File size: 13,805 Bytes
759dfe0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
import json
import multiprocessing as mp
import os
import random
import re
import sys
import time
from contextlib import contextmanager
from glob import glob
from pathlib import Path
from typing import Any, Dict, Tuple, cast
import click
import numpy as np
from omegaconf import DictConfig, ListConfig, OmegaConf
from safetensors.torch import save_file
import torch
from torch import Tensor
from torch.distributed.checkpoint.state_dict import StateDictOptions, get_state_dict
import torch.nn.functional as F
from tqdm import tqdm
torch._dynamo.config.cache_size_limit = 32
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
torch.use_deterministic_algorithms(False)
import genmo.mochi_preview.dit.joint_model.lora as lora
from genmo.lib.progress import progress_bar
from genmo.lib.utils import Timer, save_video
from genmo.mochi_preview.pipelines import (
DecoderModelFactory,
DitModelFactory,
ModelFactory,
T5ModelFactory,
cast_dit,
compute_packed_indices,
get_conditioning,
linear_quadratic_schedule, # used in eval'd Python code in lora.yaml
load_to_cpu,
move_to_device,
sample_model,
t5_tokenizer,
)
from genmo.mochi_preview.vae.latent_dist import LatentDistribution
from genmo.mochi_preview.vae.models import decode_latents_tiled_spatial
sys.path.append("..")
from dataset import LatentEmbedDataset
class MochiTorchRunEvalPipeline:
def __init__(
self,
*,
device_id,
dit,
text_encoder_factory: ModelFactory,
decoder_factory: ModelFactory,
):
self.device = torch.device(f"cuda:{device_id}")
self.tokenizer = t5_tokenizer()
t = Timer()
self.dit = dit
with t("load_text_encoder"):
self.text_encoder = text_encoder_factory.get_model(
local_rank=0,
world_size=1,
device_id="cpu",
)
with t("load_vae"):
self.decoder = decoder_factory.get_model(local_rank=0, device_id="cpu", world_size=1)
t.print_stats() # type: ignore
def __call__(self, prompt, save_path, **kwargs):
with progress_bar(type="tqdm", enabled=True), torch.inference_mode():
# Encode prompt with T5 XXL.
with move_to_device(self.text_encoder, self.device, enabled=True):
conditioning = get_conditioning(
self.tokenizer,
self.text_encoder,
self.device,
batch_inputs=False,
prompt=prompt,
negative_prompt="",
)
# Sample video latents from Mochi.
with move_to_device(self.dit, self.device, enabled=True):
latents = sample_model(self.device, self.dit, conditioning, **kwargs)
# Decode video latents to frames.
with move_to_device(self.decoder, self.device, enabled=True):
frames = decode_latents_tiled_spatial(
self.decoder, latents, num_tiles_w=2, num_tiles_h=2, overlap=8)
frames = frames.cpu().numpy() # b t h w c
assert isinstance(frames, np.ndarray)
save_video(frames[0], save_path)
def map_to_device(x, device: torch.device):
if isinstance(x, dict):
return {k: map_to_device(v, device) for k, v in x.items()}
elif isinstance(x, list):
return [map_to_device(y, device) for y in x]
elif isinstance(x, tuple):
return tuple(map_to_device(y, device) for y in x)
elif isinstance(x, torch.Tensor):
return x.to(device, non_blocking=True)
else:
return x
EPOCH_IDX = 0
def infinite_dl(dl):
global EPOCH_IDX
while True:
EPOCH_IDX += 1
for batch in dl:
yield batch
@contextmanager
def timer(description="Task", enabled=True):
if enabled:
start = time.perf_counter()
try:
yield
finally:
if enabled:
elapsed = time.perf_counter() - start # type: ignore
print(f"{description} took {elapsed:.4f} seconds")
def get_cosine_annealing_lr_scheduler(
optimizer: torch.optim.Optimizer,
warmup_steps: int,
total_steps: int,
):
def lr_lambda(step):
if step < warmup_steps:
return float(step) / float(max(1, warmup_steps))
else:
return 0.5 * (1 + np.cos(np.pi * (step - warmup_steps) / (total_steps - warmup_steps)))
return torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda)
@click.command()
@click.option("--config-path", type=click.Path(exists=True), required=True, help="Path to YAML config file")
def main(config_path):
mp.set_start_method("spawn", force=True)
cfg = cast(DictConfig, OmegaConf.load(config_path))
device_id = 0
device_str = f"cuda:0"
device = torch.device(device_str)
# Verify checkpoint path exists
checkpoint_path = Path(cfg.init_checkpoint_path)
assert checkpoint_path.exists(), f"Checkpoint file not found: {checkpoint_path}"
# Create checkpoint directory if it doesn't exist
checkpoint_dir = Path(cfg.checkpoint_dir)
checkpoint_dir.mkdir(parents=True, exist_ok=True)
# Get step number from checkpoint filename
pattern = r"model_(\d+)\.(lora|checkpoint)\.(safetensors|pt)"
match = re.search(pattern, str(checkpoint_path))
if match:
start_step_num = int(match.group(1))
opt_path = str(checkpoint_path).replace("model_", "optimizer_")
else:
start_step_num = 0
opt_path = ""
print(
f"model={checkpoint_path}, optimizer={opt_path}, start_step_num={start_step_num}"
)
wandb_run = None
sample_prompts = cfg.sample.prompts
train_vids = list(sorted(glob(f"{cfg.train_data_dir}/*.mp4")))
train_vids = [v for v in train_vids if not v.endswith(".recon.mp4")]
print(f"Found {len(train_vids)} training videos in {cfg.train_data_dir}")
assert len(train_vids) > 0, f"No training data found in {cfg.train_data_dir}"
if cfg.single_video_mode:
train_vids = train_vids[:1]
sample_prompts = [Path(train_vids[0]).with_suffix(".txt").read_text()]
print(f"Training on video: {train_vids[0]}")
train_dataset = LatentEmbedDataset(
train_vids,
repeat=1_000 if cfg.single_video_mode else 1,
)
train_dl = torch.utils.data.DataLoader(
train_dataset,
batch_size=None,
num_workers=4,
shuffle=True,
pin_memory=True,
)
train_dl_iter = infinite_dl(train_dl)
if cfg.get("wandb"):
import wandb
wandb_run = wandb.init(
project=cfg.wandb.project,
name=f"{cfg.wandb.name}-{int(time.time())}",
config=OmegaConf.to_container(cfg), # type: ignore
)
print(f"🚀 Weights & Biases run URL: {wandb_run.get_url()}")
print("Loading model")
patch_model_fns = []
model_kwargs = {}
is_lora = cfg.model.type == "lora"
print(f"Training type: {'LoRA' if is_lora else 'Full'}")
if is_lora:
def mark_lora_params(m):
lora.mark_only_lora_as_trainable(m, bias="none")
return m
patch_model_fns.append(mark_lora_params)
model_kwargs = dict(**cfg.model.kwargs)
# Replace ListConfig with list to allow serialization to JSON.
for k, v in model_kwargs.items():
if isinstance(v, ListConfig):
model_kwargs[k] = list(v)
if cfg.training.get("model_dtype"):
assert cfg.training.model_dtype == "bf16", f"Only bf16 is supported"
patch_model_fns.append(lambda m: cast_dit(m, torch.bfloat16))
model = (
DitModelFactory(
model_path=str(checkpoint_path),
model_dtype="bf16",
attention_mode=cfg.attention_mode
).get_model(
local_rank=0,
device_id=device_id,
model_kwargs=model_kwargs,
patch_model_fns=patch_model_fns,
world_size=1,
strict_load=not is_lora,
fast_init=not is_lora, # fast_init not supported for LoRA (please someone fix this !!!)
)
.train() # calling train() makes sure LoRA weights are not merged
)
optimizer = torch.optim.AdamW(model.parameters(), **cfg.optimizer)
if os.path.exists(opt_path):
print("Loading optimizer")
optimizer.load_state_dict(load_to_cpu(opt_path))
scheduler = get_cosine_annealing_lr_scheduler(
optimizer,
warmup_steps=cfg.training.warmup_steps,
total_steps=cfg.training.num_steps
)
print("Loading eval pipeline ...")
eval_pipeline = MochiTorchRunEvalPipeline(
device_id=device_id,
dit=model,
text_encoder_factory=T5ModelFactory(),
decoder_factory=DecoderModelFactory(model_path=cfg.sample.decoder_path),
)
def get_batch() -> Tuple[Dict[str, Any], Tensor, Tensor, Tensor]:
nonlocal train_dl_iter
batch = next(train_dl_iter) # type: ignore
latent, embed = cast(Tuple[Dict[str, Any], Dict[str, Any]], batch)
assert len(embed["y_feat"]) == 1 and len(embed["y_mask"]) == 1, f"Only batch size 1 is supported"
ldist = LatentDistribution(latent["mean"], latent["logvar"])
z = ldist.sample()
assert torch.isfinite(z).all()
assert z.shape[0] == 1, f"Only batch size 1 is supported"
eps = torch.randn_like(z)
sigma = torch.rand(z.shape[:1], device="cpu", dtype=torch.float32)
if random.random() < cfg.training.caption_dropout:
embed["y_mask"][0].zero_()
embed["y_feat"][0].zero_()
return embed, z, eps, sigma
pbar = tqdm(
range(start_step_num, cfg.training.num_steps),
total=cfg.training.num_steps,
initial=start_step_num,
)
for step in pbar:
if cfg.sample.interval and step % cfg.sample.interval == 0 and step > 0:
sample_dir = Path(cfg.sample.output_dir)
sample_dir.mkdir(exist_ok=True)
model.eval()
for eval_idx, prompt in enumerate(sample_prompts):
save_path = sample_dir / f"{eval_idx}_{step}.mp4"
if save_path.exists():
print(f"Skipping {save_path} as it already exists")
continue
sample_kwargs = {
k.removesuffix("_python_code"): (eval(v) if k.endswith("_python_code") else v)
for k, v in cfg.sample.kwargs.items()
}
eval_pipeline(
prompt=prompt,
save_path=str(save_path),
seed=cfg.sample.seed + eval_idx,
**sample_kwargs,
)
Path(sample_dir / f"{eval_idx}_{step}.txt").write_text(prompt)
model.train()
if cfg.training.save_interval and step > 0 and step % cfg.training.save_interval == 0:
with timer("get_state_dict"):
if is_lora:
model_sd = lora.lora_state_dict(model, bias="none")
else:
# NOTE: Not saving optimizer state dict to save space.
model_sd, _optimizer_sd = get_state_dict(
model, [], options=StateDictOptions(cpu_offload=True, full_state_dict=True)
)
checkpoint_filename = f"model_{step}.{'lora' if is_lora else 'checkpoint'}.pt"
save_path = checkpoint_dir / checkpoint_filename
if cfg.training.get("save_safetensors", True):
save_path = save_path.with_suffix(".safetensors")
save_file(
model_sd, save_path,
# `safetensors` only supports string-to-string metadata,
# so we serialize the kwargs to a JSON string.
metadata=dict(kwargs=json.dumps(model_kwargs)),
)
else:
torch.save(model_sd, save_path)
with torch.no_grad(), timer("load_batch", enabled=False):
batch = get_batch()
embed, z, eps, sigma = map_to_device(batch, device)
embed = cast(Dict[str, Any], embed)
num_latent_toks = np.prod(z.shape[-3:])
indices = compute_packed_indices(device, cast(Tensor, embed["y_mask"][0]), int(num_latent_toks))
sigma_bcthw = sigma[:, None, None, None, None] # [B, 1, 1, 1, 1]
z_sigma = (1 - sigma_bcthw) * z + sigma_bcthw * eps
ut = z - eps
with torch.autocast("cuda", dtype=torch.bfloat16):
preds = model(
x=z_sigma,
sigma=sigma,
packed_indices=indices,
**embed,
num_ff_checkpoint=cfg.training.num_ff_checkpoint,
num_qkv_checkpoint=cfg.training.num_qkv_checkpoint,
)
assert preds.shape == z.shape
loss = F.mse_loss(preds.float(), ut.float())
loss.backward()
log_kwargs = {
"train/loss": loss.item(),
"train/epoch": EPOCH_IDX,
"train/lr": scheduler.get_last_lr()[0],
}
if cfg.training.get("grad_clip"):
assert not is_lora, "Gradient clipping not supported for LoRA"
gnorm_before_clip = torch.nn.utils.clip_grad_norm_(
model.parameters(), max_norm=cfg.training.grad_clip)
log_kwargs["train/gnorm"] = gnorm_before_clip.item()
pbar.set_postfix(**log_kwargs)
if wandb_run:
wandb_run.log(log_kwargs, step=step)
optimizer.step()
scheduler.step()
optimizer.zero_grad()
if __name__ == "__main__":
main() |