chore: README contents
Browse files- README.md +95 -0
- benchmarks/accuracy.png +3 -0
- benchmarks/architecture.png +3 -0
- benchmarks/classes.png +3 -0
- benchmarks/loss.png +3 -0
    	
        README.md
    ADDED
    
    | @@ -0,0 +1,95 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # CNN with CIFAR-10
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            A PyTorch implementation of a Convolutional Neural Network (CNN) for image classification on the CIFAR-10 dataset, achieving **81.45% test accuracy**.
         | 
| 4 | 
            +
             | 
| 5 | 
            +
            ## Architecture
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            The CNN model consists of
         | 
| 10 | 
            +
            ### Convolutional Layers:
         | 
| 11 | 
            +
            - **Conv1**: 3 → 32 channels, 3x3 kernel, padding=1
         | 
| 12 | 
            +
            - **Conv2**: 32 → 64 channels, 3x3 kernel, padding=1  
         | 
| 13 | 
            +
            - **Conv3**: 64 → 128 channels, 3x3 kernel, padding=1
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            ### Others
         | 
| 16 | 
            +
            - **Batch Normalization** after each convolutional layer
         | 
| 17 | 
            +
            - **MaxPooling2D** (2x2) for downsampling
         | 
| 18 | 
            +
            - **ReLU** activation functions
         | 
| 19 | 
            +
            - **Fully Connected Layers**: 2048 → 512 → 10
         | 
| 20 | 
            +
            - **Dropout** (50%) for regularization
         | 
| 21 | 
            +
             | 
| 22 | 
            +
             | 
| 23 | 
            +
            ## Getting Started
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            ### Prerequisites
         | 
| 26 | 
            +
            - Python 3.12+
         | 
| 27 | 
            +
            - PyTorch 2.7.1+
         | 
| 28 | 
            +
            - torchvision 0.22.1+
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            > [!TIP]
         | 
| 31 | 
            +
            > This project was developed with `uv`, so it is best to use `uv` for project management.
         | 
| 32 | 
            +
             | 
| 33 | 
            +
            ### Installation
         | 
| 34 | 
            +
             | 
| 35 | 
            +
            1. **Clone the repository:**
         | 
| 36 | 
            +
               ```bash
         | 
| 37 | 
            +
               git clone https://github.com/rahuletto/cnn
         | 
| 38 | 
            +
               cd CNN
         | 
| 39 | 
            +
               ```
         | 
| 40 | 
            +
             | 
| 41 | 
            +
            2. **Create virtual environment:**
         | 
| 42 | 
            +
               ```bash
         | 
| 43 | 
            +
               python -m venv .venv
         | 
| 44 | 
            +
               source .venv/bin/activate  # On Windows: .venv\Scripts\activate
         | 
| 45 | 
            +
               ```
         | 
| 46 | 
            +
             | 
| 47 | 
            +
            3. **Install dependencies:**
         | 
| 48 | 
            +
               ```bash
         | 
| 49 | 
            +
               pip install -r requirements.txt
         | 
| 50 | 
            +
               ```
         | 
| 51 | 
            +
             | 
| 52 | 
            +
             | 
| 53 | 
            +
            ## Training Configuration
         | 
| 54 | 
            +
             | 
| 55 | 
            +
            - **Optimizer**: Adam (lr=0.001)
         | 
| 56 | 
            +
            - **Batch Size**: 64
         | 
| 57 | 
            +
            - **Epochs**: 50
         | 
| 58 | 
            +
             | 
| 59 | 
            +
            > Best model checkpoint was saved at epoch 49 with validation loss of 0.6553.
         | 
| 60 | 
            +
             | 
| 61 | 
            +
             | 
| 62 | 
            +
            ## Performance
         | 
| 63 | 
            +
             | 
| 64 | 
            +
            
         | 
| 65 | 
            +
            Reaching 0.7227 in Train loss and 0.6557 in Validation loss at epoch 50
         | 
| 66 | 
            +
             | 
| 67 | 
            +
             | 
| 68 | 
            +
            ### Accuracy:
         | 
| 69 | 
            +
             | 
| 70 | 
            +
            Total Accuracy: `81.45%`
         | 
| 71 | 
            +
            - **Airplane**: `84.60%`
         | 
| 72 | 
            +
            - **Automobile**: `93.20%`
         | 
| 73 | 
            +
            - **Bird**: `76.90%`
         | 
| 74 | 
            +
            - **Cat**: `69.70%`
         | 
| 75 | 
            +
            - **Deer**: `77.20%`
         | 
| 76 | 
            +
            - **Dog**: `64.00%`
         | 
| 77 | 
            +
            - **Frog**: `89.30%`
         | 
| 78 | 
            +
            - **Horse**: `82.10%`
         | 
| 79 | 
            +
            - **Ship**: `89.60%`
         | 
| 80 | 
            +
            - **Truck**: `87.90%`
         | 
| 81 | 
            +
             | 
| 82 | 
            +
            
         | 
| 83 | 
            +
             | 
| 84 | 
            +
            ---
         | 
| 85 | 
            +
             | 
| 86 | 
            +
            ## References
         | 
| 87 | 
            +
             | 
| 88 | 
            +
            - [CIFAR-10 Dataset](https://www.cs.toronto.edu/~kriz/cifar.html)
         | 
| 89 | 
            +
            - [PyTorch Documentation](https://pytorch.org/docs/)
         | 
| 90 | 
            +
            - [Convolutional Neural Networks for Visual Recognition (CS231n)](http://cs231n.stanford.edu/)
         | 
| 91 | 
            +
            - [Deep Learning Book - Ian Goodfellow](https://www.deeplearningbook.org/)
         | 
| 92 | 
            +
             | 
| 93 | 
            +
            ## License
         | 
| 94 | 
            +
             | 
| 95 | 
            +
            This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
         | 
    	
        benchmarks/accuracy.png
    ADDED
    
    |   | 
| Git LFS Details
 | 
    	
        benchmarks/architecture.png
    ADDED
    
    |   | 
| Git LFS Details
 | 
    	
        benchmarks/classes.png
    ADDED
    
    |   | 
| Git LFS Details
 | 
    	
        benchmarks/loss.png
    ADDED
    
    |   | 
| Git LFS Details
 | 
