Add model card
Browse files
README.md
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
tags:
|
5 |
+
- pytorch
|
6 |
+
- causal-lm
|
7 |
+
- bitnet
|
8 |
+
- layer-skipping
|
9 |
+
---
|
10 |
+
|
11 |
+
# bitskip1
|
12 |
+
|
13 |
+
This is a fine-tuned BitNet model with layer skipping capabilities.
|
14 |
+
|
15 |
+
## Model Details
|
16 |
+
|
17 |
+
- **Model Type**: BitNet with Layer Skipping
|
18 |
+
- **Base Model**: Unknown
|
19 |
+
- **Architecture**: Unknown
|
20 |
+
|
21 |
+
|
22 |
+
## Usage
|
23 |
+
|
24 |
+
```python
|
25 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
26 |
+
|
27 |
+
model = AutoModelForCausalLM.from_pretrained("USERNAME/MODEL_NAME")
|
28 |
+
tokenizer = AutoTokenizer.from_pretrained("USERNAME/MODEL_NAME")
|
29 |
+
|
30 |
+
# Generate text
|
31 |
+
inputs = tokenizer("Hello, how are you?", return_tensors="pt")
|
32 |
+
outputs = model.generate(**inputs, max_new_tokens=50)
|
33 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
34 |
+
```
|
35 |
+
|
36 |
+
## Training
|
37 |
+
|
38 |
+
This model was trained using the LayerSkip framework with BitNet architecture.
|
39 |
+
|
40 |
+
## License
|
41 |
+
|
42 |
+
[Add your license information here]
|