m8than commited on
Commit
ae47427
1 Parent(s): 9e2acdb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +211 -6
README.md CHANGED
@@ -1,11 +1,216 @@
1
- ### v6-Finch-14B-HF
2
 
3
  > HF compatible model for Finch-14B.
4
- > This is an early preview for testing.
5
- > **This is not final**
6
 
7
- ![Crimson Finch Bird](./imgs/crimson-finch-unsplash-david-clode.jpg)
8
 
9
- > origin pth weight at https://huggingface.co/BlinkDL/rwkv-6-world/blob/main/ .
10
 
11
- More details to be done.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### Huggingface RWKV Finch 14B Model
2
 
3
  > HF compatible model for Finch-14B.
 
 
4
 
5
+ ![Finch Bird](./imgs/finch.jpg)
6
 
 
7
 
8
+ > **! Important Note !**
9
+ >
10
+ > The following is the HF transformers implementation of the Finch 14B model. This is meant to be used with the huggingface transformers
11
+ >
12
+ >
13
+
14
+
15
+ ## Quickstart with the hugging face transformer library
16
+
17
+ ```
18
+ model = AutoModelForCausalLM.from_pretrained("RWKV/v6-Finch-14B-HF", trust_remote_code=True).to(torch.float32)
19
+ tokenizer = AutoTokenizer.from_pretrained("RWKV/v6-Finch-14B-HF", trust_remote_code=True)
20
+ ```
21
+
22
+ ## Evaluation
23
+
24
+ The following demonstrates the improvements from Eagle 7B to Finch 14B
25
+
26
+ | | [Eagle 7B](https://huggingface.co/RWKV/v5-Eagle-7B-HF) | [Finch 7B](https://huggingface.co/RWKV/v6-Finch-7B-HF) | [Finch 14B](https://huggingface.co/RWKV/v6-Finch-14B-HF) |
27
+ | --- | --- | --- | --- |
28
+ | [ARC](https://github.com/EleutherAI/lm-evaluation-harness/tree/main/lm_eval/tasks/arc) | 39.59% | 41.47% | 46.33% |
29
+ | [HellaSwag](https://github.com/EleutherAI/lm-evaluation-harness/tree/main/lm_eval/tasks/hellaswag) | 53.09% | 55.96% | 57.69% |
30
+ | [MMLU](https://github.com/EleutherAI/lm-evaluation-harness/tree/main/lm_eval/tasks/mmlu) | 30.86% | 41.70% | 56.05% |
31
+ | [Truthful QA](https://github.com/EleutherAI/lm-evaluation-harness/tree/main/lm_eval/tasks/truthfulqa) | 33.03% | 34.82% | 39.27% |
32
+ | [Winogrande](https://github.com/EleutherAI/lm-evaluation-harness/tree/main/lm_eval/tasks/winogrande) | 67.56% | 71.19% | 74.43% |
33
+
34
+ #### Running on CPU via HF transformers
35
+
36
+ ```python
37
+ import torch
38
+ from transformers import AutoModelForCausalLM, AutoTokenizer
39
+
40
+ def generate_prompt(instruction, input=""):
41
+ instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
42
+ input = input.strip().replace('\r\n','\n').replace('\n\n','\n')
43
+ if input:
44
+ return f"""Instruction: {instruction}
45
+
46
+ Input: {input}
47
+
48
+ Response:"""
49
+ else:
50
+ return f"""User: hi
51
+
52
+ Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
53
+
54
+ User: {instruction}
55
+
56
+ Assistant:"""
57
+
58
+
59
+ model = AutoModelForCausalLM.from_pretrained("RWKV/v5-Eagle-7B-HF", trust_remote_code=True).to(torch.float32)
60
+ tokenizer = AutoTokenizer.from_pretrained("RWKV/v5-Eagle-7B-HF", trust_remote_code=True)
61
+
62
+ text = "请介绍北京的旅游景点"
63
+ prompt = generate_prompt(text)
64
+
65
+ inputs = tokenizer(prompt, return_tensors="pt")
66
+ output = model.generate(inputs["input_ids"], max_new_tokens=333, do_sample=True, temperature=1.0, top_p=0.3, top_k=0, )
67
+ print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True))
68
+ ```
69
+
70
+ output:
71
+
72
+ ```shell
73
+ User: hi
74
+
75
+ Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
76
+
77
+ User: 请介绍北京的旅游景点
78
+
79
+ Assistant: 北京是中国的首都,拥有众多的旅游景点,以下是其中一些著名的景点:
80
+ 1. 故宫:位于北京市中心,是明清两代的皇宫,内有大量的文物和艺术品。
81
+ 2. 天安门广场:是中国最著名的广场之一,是中国人民政治协商会议的旧址,也是中国人民政治协商会议的中心。
82
+ 3. 颐和园:是中国古代皇家园林之一,有着悠久的历史和丰富的文化内涵。
83
+ 4. 长城:是中国古代的一道长城,全长约万里,是中国最著名的旅游景点之一。
84
+ 5. 北京大学:是中国著名的高等教育机构之一,有着悠久的历史和丰富的文化内涵。
85
+ 6. 北京动物园:是中国最大的动物园之一,有着丰富的动物资源和丰富的文化内涵。
86
+ 7. 故宫博物院:是中国最著名的博物馆之一,收藏了大量的文物和艺术品,是中国最重要的文化遗产之一。
87
+ 8. 天坛:是中国古代皇家
88
+ ```
89
+
90
+ #### Running on GPU via HF transformers
91
+
92
+ ```python
93
+ import torch
94
+ from transformers import AutoModelForCausalLM, AutoTokenizer
95
+
96
+ def generate_prompt(instruction, input=""):
97
+ instruction = instruction.strip().replace('\r\n','\n').replace('\n\n','\n')
98
+ input = input.strip().replace('\r\n','\n').replace('\n\n','\n')
99
+ if input:
100
+ return f"""Instruction: {instruction}
101
+
102
+ Input: {input}
103
+
104
+ Response:"""
105
+ else:
106
+ return f"""User: hi
107
+
108
+ Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
109
+
110
+ User: {instruction}
111
+
112
+ Assistant:"""
113
+
114
+
115
+ model = AutoModelForCausalLM.from_pretrained("RWKV/v5-Eagle-7B-HF", trust_remote_code=True, torch_dtype=torch.float16).to(0)
116
+ tokenizer = AutoTokenizer.from_pretrained("RWKV/v5-Eagle-7B-HF", trust_remote_code=True)
117
+
118
+ text = "介绍一下大熊猫"
119
+ prompt = generate_prompt(text)
120
+
121
+ inputs = tokenizer(prompt, return_tensors="pt").to(0)
122
+ output = model.generate(inputs["input_ids"], max_new_tokens=128, do_sample=True, temperature=1.0, top_p=0.3, top_k=0, )
123
+ print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True))
124
+ ```
125
+
126
+ output:
127
+
128
+ ```shell
129
+ User: hi
130
+
131
+ Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
132
+
133
+ User: 介绍一下大熊猫
134
+
135
+ Assistant: 大熊猫是一种中国特有的哺乳动物,也是中国的国宝之一。它们的外貌特征是圆形的黑白相间的身体,有着黑色的毛发和白色的耳朵。大熊猫的食物主要是竹子,它们会在竹林中寻找竹子,并且会将竹子放在竹笼中进行储存。大熊猫的寿命约为20至30年,但由于栖息地的丧失和人类活动的
136
+ ```
137
+
138
+ #### Batch Inference
139
+
140
+ ```python
141
+ import torch
142
+ from transformers import AutoModelForCausalLM, AutoTokenizer
143
+
144
+ def generate_prompt(instruction, input=""):
145
+ instruction = instruction.strip().replace('\r\n', '\n').replace('\n\n', '\n')
146
+ input = input.strip().replace('\r\n', '\n').replace('\n\n', '\n')
147
+ if input:
148
+ return f"""Instruction: {instruction}
149
+
150
+ Input: {input}
151
+
152
+ Response:"""
153
+ else:
154
+ return f"""User: hi
155
+
156
+ Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
157
+
158
+ User: {instruction}
159
+
160
+ Assistant:"""
161
+
162
+ model = AutoModelForCausalLM.from_pretrained("RWKV/v5-Eagle-7B-HF", trust_remote_code=True).to(torch.float32)
163
+ tokenizer = AutoTokenizer.from_pretrained("RWKV/v5-Eagle-7B-HF", trust_remote_code=True)
164
+
165
+ texts = ["请介绍北京的旅游景点", "介绍一下大熊猫", "乌兰察布"]
166
+ prompts = [generate_prompt(text) for text in texts]
167
+
168
+ inputs = tokenizer(prompts, return_tensors="pt", padding=True)
169
+ outputs = model.generate(inputs["input_ids"], max_new_tokens=128, do_sample=True, temperature=1.0, top_p=0.3, top_k=0, )
170
+
171
+ for output in outputs:
172
+ print(tokenizer.decode(output.tolist(), skip_special_tokens=True))
173
+
174
+ ```
175
+
176
+ output:
177
+
178
+ ```shell
179
+ User: hi
180
+
181
+ Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
182
+
183
+ User: 请介绍北京的旅游景点
184
+
185
+ Assistant: 北京是中国的首都,拥有丰富的旅游资源和历史文化遗产。以下是一些北京的旅游景点:
186
+ 1. 故宫:位于北京市中心,是明清两代的皇宫,是中国最大的古代宫殿建筑群之一。
187
+ 2. 天安门广场:位于北京市中心,是中国最著名的城市广场之一,也是中国最大的城市广场。
188
+ 3. 颐和
189
+ User: hi
190
+
191
+ Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
192
+
193
+ User: 介绍一下大熊猫
194
+
195
+ Assistant: 大熊猫是一种生活在中国中部地区的哺乳动物,也是中国的国宝之一。它们的外貌特征是圆形的黑白相间的身体,有着黑色的毛发和圆圆的眼睛。大熊猫是一种濒危物种,目前只有在野外的几个保护区才能看到它们的身影。大熊猫的食物主要是竹子,它们会在竹子上寻找食物,并且可以通
196
+ User: hi
197
+
198
+ Assistant: Hi. I am your assistant and I will provide expert full response in full details. Please feel free to ask any question and I will always answer it.
199
+
200
+ User: 乌兰察布
201
+
202
+ Assistant: 乌兰察布是中国新疆维吾尔自治区的一个县级市,位于新疆维吾尔自治区中部,是新疆的第二大城市。乌兰察布市是新疆的第一大城市,也是新疆的重要城市之一。乌兰察布市是新疆的经济中心,也是新疆的重要交通枢纽之一。乌兰察布市的人口约为2.5万人,其中汉族占绝大多数。乌
203
+ ```
204
+
205
+ ## Links
206
+ - [Our wiki](https://wiki.rwkv.com)
207
+ - [Recursal.AI Cloud Platform](https://recursal.ai)
208
+ - [Featherless Inference](https://featherless.ai/models/RWKV/Finch-14B)
209
+ - [Blog article, detailing our model launch](https://blog.rwkv.com/p/rwkv-v6-finch-14b-is-here)
210
+
211
+ ## Acknowledgement
212
+ We are grateful for the help and support from the following key groups:
213
+
214
+ - [Recursal.ai](https://recursal.ai) team for financing the GPU resources, and managing the training of this foundation model - you can run the Eagle line of RWKV models on their cloud / on-premise platform today.
215
+ - EleutherAI for their support, especially in the v5/v6 Eagle/Finch paper
216
+ - Linux Foundation AI & Data group for supporting and hosting the RWKV project