File size: 13,805 Bytes
759dfe0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
import json
import multiprocessing as mp
import os
import random
import re
import sys
import time
from contextlib import contextmanager
from glob import glob
from pathlib import Path
from typing import Any, Dict, Tuple, cast

import click
import numpy as np
from omegaconf import DictConfig, ListConfig, OmegaConf
from safetensors.torch import save_file
import torch
from torch import Tensor
from torch.distributed.checkpoint.state_dict import StateDictOptions, get_state_dict
import torch.nn.functional as F
from tqdm import tqdm

torch._dynamo.config.cache_size_limit = 32
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
torch.use_deterministic_algorithms(False)

import genmo.mochi_preview.dit.joint_model.lora as lora
from genmo.lib.progress import progress_bar
from genmo.lib.utils import Timer, save_video
from genmo.mochi_preview.pipelines import (
    DecoderModelFactory,
    DitModelFactory,
    ModelFactory,
    T5ModelFactory,
    cast_dit,
    compute_packed_indices,
    get_conditioning,
    linear_quadratic_schedule,  # used in eval'd Python code in lora.yaml
    load_to_cpu,
    move_to_device,
    sample_model,
    t5_tokenizer,
)
from genmo.mochi_preview.vae.latent_dist import LatentDistribution
from genmo.mochi_preview.vae.models import decode_latents_tiled_spatial

sys.path.append("..")

from dataset import LatentEmbedDataset


class MochiTorchRunEvalPipeline:
    def __init__(
        self,
        *,
        device_id,
        dit,
        text_encoder_factory: ModelFactory,
        decoder_factory: ModelFactory,
    ):
        self.device = torch.device(f"cuda:{device_id}")
        self.tokenizer = t5_tokenizer()
        t = Timer()
        self.dit = dit
        with t("load_text_encoder"):
            self.text_encoder = text_encoder_factory.get_model(
                local_rank=0,
                world_size=1,
                device_id="cpu",
            )
        with t("load_vae"):
            self.decoder = decoder_factory.get_model(local_rank=0, device_id="cpu", world_size=1)
        t.print_stats()  # type: ignore

    def __call__(self, prompt, save_path, **kwargs):
        with progress_bar(type="tqdm", enabled=True), torch.inference_mode():
            # Encode prompt with T5 XXL.
            with move_to_device(self.text_encoder, self.device, enabled=True):
                conditioning = get_conditioning(
                    self.tokenizer,
                    self.text_encoder,
                    self.device,
                    batch_inputs=False,
                    prompt=prompt,
                    negative_prompt="",
                )

            # Sample video latents from Mochi.
            with move_to_device(self.dit, self.device, enabled=True):
                latents = sample_model(self.device, self.dit, conditioning, **kwargs)

            # Decode video latents to frames.
            with move_to_device(self.decoder, self.device, enabled=True):
                frames = decode_latents_tiled_spatial(
                    self.decoder, latents, num_tiles_w=2, num_tiles_h=2, overlap=8)
            frames = frames.cpu().numpy()  # b t h w c
            assert isinstance(frames, np.ndarray)

            save_video(frames[0], save_path)


def map_to_device(x, device: torch.device):
    if isinstance(x, dict):
        return {k: map_to_device(v, device) for k, v in x.items()}
    elif isinstance(x, list):
        return [map_to_device(y, device) for y in x]
    elif isinstance(x, tuple):
        return tuple(map_to_device(y, device) for y in x)
    elif isinstance(x, torch.Tensor):
        return x.to(device, non_blocking=True)
    else:
        return x


EPOCH_IDX = 0


def infinite_dl(dl):
    global EPOCH_IDX
    while True:
        EPOCH_IDX += 1
        for batch in dl:
            yield batch


@contextmanager
def timer(description="Task", enabled=True):
    if enabled:
        start = time.perf_counter()
    try:
        yield
    finally:
        if enabled:
            elapsed = time.perf_counter() - start  # type: ignore
            print(f"{description} took {elapsed:.4f} seconds")


def get_cosine_annealing_lr_scheduler(
    optimizer: torch.optim.Optimizer,
    warmup_steps: int,
    total_steps: int,
):
    def lr_lambda(step):
        if step < warmup_steps:
            return float(step) / float(max(1, warmup_steps))
        else:
            return 0.5 * (1 + np.cos(np.pi * (step - warmup_steps) / (total_steps - warmup_steps)))
    
    return torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda)


@click.command()
@click.option("--config-path", type=click.Path(exists=True), required=True, help="Path to YAML config file")
def main(config_path):
    mp.set_start_method("spawn", force=True)
    cfg = cast(DictConfig, OmegaConf.load(config_path))

    device_id = 0
    device_str = f"cuda:0"
    device = torch.device(device_str)

    # Verify checkpoint path exists
    checkpoint_path = Path(cfg.init_checkpoint_path)
    assert checkpoint_path.exists(), f"Checkpoint file not found: {checkpoint_path}"
    
    # Create checkpoint directory if it doesn't exist
    checkpoint_dir = Path(cfg.checkpoint_dir)
    checkpoint_dir.mkdir(parents=True, exist_ok=True)

    # Get step number from checkpoint filename
    pattern = r"model_(\d+)\.(lora|checkpoint)\.(safetensors|pt)"
    match = re.search(pattern, str(checkpoint_path))
    if match:
        start_step_num = int(match.group(1))
        opt_path = str(checkpoint_path).replace("model_", "optimizer_")
    else:
        start_step_num = 0
        opt_path = ""

    print(
        f"model={checkpoint_path}, optimizer={opt_path}, start_step_num={start_step_num}"
    )

    wandb_run = None
    sample_prompts = cfg.sample.prompts

    train_vids = list(sorted(glob(f"{cfg.train_data_dir}/*.mp4")))
    train_vids = [v for v in train_vids if not v.endswith(".recon.mp4")]
    print(f"Found {len(train_vids)} training videos in {cfg.train_data_dir}")
    assert len(train_vids) > 0, f"No training data found in {cfg.train_data_dir}"
    if cfg.single_video_mode:
        train_vids = train_vids[:1]
        sample_prompts = [Path(train_vids[0]).with_suffix(".txt").read_text()]
        print(f"Training on video: {train_vids[0]}")

    train_dataset = LatentEmbedDataset(
        train_vids,
        repeat=1_000 if cfg.single_video_mode else 1,
    )
    train_dl = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=None,
        num_workers=4,
        shuffle=True,
        pin_memory=True,
    )
    train_dl_iter = infinite_dl(train_dl)

    if cfg.get("wandb"):
        import wandb

        wandb_run = wandb.init(
            project=cfg.wandb.project,
            name=f"{cfg.wandb.name}-{int(time.time())}",
            config=OmegaConf.to_container(cfg),  # type: ignore
        )
        print(f"🚀 Weights & Biases run URL: {wandb_run.get_url()}")

    print("Loading model")
    patch_model_fns = []
    model_kwargs = {}
    is_lora = cfg.model.type == "lora"
    print(f"Training type: {'LoRA' if is_lora else 'Full'}")
    if is_lora:
        def mark_lora_params(m):
            lora.mark_only_lora_as_trainable(m, bias="none")
            return m

        patch_model_fns.append(mark_lora_params)
        model_kwargs = dict(**cfg.model.kwargs)
        # Replace ListConfig with list to allow serialization to JSON.
        for k, v in model_kwargs.items():
            if isinstance(v, ListConfig):
                model_kwargs[k] = list(v)

    if cfg.training.get("model_dtype"):
        assert cfg.training.model_dtype == "bf16", f"Only bf16 is supported"
        patch_model_fns.append(lambda m: cast_dit(m, torch.bfloat16))

    model = (
        DitModelFactory(
            model_path=str(checkpoint_path),
            model_dtype="bf16",
            attention_mode=cfg.attention_mode
        ).get_model(
            local_rank=0,
            device_id=device_id,
            model_kwargs=model_kwargs,
            patch_model_fns=patch_model_fns,
            world_size=1,
            strict_load=not is_lora,
            fast_init=not is_lora,  # fast_init not supported for LoRA (please someone fix this !!!)
        )
        .train()  # calling train() makes sure LoRA weights are not merged
    )

    optimizer = torch.optim.AdamW(model.parameters(), **cfg.optimizer)
    if os.path.exists(opt_path):
        print("Loading optimizer")
        optimizer.load_state_dict(load_to_cpu(opt_path))

    scheduler = get_cosine_annealing_lr_scheduler(
        optimizer,
        warmup_steps=cfg.training.warmup_steps,
        total_steps=cfg.training.num_steps
    )

    print("Loading eval pipeline ...")
    eval_pipeline = MochiTorchRunEvalPipeline(
        device_id=device_id,
        dit=model,
        text_encoder_factory=T5ModelFactory(),
        decoder_factory=DecoderModelFactory(model_path=cfg.sample.decoder_path),
    )

    def get_batch() -> Tuple[Dict[str, Any], Tensor, Tensor, Tensor]:
        nonlocal train_dl_iter
        batch = next(train_dl_iter)  # type: ignore
        latent, embed = cast(Tuple[Dict[str, Any], Dict[str, Any]], batch)
        assert len(embed["y_feat"]) == 1 and len(embed["y_mask"]) == 1, f"Only batch size 1 is supported"

        ldist = LatentDistribution(latent["mean"], latent["logvar"])
        z = ldist.sample()
        assert torch.isfinite(z).all()
        assert z.shape[0] == 1, f"Only batch size 1 is supported"

        eps = torch.randn_like(z)
        sigma = torch.rand(z.shape[:1], device="cpu", dtype=torch.float32)

        if random.random() < cfg.training.caption_dropout:
            embed["y_mask"][0].zero_()
            embed["y_feat"][0].zero_()
        return embed, z, eps, sigma

    pbar = tqdm(
        range(start_step_num, cfg.training.num_steps),
        total=cfg.training.num_steps,
        initial=start_step_num,
    )
    for step in pbar:
        if cfg.sample.interval and step % cfg.sample.interval == 0 and step > 0:
            sample_dir = Path(cfg.sample.output_dir)
            sample_dir.mkdir(exist_ok=True)
            model.eval()
            for eval_idx, prompt in enumerate(sample_prompts):
                save_path = sample_dir / f"{eval_idx}_{step}.mp4"
                if save_path.exists():
                    print(f"Skipping {save_path} as it already exists")
                    continue

                sample_kwargs = {
                    k.removesuffix("_python_code"): (eval(v) if k.endswith("_python_code") else v)
                    for k, v in cfg.sample.kwargs.items()
                }
                eval_pipeline(
                    prompt=prompt,
                    save_path=str(save_path),
                    seed=cfg.sample.seed + eval_idx,
                    **sample_kwargs,
                )
                Path(sample_dir / f"{eval_idx}_{step}.txt").write_text(prompt)
            model.train()

        if cfg.training.save_interval and step > 0 and step % cfg.training.save_interval == 0:
            with timer("get_state_dict"):
                if is_lora:
                    model_sd = lora.lora_state_dict(model, bias="none")
                else:
                    # NOTE: Not saving optimizer state dict to save space.
                    model_sd, _optimizer_sd = get_state_dict(
                        model, [], options=StateDictOptions(cpu_offload=True, full_state_dict=True)
                    )

            checkpoint_filename = f"model_{step}.{'lora' if is_lora else 'checkpoint'}.pt"
            save_path = checkpoint_dir / checkpoint_filename
            if cfg.training.get("save_safetensors", True):
                save_path = save_path.with_suffix(".safetensors")
                save_file(
                    model_sd, save_path,
                    # `safetensors` only supports string-to-string metadata,
                    # so we serialize the kwargs to a JSON string.
                    metadata=dict(kwargs=json.dumps(model_kwargs)),
                )
            else:
                torch.save(model_sd, save_path)

        with torch.no_grad(), timer("load_batch", enabled=False):
            batch = get_batch()
            embed, z, eps, sigma = map_to_device(batch, device)
            embed = cast(Dict[str, Any], embed)

            num_latent_toks = np.prod(z.shape[-3:])
            indices = compute_packed_indices(device, cast(Tensor, embed["y_mask"][0]), int(num_latent_toks))

            sigma_bcthw = sigma[:, None, None, None, None]  # [B, 1, 1, 1, 1]
            z_sigma = (1 - sigma_bcthw) * z + sigma_bcthw * eps
            ut = z - eps

        with torch.autocast("cuda", dtype=torch.bfloat16):
            preds = model(
                x=z_sigma,
                sigma=sigma,
                packed_indices=indices,
                **embed,
                num_ff_checkpoint=cfg.training.num_ff_checkpoint,
                num_qkv_checkpoint=cfg.training.num_qkv_checkpoint,
            )
            assert preds.shape == z.shape

        loss = F.mse_loss(preds.float(), ut.float())
        loss.backward()

        log_kwargs = {
            "train/loss": loss.item(),
            "train/epoch": EPOCH_IDX,
            "train/lr": scheduler.get_last_lr()[0],
        }

        if cfg.training.get("grad_clip"):
            assert not is_lora, "Gradient clipping not supported for LoRA"
            gnorm_before_clip = torch.nn.utils.clip_grad_norm_(
                model.parameters(), max_norm=cfg.training.grad_clip)
            log_kwargs["train/gnorm"] = gnorm_before_clip.item()
        pbar.set_postfix(**log_kwargs)

        if wandb_run:
            wandb_run.log(log_kwargs, step=step)

        optimizer.step()
        scheduler.step()
        optimizer.zero_grad()


if __name__ == "__main__":
    main()