import torch.nn as nn import torch.nn.functional as F class CNN(nn.Module): def __init__(self): super(CNN, self).__init__() self.conv1 = nn.Conv2d(3, 32, 3, stride=1, padding=1) # 32x32 -> 16x16 self.bn1 = nn.BatchNorm2d(32) self.conv2 = nn.Conv2d(32, 64, 3, stride=1, padding=1) # 16x16 -> 8x8 self.bn2 = nn.BatchNorm2d(64) self.conv3 = nn.Conv2d(64, 128, 3, stride=1, padding=1) # 8x8 -> 4x4 self.bn3 = nn.BatchNorm2d(128) self.pool = nn.MaxPool2d(stride=2, kernel_size=2) self.fc1 = nn.Linear(128 * 4 * 4, 512) self.fc2 = nn.Linear(512, 10) self.dropout = nn.Dropout(0.5) def forward(self, x): x = self.pool(F.relu(self.bn1(self.conv1(x)))) x = self.pool(F.relu(self.bn2(self.conv2(x)))) x = self.pool(F.relu(self.bn3(self.conv3(x)))) x = x.view(x.size(0), -1) x = self.dropout(x) x = F.relu(self.fc1(x)) x = self.dropout(x) x = self.fc2(x) return x