--- tags: - generated_from_trainer datasets: - RaiBP/openwebtext2-first-30-chunks-ablation-full model-index: - name: training_full results: [] --- # training_full This model was trained from scratch on the RaiBP/openwebtext2-first-30-chunks-ablation-full dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure The following command was used: ```bash CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 run_clm.py \ --output_dir="./training_full" \ --model_type="gpt2" \ --config_name="./training" \ --tokenizer_name="./training" \ --dataset_name="RaiBP/openwebtext2-first-30-chunks-ablation-full" \ --do_train \ --per_device_train_batch_size 8 \ --block_size="1024" \ --learning_rate="5e-3" --warmup_steps="1000" \ --adam_beta1="0.9" --adam_beta2="0.98" --weight_decay="0.01" \ --overwrite_output_dir \ --num_train_epochs="1" \ --logging_steps="500" \ --save_steps="5000" --preprocessing_num_workers="16" \ --gradient_accumulation_steps="4" \ --report_to="tensorboard" \ --logging_dir="./log_full" ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 1.0 ### Training results ### Evaluation results Perplexity on the first 5000 examples of the Wiki-40B test sets, using the code provided in the [perplexity docs](https://huggingface.co/docs/transformers/perplexity), with 512 tokes of stride: | Target language | PPL | |-----------------|-------------------| | en | 33.41002655029297 | The following script was used for evaluation ```python from datasets import load_dataset from transformers import AutoTokenizer, AutoModelForCausalLM import torch from tqdm import tqdm def filter_example(example): # remove Wiki-40B section dividers example = example.replace("_START_ARTICLE_", "") example = example.replace("_START_SECTION_", "") example = example.replace("_START_PARAGRAPH_", "") return example device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load the model model_name = "RaiBP/gpt2-openwebtext2-first-30-chunks-ablation-full" model = AutoModelForCausalLM.from_pretrained(model_name).to(device) tokenizer = AutoTokenizer.from_pretrained(model_name) target_language = "en" # change language to fr, de, es, etc. test = load_dataset("wiki40b", target_language, split="test") num_examples = 5000 # how many examples to run the evaluation on examples = test["text"][:num_examples] examples = [filter_example(example) for example in examples] encodings = tokenizer("\n\n".join(examples), return_tensors="pt") max_length = model.config.n_positions stride = 512 seq_len = encodings.input_ids.size(1) nlls = [] prev_end_loc = 0 for begin_loc in tqdm(range(0, seq_len, stride)): end_loc = min(begin_loc + max_length, seq_len) trg_len = end_loc - prev_end_loc # may be different from stride on last loop input_ids = encodings.input_ids[:, begin_loc:end_loc].to(device) target_ids = input_ids.clone() target_ids[:, :-trg_len] = -100 with torch.no_grad(): outputs = model(input_ids, labels=target_ids) # loss is calculated using CrossEntropyLoss which averages over valid labels # N.B. the model only calculates loss over trg_len - 1 labels, because it internally shifts the labels # to the left by 1. neg_log_likelihood = outputs.loss nlls.append(neg_log_likelihood) prev_end_loc = end_loc if end_loc == seq_len: break ppl = torch.exp(torch.stack(nlls).mean()) print("Perplexity: ", ppl.item()) ``` ### Framework versions - Transformers 4.37.0.dev0 - Pytorch 1.13.0 - Datasets 2.16.0 - Tokenizers 0.15.0