Debrup-61 commited on
Commit
385ba70
·
verified ·
1 Parent(s): 2ceef04

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +49 -151
README.md CHANGED
@@ -1,13 +1,23 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
4
  ---
5
 
 
6
  # Model Card for Model ID
7
 
8
  <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
 
12
  ## Model Details
13
 
@@ -17,156 +27,50 @@ tags: []
17
 
18
  This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
  <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
 
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
 
 
 
 
 
 
 
 
 
 
 
 
 
73
 
74
- [More Information Needed]
75
 
76
  ## Training Details
77
 
78
  ### Training Data
79
 
80
  <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
 
81
 
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
 
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
 
167
  #### Software
168
-
169
- [More Information Needed]
170
 
171
  ## Citation [optional]
172
 
@@ -174,26 +78,20 @@ Carbon emissions can be estimated using the [Machine Learning Impact calculator]
174
 
175
  **BibTeX:**
176
 
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
 
 
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - Reasoning
5
+ - Retrieval
6
+ license: mit
7
+ datasets:
8
+ - Raderspace/MATH_qCoT_LLMquery_lexicalquery
9
+ language:
10
+ - en
11
+ base_model:
12
+ - Qwen/Qwen2.5-7B-Instruct
13
  ---
14
 
15
+
16
  # Model Card for Model ID
17
 
18
  <!-- Provide a quick summary of what the model is/does. -->
19
+ RaDeR, are a set of reasoning-based dense retrieval and reranker models trained with data derived from mathematical problem solving using large language models (LLMs).
20
+ RaDeR retrievers, trained for mathematical reasoning, effectively generalize to diverse retrieval reasoning tasks in the BRIGHT and RAR-b benchmarks, consistently outperforming strong baselines in overall performance.
21
 
22
  ## Model Details
23
 
 
27
 
28
  This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
29
 
30
+ - **Developed by:** CIIR, UMass Amherst
31
+ - **Model type:** Retriever
32
+ - **Language(s):** English
33
+ - **License:** MIT
34
+ - **Finetuned from model:** Qwen-2.5-7B-Instruct
 
 
35
 
36
+ ### Model Sources
37
 
38
  <!-- Provide the basic links for the model. -->
39
 
40
+ - **Repository:** https://github.com/Debrup-61/RaDeR
41
+ - **Paper** https://huggingface.co/papers/2505.18405
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
 
 
 
 
 
43
 
44
  ## How to Get Started with the Model
45
 
46
+ Run the following code to start a server of the model with **vLLM** for fast inference.
47
+
48
+ ```
49
+ vllm serve Raderspace/RaDeR_Qwen_25_7B_instruct_MATH_LLMq_CoT_lexical \
50
+ --task embed \
51
+ --trust-remote-code \
52
+ --override-pooler-config '{"pooling_type": "LAST", "normalize": true}' \
53
+ --gpu-memory-utilization 0.9 \
54
+ --api-key abc \
55
+ --tokenizer Qwen/Qwen2.5-7B-Instruct \
56
+ --port 8001 \
57
+ --disable-log-requests \
58
+ --max-num-seqs 5000
59
+ ```
60
 
61
+ Follow the code on [Github](https://github.com/Debrup-61/RaDeR/blob/main/models/RaDeR_retriever_server_API.py) to see how to query the retriever server.
62
 
63
  ## Training Details
64
 
65
  ### Training Data
66
 
67
  <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
68
+ The model was trained using the [MATH](https://huggingface.co/datasets/Raderspace/MATH_qCoT_LLMquery_lexicalquery) retrieval training dataset from RaDeR, containing CoT, LLMq and lexical query types.
69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
71
 
72
  #### Software
73
+ https://github.com/Debrup-61/RaDeR
 
74
 
75
  ## Citation [optional]
76
 
 
78
 
79
  **BibTeX:**
80
 
81
+ @misc{das2025raderreasoningawaredenseretrieval,
82
+ title={RaDeR: Reasoning-aware Dense Retrieval Models},
83
+ author={Debrup Das and Sam O' Nuallain and Razieh Rahimi},
84
+ year={2025},
85
+ eprint={2505.18405},
86
+ archivePrefix={arXiv},
87
+ primaryClass={cs.CL},
88
+ url={https://arxiv.org/abs/2505.18405},
89
+ }
90
 
 
91
 
92
+ ## Model Card Contact
 
 
 
 
93
 
94
+ Debrup Das: [email protected]
95
 
 
96
 
 
97