|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Tokenization classes for RWKV6.""" |
|
|
|
import os |
|
import re |
|
from typing import TYPE_CHECKING, List, Optional, Tuple |
|
|
|
from transformers.tokenization_utils import AddedToken, PreTrainedTokenizer |
|
from transformers.utils import logging |
|
|
|
|
|
if TYPE_CHECKING: |
|
pass |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
VOCAB_FILES_NAMES = { |
|
"vocab_file": "rwkv_vocab_v20230424.txt", |
|
} |
|
|
|
class TRIE: |
|
__slots__ = tuple("ch,to,values,front".split(",")) |
|
to: list |
|
values: set |
|
|
|
def __init__(self, front=None, ch=None): |
|
self.ch = ch |
|
self.to = [None for ch in range(256)] |
|
self.values = set() |
|
self.front = front |
|
|
|
def __repr__(self): |
|
fr = self |
|
ret = [] |
|
while fr != None: |
|
if fr.ch != None: |
|
ret.append(fr.ch) |
|
fr = fr.front |
|
return "<TRIE %s %s>" % (ret[::-1], self.values) |
|
|
|
def add(self, key: bytes, idx: int = 0, val=None): |
|
if idx == len(key): |
|
if val is None: |
|
val = key |
|
self.values.add(val) |
|
return self |
|
ch = key[idx] |
|
if self.to[ch] is None: |
|
self.to[ch] = TRIE(front=self, ch=ch) |
|
return self.to[ch].add(key, idx=idx + 1, val=val) |
|
|
|
def find_longest(self, key: bytes, idx: int = 0): |
|
u: TRIE = self |
|
ch: int = key[idx] |
|
|
|
while u.to[ch] is not None: |
|
u = u.to[ch] |
|
idx += 1 |
|
if u.values: |
|
ret = idx, u, u.values |
|
if idx == len(key): |
|
break |
|
ch = key[idx] |
|
return ret |
|
|
|
|
|
class RWKV_TOKENIZER: |
|
def __init__(self, file_name): |
|
self.idx2token = {} |
|
sorted = [] |
|
with open(file_name, "r", encoding="utf-8") as f: |
|
lines = f.readlines() |
|
for l in lines: |
|
idx = int(l[: l.index(" ")]) |
|
x = eval(l[l.index(" ") : l.rindex(" ")]) |
|
x = x.encode("utf-8") if isinstance(x, str) else x |
|
assert isinstance(x, bytes) |
|
|
|
assert len(x) == int(l[l.rindex(" ") :]) |
|
sorted += [x] |
|
self.idx2token[idx] = x |
|
|
|
self.token2idx = {} |
|
for k, v in self.idx2token.items(): |
|
self.token2idx[v] = int(k) |
|
|
|
self.root = TRIE() |
|
for t, i in self.token2idx.items(): |
|
_ = self.root.add(t, val=(t, i)) |
|
|
|
def encodeBytes(self, src: bytes): |
|
idx: int = 0 |
|
tokens = [] |
|
while idx < len(src): |
|
_idx: int = idx |
|
idx, _, values = self.root.find_longest(src, idx) |
|
assert idx != _idx |
|
_, token = next(iter(values)) |
|
tokens.append(token) |
|
return tokens |
|
|
|
def decodeBytes(self, tokens): |
|
return b"".join(map(lambda i: self.idx2token[i], tokens)) |
|
|
|
def encode(self, src): |
|
if isinstance(src, str): |
|
return [self.encodeBytes(src.encode("utf-8"))] |
|
elif isinstance(src, list): |
|
return [self.encodeBytes(s.encode("utf-8")) for s in src] |
|
|
|
def decode(self, tokens): |
|
return [self.decodeBytes(batch).decode("utf-8") for batch in tokens] |
|
|
|
|
|
|
|
|
|
|
|
def printTokens(self, tokens): |
|
for i in tokens: |
|
s = self.idx2token[i] |
|
try: |
|
s = s.decode("utf-8") |
|
except: |
|
pass |
|
print(f"{repr(s)}{i}", end=" ") |
|
print() |
|
|
|
|
|
class Rwkv6Tokenizer(PreTrainedTokenizer): |
|
vocab_files_names = VOCAB_FILES_NAMES |
|
model_input_names = ["input_ids", "attention_mask"] |
|
|
|
def __init__( |
|
self, vocab_file, bos_token="<s>", eos_token="<s>", unk_token="<s>", **kwargs |
|
): |
|
if not os.path.isfile(vocab_file): |
|
raise ValueError( |
|
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" |
|
" model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" |
|
) |
|
|
|
with open(vocab_file, "r", encoding="utf-8") as reader: |
|
tokens = reader.readlines() |
|
|
|
if "add_bos_token" in kwargs: |
|
self.add_bos_token = kwargs["add_bos_token"] |
|
else: |
|
self.add_bos_token = False |
|
self.trie_tokenizer = RWKV_TOKENIZER(vocab_file) |
|
vocab = self.trie_tokenizer.token2idx |
|
self.encoder = vocab |
|
self.decoder = {v: k for k, v in vocab.items()} |
|
self._added_tokens_decoder = {0: AddedToken(str(bos_token))} |
|
super().__init__( |
|
bos_token=bos_token, eos_token=eos_token, unk_token=unk_token, **kwargs |
|
) |
|
|
|
@property |
|
def vocab_size(self): |
|
return len(self.encoder) |
|
|
|
def get_vocab(self): |
|
vocab = {str(self.convert_ids_to_tokens(i)): i for i in range(self.vocab_size)} |
|
vocab.update(self.added_tokens_encoder) |
|
return vocab |
|
|
|
def _tokenize(self, text, split_special_tokens=False): |
|
|
|
return self.trie_tokenizer.encode(text)[0] |
|
|
|
def _convert_token_to_id(self, token): |
|
return token |
|
|
|
def _convert_id_to_token(self, index): |
|
"""Converts an index (integer) in a token (byte) using the vocab.""" |
|
token = self.decoder.get(index, self.unk_token) |
|
if isinstance(token, (bytes)): |
|
token = token.decode("utf-8", errors="replace") |
|
return token |
|
|
|
def convert_tokens_to_string(self, tokens): |
|
"""Converts a sequence of tokens (bytes) in a single string. Additional tokens are encoded to bytes""" |
|
out_string = b"".join( |
|
[k.encode(errors="replace") if isinstance(k, str) else k for k in tokens] |
|
).decode("utf-8") |
|
return out_string |
|
|
|
def save_vocabulary( |
|
self, save_directory: str, filename_prefix: Optional[str] = None |
|
) -> Tuple[str]: |
|
index = 0 |
|
if os.path.isdir(save_directory): |
|
vocab_file = os.path.join( |
|
save_directory, |
|
(filename_prefix + "-" if filename_prefix else "") + "vocab.txt", |
|
) |
|
else: |
|
vocab_file = ( |
|
filename_prefix + "-" if filename_prefix else "" |
|
) + save_directory |
|
with open(vocab_file, "w", encoding="utf-8") as writer: |
|
for token, token_index in sorted( |
|
self.encoder.items(), key=lambda kv: kv[1] |
|
): |
|
if index != token_index: |
|
logger.warning( |
|
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." |
|
" Please check that the vocabulary is not corrupted!" |
|
) |
|
index = token_index |
|
writer.write(str(token) + "\n") |
|
index += 1 |
|
return (vocab_file,) |
|
|
|
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): |
|
if self.add_bos_token: |
|
bos_token_ids = [self.bos_token_id] |
|
else: |
|
bos_token_ids = [] |
|
|
|
output = bos_token_ids + token_ids_0 |
|
|
|
if token_ids_1 is None: |
|
return output |
|
|
|
return output + bos_token_ids + token_ids_1 |
|
|
|
def get_special_tokens_mask( |
|
self, |
|
token_ids_0: List[int], |
|
token_ids_1: Optional[List[int]] = None, |
|
already_has_special_tokens: bool = False, |
|
) -> List[int]: |
|
""" |
|
Retrieves sequence ids from a token list that has no special tokens added. This method is called when adding |
|
special tokens using the tokenizer `prepare_for_model` or `encode_plus` methods. |
|
|
|
Args: |
|
token_ids_0 (`List[int]`): |
|
List of IDs. |
|
token_ids_1 (`List[int]`, *optional*): |
|
Optional second list of IDs for sequence pairs. |
|
already_has_special_tokens (`bool`, *optional*, defaults to `False`): |
|
Whether or not the token list is already formatted with special tokens for the model. |
|
|
|
Returns: |
|
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. |
|
""" |
|
if already_has_special_tokens: |
|
return super().get_special_tokens_mask( |
|
token_ids_0=token_ids_0, |
|
token_ids_1=token_ids_1, |
|
already_has_special_tokens=True, |
|
) |
|
|
|
if not self.add_bos_token: |
|
return super().get_special_tokens_mask( |
|
token_ids_0=token_ids_0, |
|
token_ids_1=token_ids_1, |
|
already_has_special_tokens=False, |
|
) |
|
|
|
if token_ids_1 is None: |
|
return [1] + ([0] * len(token_ids_0)) |
|
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) |
|
|