|
|
|
"""
|
|
Created on Fri Dec 27 20:58:48 2024
|
|
|
|
@author: ramio
|
|
"""
|
|
|
|
import pandas as pd
|
|
from sklearn.feature_extraction.text import TfidfVectorizer
|
|
from sklearn.ensemble import RandomForestClassifier
|
|
from sklearn.model_selection import train_test_split
|
|
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score,ConfusionMatrixDisplay
|
|
import matplotlib.pyplot as plt
|
|
from scipy.sparse import hstack
|
|
import nltk
|
|
from nltk.corpus import stopwords
|
|
import pickle
|
|
|
|
|
|
nltk.download('stopwords')
|
|
|
|
|
|
portuguese_stopwords = stopwords.words('portuguese')
|
|
|
|
|
|
file_path = 'Registo dos livros (Guardado automaticamente).xlsx'
|
|
df = pd.read_excel(file_path, header=1)
|
|
|
|
|
|
df.columns = df.columns.str.strip()
|
|
df = df.drop(['Unnamed: 14'], axis=1)
|
|
|
|
|
|
missing_data= df [df["Tema & Localização"].isna()]
|
|
train_data = df [df["Tema & Localização"].notna()]
|
|
|
|
|
|
class_counts = train_data['Tema & Localização'].value_counts()
|
|
print(class_counts)
|
|
|
|
|
|
rare_classes = class_counts[class_counts < 5].index
|
|
print(rare_classes)
|
|
|
|
|
|
train_data['Tema & Localização'] = train_data['Tema & Localização'].replace(rare_classes, 'Other')
|
|
|
|
|
|
x= train_data[['Titulo','Autor','Editora','Tema & Localização']]
|
|
y= train_data['Tema & Localização']
|
|
|
|
|
|
tfidf = TfidfVectorizer(stop_words=portuguese_stopwords, max_features=1000)
|
|
|
|
|
|
x_tfidf_titulo = tfidf.fit_transform(x['Titulo'].fillna(''))
|
|
x_tfidf_autor = tfidf.transform(x['Autor'].fillna(''))
|
|
x_tfidf_editora = tfidf.transform(x['Editora'].fillna(''))
|
|
x_tfidf_tema = tfidf.transform(x['Tema & Localização'].fillna(''))
|
|
|
|
|
|
x_combined = hstack([x_tfidf_titulo, x_tfidf_autor, x_tfidf_editora, x_tfidf_tema])
|
|
|
|
|
|
x_train,x_test,y_train,y_test = train_test_split (x_combined,y, test_size=0.2, random_state=42)
|
|
|
|
|
|
rf_model = RandomForestClassifier(n_estimators=100, random_state=42)
|
|
rf_model.fit(x_train,y_train)
|
|
|
|
|
|
y_pred = rf_model.predict(x_test)
|
|
|
|
|
|
accuracy = accuracy_score(y_test, y_pred)
|
|
print(f'Accuracy: {accuracy * 100:.2f}%')
|
|
|
|
|
|
print('confusion matrix:')
|
|
|
|
ConfusionMatrixDisplay.from_predictions(
|
|
y_test, y_pred,
|
|
cmap='Blues',
|
|
colorbar=True
|
|
)
|
|
plt.xticks(rotation=45, fontsize=5,ha='right')
|
|
plt.yticks(fontsize=5)
|
|
plt.title('Confusion Matrix')
|
|
plt.show()
|
|
|
|
|
|
print('Classification Report:')
|
|
print(classification_report(y_test, y_pred))
|
|
|
|
|
|
""""Predicting missing values"""
|
|
|
|
|
|
x_missing = missing_data[['Titulo', 'Autor', 'Editora','Tema & Localização']]
|
|
|
|
|
|
x_missing_tfidf_titulo = tfidf.transform(x_missing['Titulo'].fillna(''))
|
|
x_missing_tfidf_autor = tfidf.transform(x_missing['Autor'].fillna(''))
|
|
x_missing_tfidf_editora = tfidf.transform(x_missing['Editora'].fillna(''))
|
|
x_missing_tfidf_tema = tfidf.transform(x_missing['Tema & Localização'].fillna(''))
|
|
|
|
|
|
x_missing_combined = hstack([x_missing_tfidf_titulo, x_missing_tfidf_autor, x_missing_tfidf_editora,x_missing_tfidf_tema])
|
|
|
|
|
|
y_missing_pred = rf_model.predict(x_missing_combined)
|
|
|
|
|
|
df.loc[df["Tema & Localização"].isna(), 'Tema & Localização'] = y_missing_pred
|
|
|
|
|
|
print(df.head())
|
|
|
|
|
|
|
|
with open('book_category_model.pkl', 'wb') as f:
|
|
pickle.dump(rf_model, f)
|
|
|
|
|