[str]:
index = 0
if os.path.isdir(save_directory):
vocab_file = os.path.join(
save_directory,
(filename_prefix + "-" if filename_prefix else "") + "vocab.txt",
)
else:
vocab_file = (
filename_prefix + "-" if filename_prefix else ""
) + save_directory
with open(vocab_file, "w", encoding="utf-8") as writer:
for token, token_index in sorted(
self.encoder.items(), key=lambda kv: kv[1]
):
if index != token_index:
logger.warning(
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
" Please check that the vocabulary is not corrupted!"
)
index = token_index
writer.write(str(token) + "\n")
index += 1
return (vocab_file,)
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
if self.add_bos_token:
bos_token_ids = [self.bos_token_id]
else:
bos_token_ids = []
output = bos_token_ids + token_ids_0
if token_ids_1 is None:
return output
return output + bos_token_ids + token_ids_1
def get_special_tokens_mask(
self,
token_ids_0: List[int],
token_ids_1: Optional[List[int]] = None,
already_has_special_tokens: bool = False,
) -> List[int]:
"""
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods.
Args:
token_ids_0 (`List[int]`):
List of IDs.
token_ids_1 (`List[int]`, *optional*):
Optional second list of IDs for sequence pairs.
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
Whether or not the token list is already formatted with special tokens for the model.
Returns:
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0,
token_ids_1=token_ids_1,
already_has_special_tokens=True,
)
if not self.add_bos_token:
return super().get_special_tokens_mask(
token_ids_0=token_ids_0,
token_ids_1=token_ids_1,
already_has_special_tokens=False,
)
if token_ids_1 is None:
return [1] + ([0] * len(token_ids_0))
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1))