File size: 247,554 Bytes
4016021
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
[2025-02-17 11:01:07,891 INFO train.py line 128 848561] => Loading config ...
[2025-02-17 11:01:07,891 INFO train.py line 130 848561] Save path: exp/scannet/pretrain-gs-v4-spunet-base-m3
[2025-02-17 11:01:08,361 INFO train.py line 131 848561] Config:
weight = None
resume = False
evaluate = False
test_only = False
seed = 59120461
save_path = 'exp/scannet/pretrain-gs-v4-spunet-base-m3'
num_worker = 64
batch_size = 32
batch_size_val = None
batch_size_test = None
epoch = 1200
eval_epoch = 100
clip_grad = None
sync_bn = False
enable_amp = True
empty_cache = False
empty_cache_per_epoch = True
find_unused_parameters = True
mix_prob = 0.0
param_dicts = None
hooks = [
    dict(type='CheckpointLoader'),
    dict(type='IterationTimer', warmup_iter=2),
    dict(type='CustomInformationWriter', interval=50, key=('loss', 'psnr')),
    dict(type='CheckpointSaver', save_freq=None)
]
train = dict(type='DefaultTrainer')
test = dict(type='SemSegTester', verbose=True)
use_semantic = True
model = dict(
    type='GSIndoor-v4',
    backbone_out_channels=96,
    backbone=dict(
        type='SpUNet-v1m1',
        in_channels=6,
        num_classes=0,
        channels=(32, 64, 128, 256, 256, 128, 96, 96),
        layers=(2, 3, 4, 6, 2, 2, 2, 2)),
    projection=dict(type='UNet3D-v1m2', in_channels=96, out_channels=128),
    regressor=dict(
        type='GSRegresser-v3',
        in_dim=128,
        hidden_size=256,
        scale_range=(0.02, 0.01),
        delta_range=0.1,
        feat_dim=29),
    loss_weights=dict(depth_loss=1.0, rgb_loss=10.0, feat_loss=2.0),
    grid_shape=(128, 128, 32),
    bg_color=0.0,
    opacity_thr=0.3,
    semantic=dict(type='radio', use_semantic=True, version='radio_v2.5-b'),
    use_depth=True)
optimizer = dict(type='AdamW', lr=0.002, weight_decay=0.05)
scheduler = dict(
    type='OneCycleLR',
    max_lr=0.002,
    pct_start=0.05,
    anneal_strategy='cos',
    div_factor=10.0,
    final_div_factor=10000.0)
num_cameras = 5
data = dict(
    train=dict(
        type='ScanNetRGBDDataset',
        split=['train', 'val', 'test'],
        data_root='data/scannet',
        rgb_root='data/scannet/rgbd',
        num_cameras=5,
        transform=[
            dict(type='ToTensor'),
            dict(type='CenterShift', apply_z=True, keys=['extrinsic']),
            dict(
                type='RandomDropout',
                dropout_ratio=0.3,
                dropout_application_ratio=1.0),
            dict(
                type='RandomRotate',
                angle=[-1, 1],
                axis='z',
                center=[0, 0, 0],
                p=1,
                keys=['extrinsic']),
            dict(
                type='RandomRotate',
                angle=[-0.015625, 0.015625],
                axis='x',
                p=1,
                keys=['extrinsic']),
            dict(
                type='RandomRotate',
                angle=[-0.015625, 0.015625],
                axis='y',
                p=1,
                keys=['extrinsic']),
            dict(type='RandomScale', scale=[0.9, 1.1], keys=['extrinsic']),
            dict(type='RandomFlip', p=0.5, keys=['extrinsic']),
            dict(
                type='GridSample',
                grid_size=0.02,
                hash_type='fnv',
                mode='train',
                return_grid_coord=True,
                keys=('coord', 'color', 'normal')),
            dict(type='CenterShift', apply_z=False, keys=['extrinsic']),
            dict(type='NormalizeColor'),
            dict(type='ShufflePoint'),
            dict(
                type='Collect',
                keys=('coord', 'grid_coord', 'depth_scale'),
                stack_keys=('intrinsic', 'extrinsic', 'rgb', 'depth'),
                feat_keys=('color', 'normal'))
        ],
        test_mode=False,
        loop=12))
num_worker_per_gpu = 8
batch_size_per_gpu = 4
batch_size_val_per_gpu = 1
batch_size_test_per_gpu = 1

[2025-02-17 11:01:08,361 INFO train.py line 132 848561] => Building model ...
[2025-02-17 11:01:12,346 INFO train.py line 225 848561] Num params: 42396555
[2025-02-17 11:01:12,701 INFO train.py line 134 848561] => Building writer ...
[2025-02-17 11:01:12,702 INFO train.py line 235 848561] Tensorboard writer logging dir: exp/scannet/pretrain-gs-v4-spunet-base-m3
[2025-02-17 11:01:12,702 INFO train.py line 136 848561] => Building train dataset & dataloader ...
[2025-02-17 11:01:12,705 INFO defaults.py line 68 848561] Totally 1613 x 12 samples in ['train', 'val', 'test'] set.
[2025-02-17 11:01:12,705 INFO train.py line 138 848561] => Building val dataset & dataloader ...
[2025-02-17 11:01:12,705 INFO train.py line 140 848561] => Building optimize, scheduler, scaler(amp) ...
[2025-02-17 11:01:12,706 INFO train.py line 144 848561] => Building hooks ...
[2025-02-17 11:01:12,706 INFO misc.py line 214 848561] => Loading checkpoint & weight ...
[2025-02-17 11:01:12,707 INFO misc.py line 250 848561] No weight found at: None
[2025-02-17 11:01:12,707 INFO train.py line 151 848561] >>>>>>>>>>>>>>>> Start Training >>>>>>>>>>>>>>>>
[2025-02-17 11:02:30,058 INFO hook.py line 109 848561] Train: [1/100][50/605] Data 0.003 (0.002) Batch 1.008 (0.998) Remain 16:45:07 loss: 3.7840 psnr: 12.7724 Lr: 2.00940e-04
[2025-02-17 11:03:19,507 INFO hook.py line 109 848561] Train: [1/100][100/605] Data 0.003 (0.002) Batch 0.988 (0.993) Remain 16:39:47 loss: 3.8086 psnr: 12.3325 Lr: 2.04288e-04
[2025-02-17 11:04:08,944 INFO hook.py line 109 848561] Train: [1/100][150/605] Data 0.002 (0.002) Batch 1.006 (0.992) Remain 16:37:26 loss: 3.3168 psnr: 14.5488 Lr: 2.10052e-04
[2025-02-17 11:04:58,838 INFO hook.py line 109 848561] Train: [1/100][200/605] Data 0.003 (0.002) Batch 0.970 (0.993) Remain 16:38:12 loss: 3.4426 psnr: 13.6478 Lr: 2.18217e-04
[2025-02-17 11:05:48,198 INFO hook.py line 109 848561] Train: [1/100][250/605] Data 0.003 (0.003) Batch 0.996 (0.992) Remain 16:36:09 loss: 3.2874 psnr: 14.5914 Lr: 2.28761e-04
[2025-02-17 11:06:37,294 INFO hook.py line 109 848561] Train: [1/100][300/605] Data 0.003 (0.003) Batch 0.992 (0.990) Remain 16:33:37 loss: 3.4963 psnr: 13.6071 Lr: 2.41655e-04
[2025-02-17 11:07:25,907 INFO hook.py line 109 848561] Train: [1/100][350/605] Data 0.002 (0.003) Batch 0.964 (0.988) Remain 16:30:10 loss: 3.3993 psnr: 14.2709 Lr: 2.56864e-04
[2025-02-17 11:08:14,067 INFO hook.py line 109 848561] Train: [1/100][400/605] Data 0.002 (0.003) Batch 0.973 (0.985) Remain 16:26:16 loss: 3.3951 psnr: 13.1890 Lr: 2.74348e-04
[2025-02-17 11:09:01,930 INFO hook.py line 109 848561] Train: [1/100][450/605] Data 0.004 (0.003) Batch 0.937 (0.982) Remain 16:22:23 loss: 3.0168 psnr: 15.2648 Lr: 2.94059e-04
[2025-02-17 11:09:49,416 INFO hook.py line 109 848561] Train: [1/100][500/605] Data 0.002 (0.003) Batch 0.938 (0.978) Remain 16:18:21 loss: 3.2358 psnr: 13.3323 Lr: 3.15944e-04
[2025-02-17 11:10:37,212 INFO hook.py line 109 848561] Train: [1/100][550/605] Data 0.003 (0.003) Batch 0.930 (0.976) Remain 16:15:29 loss: 3.4191 psnr: 12.2692 Lr: 3.39945e-04
[2025-02-17 11:11:24,523 INFO hook.py line 109 848561] Train: [1/100][600/605] Data 0.002 (0.003) Batch 0.856 (0.974) Remain 16:12:10 loss: 3.0530 psnr: 14.5304 Lr: 3.65995e-04
[2025-02-17 11:11:28,834 INFO misc.py line 135 848561] Train result: loss: 3.4455 rgb_loss: 1.5256 psnr: 13.7450 depth_loss: 0.1740 feat_loss: 1.7458 
[2025-02-17 11:11:28,834 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 11:12:19,398 INFO hook.py line 109 848561] Train: [2/100][50/605] Data 0.002 (0.003) Batch 0.931 (0.935) Remain 15:33:01 loss: 2.8886 psnr: 15.5798 Lr: 3.96935e-04
[2025-02-17 11:13:06,216 INFO hook.py line 109 848561] Train: [2/100][100/605] Data 0.002 (0.002) Batch 0.911 (0.936) Remain 15:32:42 loss: 2.7283 psnr: 16.8064 Lr: 4.27056e-04
[2025-02-17 11:13:53,264 INFO hook.py line 109 848561] Train: [2/100][150/605] Data 0.003 (0.002) Batch 0.923 (0.938) Remain 15:33:38 loss: 2.8874 psnr: 15.8881 Lr: 4.58993e-04
[2025-02-17 11:14:40,376 INFO hook.py line 109 848561] Train: [2/100][200/605] Data 0.002 (0.002) Batch 0.950 (0.939) Remain 15:34:01 loss: 2.8470 psnr: 16.0920 Lr: 4.92658e-04
[2025-02-17 11:15:27,509 INFO hook.py line 109 848561] Train: [2/100][250/605] Data 0.003 (0.002) Batch 0.935 (0.940) Remain 15:34:00 loss: 2.5605 psnr: 18.2193 Lr: 5.27963e-04
[2025-02-17 11:16:14,436 INFO hook.py line 109 848561] Train: [2/100][300/605] Data 0.003 (0.002) Batch 0.927 (0.939) Remain 15:33:03 loss: 2.6006 psnr: 17.7659 Lr: 5.64810e-04
[2025-02-17 11:17:01,189 INFO hook.py line 109 848561] Train: [2/100][350/605] Data 0.002 (0.002) Batch 0.965 (0.939) Remain 15:31:39 loss: 2.9905 psnr: 15.2314 Lr: 6.03101e-04
[2025-02-17 11:17:48,084 INFO hook.py line 109 848561] Train: [2/100][400/605] Data 0.003 (0.002) Batch 0.936 (0.939) Remain 15:30:45 loss: 2.8017 psnr: 16.6859 Lr: 6.42732e-04
[2025-02-17 11:18:35,157 INFO hook.py line 109 848561] Train: [2/100][450/605] Data 0.002 (0.002) Batch 0.919 (0.939) Remain 15:30:17 loss: 3.0204 psnr: 15.0204 Lr: 6.83597e-04
[2025-02-17 11:19:22,012 INFO hook.py line 109 848561] Train: [2/100][500/605] Data 0.002 (0.002) Batch 0.942 (0.939) Remain 15:29:19 loss: 2.8818 psnr: 16.4994 Lr: 7.25585e-04
[2025-02-17 11:20:08,830 INFO hook.py line 109 848561] Train: [2/100][550/605] Data 0.002 (0.002) Batch 0.941 (0.939) Remain 15:28:19 loss: 2.6743 psnr: 17.7980 Lr: 7.68584e-04
[2025-02-17 11:20:55,145 INFO hook.py line 109 848561] Train: [2/100][600/605] Data 0.002 (0.002) Batch 0.874 (0.938) Remain 15:26:31 loss: 2.8270 psnr: 16.0348 Lr: 8.12476e-04
[2025-02-17 11:20:59,481 INFO misc.py line 135 848561] Train result: loss: 2.8794 rgb_loss: 1.1209 psnr: 15.7550 depth_loss: 0.0934 feat_loss: 1.6651 
[2025-02-17 11:20:59,483 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 11:21:50,303 INFO hook.py line 109 848561] Train: [3/100][50/605] Data 0.003 (0.002) Batch 0.941 (0.937) Remain 15:25:05 loss: 2.8246 psnr: 15.9340 Lr: 8.61649e-04
[2025-02-17 11:22:37,086 INFO hook.py line 109 848561] Train: [3/100][100/605] Data 0.002 (0.002) Batch 0.923 (0.936) Remain 15:23:39 loss: 2.8759 psnr: 15.6927 Lr: 9.07030e-04
[2025-02-17 11:23:24,138 INFO hook.py line 109 848561] Train: [3/100][150/605] Data 0.003 (0.002) Batch 0.943 (0.938) Remain 15:24:27 loss: 2.6230 psnr: 17.2740 Lr: 9.52933e-04
[2025-02-17 11:24:10,763 INFO hook.py line 109 848561] Train: [3/100][200/605] Data 0.003 (0.002) Batch 0.942 (0.937) Remain 15:22:19 loss: 2.7531 psnr: 16.1178 Lr: 9.99232e-04
[2025-02-17 11:24:58,046 INFO hook.py line 109 848561] Train: [3/100][250/605] Data 0.002 (0.002) Batch 0.964 (0.938) Remain 15:23:21 loss: 2.8263 psnr: 16.0726 Lr: 1.04580e-03
[2025-02-17 11:25:45,281 INFO hook.py line 109 848561] Train: [3/100][300/605] Data 0.003 (0.002) Batch 0.936 (0.939) Remain 15:23:37 loss: 3.3178 psnr: 13.0652 Lr: 1.09252e-03
[2025-02-17 11:26:32,413 INFO hook.py line 109 848561] Train: [3/100][350/605] Data 0.002 (0.002) Batch 0.943 (0.940) Remain 15:23:18 loss: 2.9988 psnr: 14.4800 Lr: 1.13926e-03
[2025-02-17 11:27:19,841 INFO hook.py line 109 848561] Train: [3/100][400/605] Data 0.002 (0.002) Batch 0.934 (0.941) Remain 15:23:35 loss: 2.8524 psnr: 15.2351 Lr: 1.18589e-03
[2025-02-17 11:28:06,783 INFO hook.py line 109 848561] Train: [3/100][450/605] Data 0.003 (0.002) Batch 0.947 (0.941) Remain 15:22:33 loss: 2.9544 psnr: 14.6657 Lr: 1.23229e-03
[2025-02-17 11:28:54,164 INFO hook.py line 109 848561] Train: [3/100][500/605] Data 0.002 (0.002) Batch 0.928 (0.941) Remain 15:22:27 loss: 2.8738 psnr: 14.9197 Lr: 1.27833e-03
[2025-02-17 11:29:41,725 INFO hook.py line 109 848561] Train: [3/100][550/605] Data 0.002 (0.002) Batch 0.947 (0.942) Remain 15:22:32 loss: 2.6767 psnr: 17.0212 Lr: 1.32389e-03
[2025-02-17 11:30:28,123 INFO hook.py line 109 848561] Train: [3/100][600/605] Data 0.002 (0.002) Batch 0.878 (0.941) Remain 15:20:35 loss: 2.9617 psnr: 15.2215 Lr: 1.36885e-03
[2025-02-17 11:30:32,499 INFO misc.py line 135 848561] Train result: loss: 2.7873 rgb_loss: 1.0631 psnr: 16.0739 depth_loss: 0.0886 feat_loss: 1.6357 
[2025-02-17 11:30:32,500 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 11:31:23,604 INFO hook.py line 109 848561] Train: [4/100][50/605] Data 0.003 (0.002) Batch 0.939 (0.944) Remain 15:22:39 loss: 2.6148 psnr: 17.0336 Lr: 1.41746e-03
[2025-02-17 11:32:10,823 INFO hook.py line 109 848561] Train: [4/100][100/605] Data 0.002 (0.002) Batch 0.936 (0.944) Remain 15:21:59 loss: 2.4951 psnr: 17.7251 Lr: 1.46076e-03
[2025-02-17 11:32:58,219 INFO hook.py line 109 848561] Train: [4/100][150/605] Data 0.003 (0.002) Batch 0.923 (0.946) Remain 15:22:25 loss: 2.7099 psnr: 16.6368 Lr: 1.50308e-03
[2025-02-17 11:33:45,544 INFO hook.py line 109 848561] Train: [4/100][200/605] Data 0.003 (0.002) Batch 0.948 (0.946) Remain 15:21:52 loss: 2.7776 psnr: 15.3641 Lr: 1.54432e-03
[2025-02-17 11:34:33,200 INFO hook.py line 109 848561] Train: [4/100][250/605] Data 0.002 (0.002) Batch 0.976 (0.947) Remain 15:22:32 loss: 2.6428 psnr: 16.5070 Lr: 1.58436e-03
[2025-02-17 11:35:20,208 INFO hook.py line 109 848561] Train: [4/100][300/605] Data 0.002 (0.002) Batch 0.919 (0.946) Remain 15:20:35 loss: 2.7633 psnr: 16.6034 Lr: 1.62309e-03
[2025-02-17 11:36:07,327 INFO hook.py line 109 848561] Train: [4/100][350/605] Data 0.002 (0.002) Batch 0.955 (0.946) Remain 15:19:17 loss: 2.5175 psnr: 17.7316 Lr: 1.66041e-03
[2025-02-17 11:36:54,512 INFO hook.py line 109 848561] Train: [4/100][400/605] Data 0.002 (0.002) Batch 0.938 (0.945) Remain 15:18:16 loss: 2.5515 psnr: 17.4385 Lr: 1.69622e-03
[2025-02-17 11:37:41,829 INFO hook.py line 109 848561] Train: [4/100][450/605] Data 0.005 (0.002) Batch 0.962 (0.945) Remain 15:17:35 loss: 2.6806 psnr: 17.3247 Lr: 1.73042e-03
[2025-02-17 11:38:29,067 INFO hook.py line 109 848561] Train: [4/100][500/605] Data 0.003 (0.002) Batch 0.956 (0.945) Remain 15:16:44 loss: 2.5482 psnr: 18.0616 Lr: 1.76292e-03
[2025-02-17 11:39:16,146 INFO hook.py line 109 848561] Train: [4/100][550/605] Data 0.002 (0.002) Batch 0.939 (0.945) Remain 15:15:37 loss: 2.4841 psnr: 17.3203 Lr: 1.79363e-03
[2025-02-17 11:40:02,488 INFO hook.py line 109 848561] Train: [4/100][600/605] Data 0.002 (0.002) Batch 0.855 (0.943) Remain 15:13:22 loss: 2.7571 psnr: 15.8763 Lr: 1.82247e-03
[2025-02-17 11:40:06,885 INFO misc.py line 135 848561] Train result: loss: 2.7171 rgb_loss: 1.0258 psnr: 16.2700 depth_loss: 0.0838 feat_loss: 1.6075 
[2025-02-17 11:40:06,886 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 11:40:58,162 INFO hook.py line 109 848561] Train: [5/100][50/605] Data 0.002 (0.002) Batch 0.953 (0.941) Remain 15:09:52 loss: 2.5575 psnr: 16.6071 Lr: 1.85194e-03
[2025-02-17 11:41:45,162 INFO hook.py line 109 848561] Train: [5/100][100/605] Data 0.002 (0.002) Batch 0.904 (0.940) Remain 15:08:43 loss: 2.4995 psnr: 17.4052 Lr: 1.87660e-03
[2025-02-17 11:42:32,315 INFO hook.py line 109 848561] Train: [5/100][150/605] Data 0.002 (0.002) Batch 0.936 (0.941) Remain 15:08:48 loss: 2.4368 psnr: 18.3139 Lr: 1.89917e-03
[2025-02-17 11:43:19,551 INFO hook.py line 109 848561] Train: [5/100][200/605] Data 0.003 (0.002) Batch 0.952 (0.942) Remain 15:08:52 loss: 2.5328 psnr: 16.8256 Lr: 1.91958e-03
[2025-02-17 11:44:06,792 INFO hook.py line 109 848561] Train: [5/100][250/605] Data 0.003 (0.002) Batch 0.931 (0.943) Remain 15:08:36 loss: 2.6608 psnr: 15.6761 Lr: 1.93779e-03
[2025-02-17 11:44:54,275 INFO hook.py line 109 848561] Train: [5/100][300/605] Data 0.002 (0.002) Batch 0.948 (0.944) Remain 15:08:56 loss: 2.9822 psnr: 14.5835 Lr: 1.95373e-03
[2025-02-17 11:45:41,317 INFO hook.py line 109 848561] Train: [5/100][350/605] Data 0.003 (0.002) Batch 0.942 (0.943) Remain 15:07:44 loss: 2.9390 psnr: 15.2369 Lr: 1.96737e-03
[2025-02-17 11:46:28,591 INFO hook.py line 109 848561] Train: [5/100][400/605] Data 0.002 (0.002) Batch 0.976 (0.944) Remain 15:07:11 loss: 2.3802 psnr: 18.7799 Lr: 1.97867e-03
[2025-02-17 11:47:15,821 INFO hook.py line 109 848561] Train: [5/100][450/605] Data 0.003 (0.002) Batch 0.924 (0.944) Remain 15:06:30 loss: 2.6184 psnr: 15.9986 Lr: 1.98760e-03
[2025-02-17 11:48:02,783 INFO hook.py line 109 848561] Train: [5/100][500/605] Data 0.003 (0.002) Batch 0.965 (0.943) Remain 15:05:17 loss: 2.4938 psnr: 17.4030 Lr: 1.99413e-03
[2025-02-17 11:48:49,865 INFO hook.py line 109 848561] Train: [5/100][550/605] Data 0.002 (0.002) Batch 0.978 (0.943) Remain 15:04:21 loss: 2.6820 psnr: 16.2649 Lr: 1.99825e-03
[2025-02-17 11:49:36,151 INFO hook.py line 109 848561] Train: [5/100][600/605] Data 0.001 (0.002) Batch 0.896 (0.942) Remain 15:02:09 loss: 2.6825 psnr: 16.4821 Lr: 1.99995e-03
[2025-02-17 11:49:40,495 INFO misc.py line 135 848561] Train result: loss: 2.6728 rgb_loss: 1.0046 psnr: 16.3916 depth_loss: 0.0815 feat_loss: 1.5867 
[2025-02-17 11:49:40,497 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 11:50:31,964 INFO hook.py line 109 848561] Train: [6/100][50/605] Data 0.002 (0.002) Batch 0.980 (0.945) Remain 15:04:14 loss: 2.4691 psnr: 17.7570 Lr: 2.00000e-03
[2025-02-17 11:51:18,912 INFO hook.py line 109 848561] Train: [6/100][100/605] Data 0.002 (0.002) Batch 0.964 (0.942) Remain 15:00:34 loss: 2.5325 psnr: 18.0433 Lr: 1.99999e-03
[2025-02-17 11:52:05,851 INFO hook.py line 109 848561] Train: [6/100][150/605] Data 0.003 (0.002) Batch 0.920 (0.941) Remain 14:58:48 loss: 2.4980 psnr: 17.4759 Lr: 1.99997e-03
[2025-02-17 11:52:52,920 INFO hook.py line 109 848561] Train: [6/100][200/605] Data 0.002 (0.002) Batch 0.934 (0.941) Remain 14:58:10 loss: 2.7383 psnr: 15.6654 Lr: 1.99994e-03
[2025-02-17 11:53:40,151 INFO hook.py line 109 848561] Train: [6/100][250/605] Data 0.002 (0.002) Batch 0.928 (0.942) Remain 14:58:06 loss: 2.6321 psnr: 16.1401 Lr: 1.99991e-03
[2025-02-17 11:54:27,344 INFO hook.py line 109 848561] Train: [6/100][300/605] Data 0.002 (0.002) Batch 0.936 (0.942) Remain 14:57:40 loss: 2.4616 psnr: 18.4940 Lr: 1.99987e-03
[2025-02-17 11:55:14,660 INFO hook.py line 109 848561] Train: [6/100][350/605] Data 0.002 (0.002) Batch 0.971 (0.943) Remain 14:57:28 loss: 2.6666 psnr: 16.2619 Lr: 1.99982e-03
[2025-02-17 11:56:01,968 INFO hook.py line 109 848561] Train: [6/100][400/605] Data 0.003 (0.002) Batch 0.955 (0.943) Remain 14:57:07 loss: 2.3997 psnr: 18.2205 Lr: 1.99977e-03
[2025-02-17 11:56:49,066 INFO hook.py line 109 848561] Train: [6/100][450/605] Data 0.003 (0.002) Batch 0.952 (0.943) Remain 14:56:12 loss: 2.5529 psnr: 16.6689 Lr: 1.99970e-03
[2025-02-17 11:57:36,242 INFO hook.py line 109 848561] Train: [6/100][500/605] Data 0.002 (0.002) Batch 0.931 (0.943) Remain 14:55:28 loss: 2.6103 psnr: 16.4553 Lr: 1.99963e-03
[2025-02-17 11:58:23,573 INFO hook.py line 109 848561] Train: [6/100][550/605] Data 0.004 (0.002) Batch 0.891 (0.943) Remain 14:55:00 loss: 2.5874 psnr: 16.0956 Lr: 1.99956e-03
[2025-02-17 11:59:10,018 INFO hook.py line 109 848561] Train: [6/100][600/605] Data 0.002 (0.002) Batch 0.854 (0.942) Remain 14:53:04 loss: 2.7151 psnr: 15.4471 Lr: 1.99947e-03
[2025-02-17 11:59:14,346 INFO misc.py line 135 848561] Train result: loss: 2.6191 rgb_loss: 0.9760 psnr: 16.5803 depth_loss: 0.0802 feat_loss: 1.5629 
[2025-02-17 11:59:14,348 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 12:00:05,487 INFO hook.py line 109 848561] Train: [7/100][50/605] Data 0.002 (0.003) Batch 0.941 (0.944) Remain 14:53:39 loss: 2.5420 psnr: 16.7127 Lr: 1.99937e-03
[2025-02-17 12:00:52,616 INFO hook.py line 109 848561] Train: [7/100][100/605] Data 0.001 (0.002) Batch 0.913 (0.943) Remain 14:52:20 loss: 2.5008 psnr: 17.7575 Lr: 1.99927e-03
[2025-02-17 12:01:39,723 INFO hook.py line 109 848561] Train: [7/100][150/605] Data 0.003 (0.002) Batch 0.968 (0.943) Remain 14:51:14 loss: 2.5601 psnr: 16.9657 Lr: 1.99916e-03
[2025-02-17 12:02:26,821 INFO hook.py line 109 848561] Train: [7/100][200/605] Data 0.002 (0.002) Batch 0.918 (0.943) Remain 14:50:15 loss: 2.5992 psnr: 16.0468 Lr: 1.99904e-03
[2025-02-17 12:03:14,031 INFO hook.py line 109 848561] Train: [7/100][250/605] Data 0.003 (0.002) Batch 0.969 (0.943) Remain 14:49:47 loss: 2.3008 psnr: 17.8658 Lr: 1.99892e-03
[2025-02-17 12:04:01,198 INFO hook.py line 109 848561] Train: [7/100][300/605] Data 0.002 (0.002) Batch 0.936 (0.943) Remain 14:49:04 loss: 2.3034 psnr: 18.2050 Lr: 1.99879e-03
[2025-02-17 12:04:48,358 INFO hook.py line 109 848561] Train: [7/100][350/605] Data 0.002 (0.002) Batch 0.961 (0.943) Remain 14:48:18 loss: 2.5524 psnr: 16.2701 Lr: 1.99865e-03
[2025-02-17 12:05:35,491 INFO hook.py line 109 848561] Train: [7/100][400/605] Data 0.004 (0.002) Batch 0.945 (0.943) Remain 14:47:29 loss: 2.5531 psnr: 17.0058 Lr: 1.99851e-03
[2025-02-17 12:06:22,306 INFO hook.py line 109 848561] Train: [7/100][450/605] Data 0.003 (0.002) Batch 0.922 (0.942) Remain 14:45:59 loss: 2.3733 psnr: 17.8754 Lr: 1.99835e-03
[2025-02-17 12:07:09,430 INFO hook.py line 109 848561] Train: [7/100][500/605] Data 0.003 (0.002) Batch 0.945 (0.942) Remain 14:45:14 loss: 2.8636 psnr: 14.6618 Lr: 1.99819e-03
[2025-02-17 12:07:56,358 INFO hook.py line 109 848561] Train: [7/100][550/605] Data 0.002 (0.002) Batch 0.945 (0.942) Remain 14:44:08 loss: 2.4736 psnr: 17.9850 Lr: 1.99803e-03
[2025-02-17 12:08:42,488 INFO hook.py line 109 848561] Train: [7/100][600/605] Data 0.002 (0.002) Batch 0.871 (0.940) Remain 14:41:50 loss: 2.5021 psnr: 16.6085 Lr: 1.99785e-03
[2025-02-17 12:08:46,780 INFO misc.py line 135 848561] Train result: loss: 2.5876 rgb_loss: 0.9684 psnr: 16.5956 depth_loss: 0.0769 feat_loss: 1.5423 
[2025-02-17 12:08:46,780 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 12:09:37,705 INFO hook.py line 109 848561] Train: [8/100][50/605] Data 0.003 (0.002) Batch 0.923 (0.940) Remain 14:40:39 loss: 2.5529 psnr: 16.7459 Lr: 1.99765e-03
[2025-02-17 12:10:24,849 INFO hook.py line 109 848561] Train: [8/100][100/605] Data 0.003 (0.002) Batch 0.954 (0.941) Remain 14:41:17 loss: 2.5697 psnr: 16.4082 Lr: 1.99746e-03
[2025-02-17 12:11:11,960 INFO hook.py line 109 848561] Train: [8/100][150/605] Data 0.003 (0.002) Batch 0.917 (0.942) Remain 14:40:44 loss: 2.6078 psnr: 16.4209 Lr: 1.99726e-03
[2025-02-17 12:11:58,935 INFO hook.py line 109 848561] Train: [8/100][200/605] Data 0.002 (0.002) Batch 0.952 (0.941) Remain 14:39:25 loss: 2.5016 psnr: 16.9523 Lr: 1.99705e-03
[2025-02-17 12:12:45,904 INFO hook.py line 109 848561] Train: [8/100][250/605] Data 0.003 (0.002) Batch 0.929 (0.941) Remain 14:38:18 loss: 2.4457 psnr: 18.2990 Lr: 1.99684e-03
[2025-02-17 12:13:33,004 INFO hook.py line 109 848561] Train: [8/100][300/605] Data 0.003 (0.002) Batch 0.925 (0.941) Remain 14:37:42 loss: 2.3556 psnr: 17.2910 Lr: 1.99662e-03
[2025-02-17 12:14:19,929 INFO hook.py line 109 848561] Train: [8/100][350/605] Data 0.003 (0.002) Batch 0.937 (0.941) Remain 14:36:35 loss: 2.5682 psnr: 16.9743 Lr: 1.99639e-03
[2025-02-17 12:15:07,085 INFO hook.py line 109 848561] Train: [8/100][400/605] Data 0.002 (0.002) Batch 0.938 (0.941) Remain 14:36:06 loss: 2.5105 psnr: 17.1576 Lr: 1.99615e-03
[2025-02-17 12:15:54,327 INFO hook.py line 109 848561] Train: [8/100][450/605] Data 0.003 (0.002) Batch 0.956 (0.941) Remain 14:35:43 loss: 2.4654 psnr: 16.2475 Lr: 1.99592e-03
[2025-02-17 12:16:41,152 INFO hook.py line 109 848561] Train: [8/100][500/605] Data 0.002 (0.002) Batch 0.908 (0.941) Remain 14:34:28 loss: 2.4889 psnr: 17.2325 Lr: 1.99567e-03
[2025-02-17 12:17:28,409 INFO hook.py line 109 848561] Train: [8/100][550/605] Data 0.001 (0.002) Batch 0.940 (0.941) Remain 14:34:03 loss: 2.3771 psnr: 18.3742 Lr: 1.99541e-03
[2025-02-17 12:18:14,554 INFO hook.py line 109 848561] Train: [8/100][600/605] Data 0.002 (0.002) Batch 0.880 (0.940) Remain 14:31:50 loss: 2.4068 psnr: 17.6339 Lr: 1.99514e-03
[2025-02-17 12:18:18,891 INFO misc.py line 135 848561] Train result: loss: 2.5502 rgb_loss: 0.9465 psnr: 16.7533 depth_loss: 0.0769 feat_loss: 1.5268 
[2025-02-17 12:18:18,892 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 12:19:10,202 INFO hook.py line 109 848561] Train: [9/100][50/605] Data 0.003 (0.002) Batch 0.931 (0.941) Remain 14:32:21 loss: 2.6279 psnr: 15.5038 Lr: 1.99484e-03
[2025-02-17 12:19:56,925 INFO hook.py line 109 848561] Train: [9/100][100/605] Data 0.002 (0.002) Batch 0.959 (0.938) Remain 14:28:20 loss: 2.7021 psnr: 15.6951 Lr: 1.99456e-03
[2025-02-17 12:20:44,062 INFO hook.py line 109 848561] Train: [9/100][150/605] Data 0.002 (0.002) Batch 0.954 (0.939) Remain 14:29:07 loss: 2.4405 psnr: 17.9808 Lr: 1.99427e-03
[2025-02-17 12:21:31,049 INFO hook.py line 109 848561] Train: [9/100][200/605] Data 0.002 (0.002) Batch 0.931 (0.940) Remain 14:28:25 loss: 2.6372 psnr: 15.7317 Lr: 1.99398e-03
[2025-02-17 12:22:18,142 INFO hook.py line 109 848561] Train: [9/100][250/605] Data 0.003 (0.002) Batch 0.957 (0.940) Remain 14:28:04 loss: 2.3003 psnr: 18.1436 Lr: 1.99367e-03
[2025-02-17 12:23:05,234 INFO hook.py line 109 848561] Train: [9/100][300/605] Data 0.002 (0.002) Batch 0.944 (0.940) Remain 14:27:34 loss: 2.3537 psnr: 18.2469 Lr: 1.99336e-03
[2025-02-17 12:23:52,538 INFO hook.py line 109 848561] Train: [9/100][350/605] Data 0.002 (0.002) Batch 0.962 (0.941) Remain 14:27:33 loss: 2.5551 psnr: 17.2928 Lr: 1.99304e-03
[2025-02-17 12:24:39,925 INFO hook.py line 109 848561] Train: [9/100][400/605] Data 0.003 (0.002) Batch 0.942 (0.942) Remain 14:27:32 loss: 2.7148 psnr: 15.5718 Lr: 1.99272e-03
[2025-02-17 12:25:27,130 INFO hook.py line 109 848561] Train: [9/100][450/605] Data 0.002 (0.002) Batch 0.947 (0.942) Remain 14:26:59 loss: 2.3453 psnr: 18.2170 Lr: 1.99239e-03
[2025-02-17 12:26:14,186 INFO hook.py line 109 848561] Train: [9/100][500/605] Data 0.003 (0.002) Batch 0.953 (0.942) Remain 14:26:05 loss: 2.5270 psnr: 16.4890 Lr: 1.99205e-03
[2025-02-17 12:27:01,231 INFO hook.py line 109 848561] Train: [9/100][550/605] Data 0.002 (0.002) Batch 0.920 (0.942) Remain 14:25:12 loss: 2.3942 psnr: 16.8856 Lr: 1.99170e-03
[2025-02-17 12:27:47,598 INFO hook.py line 109 848561] Train: [9/100][600/605] Data 0.002 (0.002) Batch 0.896 (0.941) Remain 14:23:18 loss: 2.7558 psnr: 15.0101 Lr: 1.99134e-03
[2025-02-17 12:27:51,994 INFO misc.py line 135 848561] Train result: loss: 2.5402 rgb_loss: 0.9463 psnr: 16.7376 depth_loss: 0.0767 feat_loss: 1.5172 
[2025-02-17 12:27:51,994 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 12:28:43,033 INFO hook.py line 109 848561] Train: [10/100][50/605] Data 0.002 (0.002) Batch 0.944 (0.940) Remain 14:22:03 loss: 2.6428 psnr: 15.8867 Lr: 1.99094e-03
[2025-02-17 12:29:29,965 INFO hook.py line 109 848561] Train: [10/100][100/605] Data 0.002 (0.002) Batch 0.939 (0.939) Remain 14:20:27 loss: 2.6770 psnr: 16.3771 Lr: 1.99057e-03
[2025-02-17 12:30:16,906 INFO hook.py line 109 848561] Train: [10/100][150/605] Data 0.003 (0.002) Batch 0.939 (0.939) Remain 14:19:29 loss: 2.8124 psnr: 14.4121 Lr: 1.99020e-03
[2025-02-17 12:31:03,952 INFO hook.py line 109 848561] Train: [10/100][200/605] Data 0.004 (0.002) Batch 0.932 (0.940) Remain 14:19:05 loss: 2.2732 psnr: 18.0249 Lr: 1.98981e-03
[2025-02-17 12:31:50,851 INFO hook.py line 109 848561] Train: [10/100][250/605] Data 0.004 (0.002) Batch 0.946 (0.939) Remain 14:17:59 loss: 2.7040 psnr: 15.6134 Lr: 1.98942e-03
[2025-02-17 12:32:37,821 INFO hook.py line 109 848561] Train: [10/100][300/605] Data 0.002 (0.002) Batch 0.950 (0.939) Remain 14:17:13 loss: 2.5644 psnr: 16.7387 Lr: 1.98902e-03
[2025-02-17 12:33:24,651 INFO hook.py line 109 848561] Train: [10/100][350/605] Data 0.003 (0.002) Batch 0.947 (0.939) Remain 14:16:04 loss: 2.3578 psnr: 17.7833 Lr: 1.98861e-03
[2025-02-17 12:34:11,789 INFO hook.py line 109 848561] Train: [10/100][400/605] Data 0.002 (0.002) Batch 0.931 (0.939) Remain 14:15:44 loss: 2.3477 psnr: 17.8275 Lr: 1.98819e-03
[2025-02-17 12:34:58,824 INFO hook.py line 109 848561] Train: [10/100][450/605] Data 0.002 (0.002) Batch 0.968 (0.940) Remain 14:15:04 loss: 2.2407 psnr: 19.4265 Lr: 1.98777e-03
[2025-02-17 12:35:46,151 INFO hook.py line 109 848561] Train: [10/100][500/605] Data 0.002 (0.002) Batch 0.949 (0.940) Remain 14:14:56 loss: 2.3436 psnr: 18.1172 Lr: 1.98734e-03
[2025-02-17 12:36:33,612 INFO hook.py line 109 848561] Train: [10/100][550/605] Data 0.003 (0.002) Batch 0.957 (0.941) Remain 14:14:53 loss: 2.8773 psnr: 14.2382 Lr: 1.98690e-03
[2025-02-17 12:37:19,947 INFO hook.py line 109 848561] Train: [10/100][600/605] Data 0.002 (0.002) Batch 0.862 (0.940) Remain 14:13:01 loss: 2.5690 psnr: 16.9384 Lr: 1.98646e-03
[2025-02-17 12:37:24,278 INFO misc.py line 135 848561] Train result: loss: 2.5255 rgb_loss: 0.9427 psnr: 16.7499 depth_loss: 0.0747 feat_loss: 1.5081 
[2025-02-17 12:37:24,279 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 12:38:15,222 INFO hook.py line 109 848561] Train: [11/100][50/605] Data 0.003 (0.002) Batch 0.961 (0.938) Remain 14:10:36 loss: 2.4127 psnr: 17.0378 Lr: 1.98596e-03
[2025-02-17 12:39:02,289 INFO hook.py line 109 848561] Train: [11/100][100/605] Data 0.004 (0.003) Batch 0.926 (0.940) Remain 14:11:18 loss: 2.3444 psnr: 17.8288 Lr: 1.98550e-03
[2025-02-17 12:39:49,468 INFO hook.py line 109 848561] Train: [11/100][150/605] Data 0.002 (0.003) Batch 0.935 (0.941) Remain 14:11:41 loss: 2.7390 psnr: 15.5757 Lr: 1.98504e-03
[2025-02-17 12:40:36,409 INFO hook.py line 109 848561] Train: [11/100][200/605] Data 0.002 (0.002) Batch 0.938 (0.941) Remain 14:10:22 loss: 2.4599 psnr: 17.0304 Lr: 1.98456e-03
[2025-02-17 12:41:23,614 INFO hook.py line 109 848561] Train: [11/100][250/605] Data 0.001 (0.002) Batch 0.943 (0.941) Remain 14:10:15 loss: 2.4880 psnr: 16.8246 Lr: 1.98408e-03
[2025-02-17 12:42:10,565 INFO hook.py line 109 848561] Train: [11/100][300/605] Data 0.003 (0.002) Batch 0.940 (0.941) Remain 14:09:07 loss: 2.6278 psnr: 15.9012 Lr: 1.98359e-03
[2025-02-17 12:42:57,463 INFO hook.py line 109 848561] Train: [11/100][350/605] Data 0.003 (0.002) Batch 0.936 (0.940) Remain 14:07:58 loss: 2.4935 psnr: 16.5609 Lr: 1.98309e-03
[2025-02-17 12:43:44,464 INFO hook.py line 109 848561] Train: [11/100][400/605] Data 0.001 (0.002) Batch 0.963 (0.940) Remain 14:07:08 loss: 2.5687 psnr: 16.2100 Lr: 1.98259e-03
[2025-02-17 12:44:31,739 INFO hook.py line 109 848561] Train: [11/100][450/605] Data 0.004 (0.002) Batch 0.970 (0.941) Remain 14:06:52 loss: 2.8359 psnr: 14.3648 Lr: 1.98208e-03
[2025-02-17 12:45:18,612 INFO hook.py line 109 848561] Train: [11/100][500/605] Data 0.003 (0.002) Batch 0.938 (0.941) Remain 14:05:45 loss: 2.6919 psnr: 15.1511 Lr: 1.98156e-03
[2025-02-17 12:46:05,691 INFO hook.py line 109 848561] Train: [11/100][550/605] Data 0.002 (0.002) Batch 0.938 (0.941) Remain 14:05:03 loss: 2.6722 psnr: 16.0478 Lr: 1.98103e-03
[2025-02-17 12:46:51,969 INFO hook.py line 109 848561] Train: [11/100][600/605] Data 0.003 (0.002) Batch 0.876 (0.939) Remain 14:03:08 loss: 2.8000 psnr: 14.6965 Lr: 1.98050e-03
[2025-02-17 12:46:56,321 INFO misc.py line 135 848561] Train result: loss: 2.5086 rgb_loss: 0.9307 psnr: 16.8461 depth_loss: 0.0736 feat_loss: 1.5043 
[2025-02-17 12:46:56,322 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 12:47:48,161 INFO hook.py line 109 848561] Train: [12/100][50/605] Data 0.003 (0.002) Batch 0.951 (0.941) Remain 14:03:41 loss: 2.7873 psnr: 14.5741 Lr: 1.97990e-03
[2025-02-17 12:48:35,513 INFO hook.py line 109 848561] Train: [12/100][100/605] Data 0.002 (0.002) Batch 0.982 (0.944) Remain 14:05:41 loss: 2.4549 psnr: 16.9157 Lr: 1.97935e-03
[2025-02-17 12:49:22,645 INFO hook.py line 109 848561] Train: [12/100][150/605] Data 0.004 (0.002) Batch 0.935 (0.944) Remain 14:04:27 loss: 2.6409 psnr: 15.8987 Lr: 1.97880e-03
[2025-02-17 12:50:09,817 INFO hook.py line 109 848561] Train: [12/100][200/605] Data 0.003 (0.002) Batch 0.943 (0.944) Remain 14:03:37 loss: 2.4930 psnr: 16.3031 Lr: 1.97823e-03
[2025-02-17 12:50:57,100 INFO hook.py line 109 848561] Train: [12/100][250/605] Data 0.002 (0.002) Batch 0.931 (0.944) Remain 14:03:13 loss: 2.7429 psnr: 15.4696 Lr: 1.97766e-03
[2025-02-17 12:51:44,524 INFO hook.py line 109 848561] Train: [12/100][300/605] Data 0.002 (0.002) Batch 0.966 (0.945) Remain 14:03:06 loss: 2.4636 psnr: 17.4769 Lr: 1.97709e-03
[2025-02-17 12:52:31,452 INFO hook.py line 109 848561] Train: [12/100][350/605] Data 0.003 (0.002) Batch 0.958 (0.944) Remain 14:01:31 loss: 2.4994 psnr: 17.1525 Lr: 1.97650e-03
[2025-02-17 12:53:18,855 INFO hook.py line 109 848561] Train: [12/100][400/605] Data 0.002 (0.002) Batch 0.985 (0.944) Remain 14:01:12 loss: 2.7425 psnr: 15.6917 Lr: 1.97591e-03
[2025-02-17 12:54:05,493 INFO hook.py line 109 848561] Train: [12/100][450/605] Data 0.003 (0.002) Batch 0.951 (0.943) Remain 13:59:16 loss: 2.5266 psnr: 16.3411 Lr: 1.97531e-03
[2025-02-17 12:54:52,896 INFO hook.py line 109 848561] Train: [12/100][500/605] Data 0.002 (0.002) Batch 0.958 (0.944) Remain 13:58:55 loss: 2.5210 psnr: 16.2355 Lr: 1.97470e-03
[2025-02-17 12:55:39,939 INFO hook.py line 109 848561] Train: [12/100][550/605] Data 0.002 (0.002) Batch 0.936 (0.943) Remain 13:57:55 loss: 2.5451 psnr: 16.7097 Lr: 1.97409e-03
[2025-02-17 12:56:26,287 INFO hook.py line 109 848561] Train: [12/100][600/605] Data 0.001 (0.002) Batch 0.885 (0.942) Remain 13:55:54 loss: 2.6501 psnr: 16.1993 Lr: 1.97346e-03
[2025-02-17 12:56:30,633 INFO misc.py line 135 848561] Train result: loss: 2.5039 rgb_loss: 0.9330 psnr: 16.8037 depth_loss: 0.0738 feat_loss: 1.4972 
[2025-02-17 12:56:30,634 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 12:57:21,947 INFO hook.py line 109 848561] Train: [13/100][50/605] Data 0.001 (0.002) Batch 0.955 (0.940) Remain 13:53:08 loss: 2.6000 psnr: 16.2432 Lr: 1.97277e-03
[2025-02-17 12:58:08,633 INFO hook.py line 109 848561] Train: [13/100][100/605] Data 0.003 (0.002) Batch 0.938 (0.937) Remain 13:49:34 loss: 2.5575 psnr: 15.7107 Lr: 1.97214e-03
[2025-02-17 12:58:55,281 INFO hook.py line 109 848561] Train: [13/100][150/605] Data 0.003 (0.002) Batch 0.889 (0.935) Remain 13:47:40 loss: 2.2918 psnr: 18.7042 Lr: 1.97149e-03
[2025-02-17 12:59:42,350 INFO hook.py line 109 848561] Train: [13/100][200/605] Data 0.001 (0.003) Batch 0.909 (0.937) Remain 13:48:14 loss: 2.7487 psnr: 15.0532 Lr: 1.97084e-03
[2025-02-17 13:00:29,376 INFO hook.py line 109 848561] Train: [13/100][250/605] Data 0.003 (0.003) Batch 0.930 (0.938) Remain 13:48:05 loss: 2.3861 psnr: 17.0061 Lr: 1.97018e-03
[2025-02-17 13:01:16,226 INFO hook.py line 109 848561] Train: [13/100][300/605] Data 0.002 (0.003) Batch 0.930 (0.938) Remain 13:47:13 loss: 2.3682 psnr: 17.0120 Lr: 1.96951e-03
[2025-02-17 13:02:03,130 INFO hook.py line 109 848561] Train: [13/100][350/605] Data 0.003 (0.003) Batch 0.937 (0.938) Remain 13:46:30 loss: 2.4893 psnr: 17.0655 Lr: 1.96885e-03
[2025-02-17 13:02:49,696 INFO hook.py line 109 848561] Train: [13/100][400/605] Data 0.003 (0.002) Batch 0.957 (0.937) Remain 13:45:01 loss: 2.5873 psnr: 16.4413 Lr: 1.96817e-03
[2025-02-17 13:03:36,703 INFO hook.py line 109 848561] Train: [13/100][450/605] Data 0.003 (0.002) Batch 0.932 (0.937) Remain 13:44:34 loss: 2.3665 psnr: 18.0755 Lr: 1.96749e-03
[2025-02-17 13:04:24,143 INFO hook.py line 109 848561] Train: [13/100][500/605] Data 0.002 (0.002) Batch 0.957 (0.938) Remain 13:44:49 loss: 2.5486 psnr: 16.7718 Lr: 1.96679e-03
[2025-02-17 13:05:11,181 INFO hook.py line 109 848561] Train: [13/100][550/605] Data 0.003 (0.002) Batch 0.932 (0.939) Remain 13:44:13 loss: 2.5457 psnr: 16.2149 Lr: 1.96609e-03
[2025-02-17 13:05:57,225 INFO hook.py line 109 848561] Train: [13/100][600/605] Data 0.002 (0.002) Batch 0.850 (0.937) Remain 13:42:08 loss: 2.2326 psnr: 19.1520 Lr: 1.96538e-03
[2025-02-17 13:06:01,519 INFO misc.py line 135 848561] Train result: loss: 2.4795 rgb_loss: 0.9136 psnr: 16.9232 depth_loss: 0.0746 feat_loss: 1.4914 
[2025-02-17 13:06:01,521 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 13:06:52,543 INFO hook.py line 109 848561] Train: [14/100][50/605] Data 0.003 (0.002) Batch 0.922 (0.936) Remain 13:40:09 loss: 2.5034 psnr: 16.2732 Lr: 1.96459e-03
[2025-02-17 13:07:39,753 INFO hook.py line 109 848561] Train: [14/100][100/605] Data 0.002 (0.002) Batch 0.954 (0.940) Remain 13:43:10 loss: 2.5493 psnr: 16.0766 Lr: 1.96387e-03
[2025-02-17 13:08:26,684 INFO hook.py line 109 848561] Train: [14/100][150/605] Data 0.001 (0.002) Batch 0.919 (0.940) Remain 13:41:56 loss: 2.5506 psnr: 16.8517 Lr: 1.96314e-03
[2025-02-17 13:09:13,494 INFO hook.py line 109 848561] Train: [14/100][200/605] Data 0.002 (0.002) Batch 0.936 (0.939) Remain 13:40:23 loss: 2.4621 psnr: 16.5813 Lr: 1.96240e-03
[2025-02-17 13:10:00,767 INFO hook.py line 109 848561] Train: [14/100][250/605] Data 0.002 (0.002) Batch 0.937 (0.940) Remain 13:40:47 loss: 2.3526 psnr: 17.8460 Lr: 1.96165e-03
[2025-02-17 13:10:47,943 INFO hook.py line 109 848561] Train: [14/100][300/605] Data 0.002 (0.002) Batch 0.912 (0.941) Remain 13:40:30 loss: 2.3970 psnr: 17.0394 Lr: 1.96090e-03
[2025-02-17 13:11:34,928 INFO hook.py line 109 848561] Train: [14/100][350/605] Data 0.002 (0.002) Batch 0.945 (0.941) Remain 13:39:36 loss: 2.3113 psnr: 18.4417 Lr: 1.96014e-03
[2025-02-17 13:12:21,880 INFO hook.py line 109 848561] Train: [14/100][400/605] Data 0.002 (0.002) Batch 0.927 (0.940) Remain 13:38:39 loss: 2.4374 psnr: 16.5157 Lr: 1.95937e-03
[2025-02-17 13:13:08,622 INFO hook.py line 109 848561] Train: [14/100][450/605] Data 0.002 (0.002) Batch 0.932 (0.940) Remain 13:37:20 loss: 2.3347 psnr: 17.4615 Lr: 1.95860e-03
[2025-02-17 13:13:55,606 INFO hook.py line 109 848561] Train: [14/100][500/605] Data 0.002 (0.002) Batch 0.954 (0.940) Remain 13:36:32 loss: 2.5212 psnr: 16.1787 Lr: 1.95781e-03
[2025-02-17 13:14:42,735 INFO hook.py line 109 848561] Train: [14/100][550/605] Data 0.003 (0.002) Batch 0.931 (0.940) Remain 13:35:59 loss: 2.4045 psnr: 17.4633 Lr: 1.95702e-03
[2025-02-17 13:15:29,212 INFO hook.py line 109 848561] Train: [14/100][600/605] Data 0.002 (0.002) Batch 0.877 (0.939) Remain 13:34:26 loss: 2.5750 psnr: 16.1976 Lr: 1.95623e-03
[2025-02-17 13:15:33,537 INFO misc.py line 135 848561] Train result: loss: 2.4676 rgb_loss: 0.9067 psnr: 16.9926 depth_loss: 0.0746 feat_loss: 1.4863 
[2025-02-17 13:15:33,537 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 13:16:24,739 INFO hook.py line 109 848561] Train: [15/100][50/605] Data 0.002 (0.002) Batch 0.947 (0.940) Remain 13:34:22 loss: 2.4431 psnr: 18.0600 Lr: 1.95534e-03
[2025-02-17 13:17:11,760 INFO hook.py line 109 848561] Train: [15/100][100/605] Data 0.003 (0.002) Batch 0.947 (0.940) Remain 13:33:46 loss: 2.3641 psnr: 17.6142 Lr: 1.95453e-03
[2025-02-17 13:17:58,497 INFO hook.py line 109 848561] Train: [15/100][150/605] Data 0.002 (0.002) Batch 0.933 (0.938) Remain 13:31:22 loss: 2.5283 psnr: 16.4209 Lr: 1.95371e-03
[2025-02-17 13:18:45,545 INFO hook.py line 109 848561] Train: [15/100][200/605] Data 0.003 (0.002) Batch 0.908 (0.939) Remain 13:31:09 loss: 2.1292 psnr: 20.0237 Lr: 1.95289e-03
[2025-02-17 13:19:32,572 INFO hook.py line 109 848561] Train: [15/100][250/605] Data 0.002 (0.002) Batch 0.929 (0.939) Remain 13:30:38 loss: 2.4766 psnr: 16.2902 Lr: 1.95206e-03
[2025-02-17 13:20:19,794 INFO hook.py line 109 848561] Train: [15/100][300/605] Data 0.003 (0.002) Batch 0.933 (0.940) Remain 13:30:36 loss: 2.4930 psnr: 17.1393 Lr: 1.95122e-03
[2025-02-17 13:21:06,642 INFO hook.py line 109 848561] Train: [15/100][350/605] Data 0.003 (0.002) Batch 0.932 (0.940) Remain 13:29:24 loss: 2.3546 psnr: 17.3705 Lr: 1.95037e-03
[2025-02-17 13:21:53,558 INFO hook.py line 109 848561] Train: [15/100][400/605] Data 0.003 (0.002) Batch 0.935 (0.940) Remain 13:28:28 loss: 2.7370 psnr: 15.1512 Lr: 1.94952e-03
[2025-02-17 13:22:40,352 INFO hook.py line 109 848561] Train: [15/100][450/605] Data 0.002 (0.002) Batch 0.925 (0.939) Remain 13:27:20 loss: 2.6512 psnr: 15.4699 Lr: 1.94866e-03
[2025-02-17 13:23:27,449 INFO hook.py line 109 848561] Train: [15/100][500/605] Data 0.002 (0.002) Batch 0.938 (0.939) Remain 13:26:48 loss: 2.6822 psnr: 15.8103 Lr: 1.94779e-03
[2025-02-17 13:24:14,665 INFO hook.py line 109 848561] Train: [15/100][550/605] Data 0.003 (0.002) Batch 0.918 (0.940) Remain 13:26:24 loss: 2.4882 psnr: 16.9079 Lr: 1.94691e-03
[2025-02-17 13:25:00,862 INFO hook.py line 109 848561] Train: [15/100][600/605] Data 0.003 (0.002) Batch 0.878 (0.939) Remain 13:24:28 loss: 2.2484 psnr: 19.0932 Lr: 1.94603e-03
[2025-02-17 13:25:05,146 INFO misc.py line 135 848561] Train result: loss: 2.4632 rgb_loss: 0.9065 psnr: 16.9925 depth_loss: 0.0732 feat_loss: 1.4836 
[2025-02-17 13:25:05,148 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 13:25:56,186 INFO hook.py line 109 848561] Train: [16/100][50/605] Data 0.003 (0.002) Batch 0.925 (0.938) Remain 13:22:48 loss: 2.4141 psnr: 16.8192 Lr: 1.94505e-03
[2025-02-17 13:26:43,320 INFO hook.py line 109 848561] Train: [16/100][100/605] Data 0.002 (0.002) Batch 0.935 (0.940) Remain 13:24:16 loss: 2.3053 psnr: 17.8712 Lr: 1.94416e-03
[2025-02-17 13:27:30,226 INFO hook.py line 109 848561] Train: [16/100][150/605] Data 0.002 (0.002) Batch 0.932 (0.939) Remain 13:22:52 loss: 2.5609 psnr: 15.5329 Lr: 1.94325e-03
[2025-02-17 13:28:17,118 INFO hook.py line 109 848561] Train: [16/100][200/605] Data 0.001 (0.002) Batch 0.917 (0.939) Remain 13:21:44 loss: 2.2817 psnr: 19.2477 Lr: 1.94234e-03
[2025-02-17 13:29:04,017 INFO hook.py line 109 848561] Train: [16/100][250/605] Data 0.002 (0.002) Batch 0.945 (0.939) Remain 13:20:45 loss: 2.3975 psnr: 17.3408 Lr: 1.94142e-03
[2025-02-17 13:29:50,955 INFO hook.py line 109 848561] Train: [16/100][300/605] Data 0.002 (0.002) Batch 0.904 (0.939) Remain 13:19:58 loss: 2.2653 psnr: 17.9324 Lr: 1.94050e-03
[2025-02-17 13:30:37,907 INFO hook.py line 109 848561] Train: [16/100][350/605] Data 0.003 (0.002) Batch 0.928 (0.939) Remain 13:19:12 loss: 2.8759 psnr: 14.5353 Lr: 1.93956e-03
[2025-02-17 13:31:25,007 INFO hook.py line 109 848561] Train: [16/100][400/605] Data 0.003 (0.002) Batch 0.947 (0.939) Remain 13:18:45 loss: 2.2723 psnr: 18.3314 Lr: 1.93863e-03
[2025-02-17 13:32:11,899 INFO hook.py line 109 848561] Train: [16/100][450/605] Data 0.003 (0.002) Batch 0.914 (0.939) Remain 13:17:50 loss: 2.3205 psnr: 17.4880 Lr: 1.93768e-03
[2025-02-17 13:32:58,697 INFO hook.py line 109 848561] Train: [16/100][500/605] Data 0.003 (0.002) Batch 0.922 (0.939) Remain 13:16:47 loss: 2.7553 psnr: 14.9328 Lr: 1.93673e-03
[2025-02-17 13:33:45,605 INFO hook.py line 109 848561] Train: [16/100][550/605] Data 0.004 (0.002) Batch 0.899 (0.939) Remain 13:15:57 loss: 2.4663 psnr: 17.1095 Lr: 1.93577e-03
[2025-02-17 13:34:31,762 INFO hook.py line 109 848561] Train: [16/100][600/605] Data 0.002 (0.002) Batch 0.867 (0.937) Remain 13:14:04 loss: 2.3502 psnr: 17.4846 Lr: 1.93480e-03
[2025-02-17 13:34:36,027 INFO misc.py line 135 848561] Train result: loss: 2.4480 rgb_loss: 0.8951 psnr: 17.0810 depth_loss: 0.0724 feat_loss: 1.4806 
[2025-02-17 13:34:36,028 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 13:35:26,996 INFO hook.py line 109 848561] Train: [17/100][50/605] Data 0.002 (0.002) Batch 0.939 (0.940) Remain 13:15:27 loss: 2.4619 psnr: 16.0621 Lr: 1.93373e-03
[2025-02-17 13:36:14,082 INFO hook.py line 109 848561] Train: [17/100][100/605] Data 0.003 (0.002) Batch 0.958 (0.941) Remain 13:15:23 loss: 2.4400 psnr: 16.5370 Lr: 1.93274e-03
[2025-02-17 13:37:01,133 INFO hook.py line 109 848561] Train: [17/100][150/605] Data 0.003 (0.002) Batch 0.912 (0.941) Remain 13:14:38 loss: 2.5057 psnr: 16.3002 Lr: 1.93176e-03
[2025-02-17 13:37:48,052 INFO hook.py line 109 848561] Train: [17/100][200/605] Data 0.003 (0.002) Batch 0.960 (0.940) Remain 13:13:17 loss: 2.4487 psnr: 17.1138 Lr: 1.93076e-03
[2025-02-17 13:38:35,015 INFO hook.py line 109 848561] Train: [17/100][250/605] Data 0.003 (0.002) Batch 0.960 (0.940) Remain 13:12:20 loss: 2.4229 psnr: 16.8635 Lr: 1.92976e-03
[2025-02-17 13:39:21,857 INFO hook.py line 109 848561] Train: [17/100][300/605] Data 0.003 (0.002) Batch 0.935 (0.940) Remain 13:11:05 loss: 2.3208 psnr: 17.4372 Lr: 1.92875e-03
[2025-02-17 13:40:09,098 INFO hook.py line 109 848561] Train: [17/100][350/605] Data 0.003 (0.002) Batch 0.929 (0.940) Remain 13:10:56 loss: 2.4444 psnr: 16.6706 Lr: 1.92773e-03
[2025-02-17 13:40:55,925 INFO hook.py line 109 848561] Train: [17/100][400/605] Data 0.003 (0.002) Batch 0.977 (0.940) Remain 13:09:46 loss: 2.5310 psnr: 16.4193 Lr: 1.92671e-03
[2025-02-17 13:41:43,261 INFO hook.py line 109 848561] Train: [17/100][450/605] Data 0.003 (0.002) Batch 0.927 (0.941) Remain 13:09:37 loss: 2.5331 psnr: 16.0991 Lr: 1.92568e-03
[2025-02-17 13:42:30,268 INFO hook.py line 109 848561] Train: [17/100][500/605] Data 0.003 (0.002) Batch 0.965 (0.941) Remain 13:08:48 loss: 2.3888 psnr: 17.5485 Lr: 1.92464e-03
[2025-02-17 13:43:17,395 INFO hook.py line 109 848561] Train: [17/100][550/605] Data 0.001 (0.002) Batch 0.929 (0.941) Remain 13:08:10 loss: 2.2424 psnr: 18.3600 Lr: 1.92360e-03
[2025-02-17 13:44:03,961 INFO hook.py line 109 848561] Train: [17/100][600/605] Data 0.002 (0.002) Batch 0.844 (0.940) Remain 13:06:43 loss: 2.4467 psnr: 17.6100 Lr: 1.92256e-03
[2025-02-17 13:44:08,245 INFO misc.py line 135 848561] Train result: loss: 2.4465 rgb_loss: 0.8980 psnr: 17.0193 depth_loss: 0.0741 feat_loss: 1.4744 
[2025-02-17 13:44:08,246 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 13:44:59,023 INFO hook.py line 109 848561] Train: [18/100][50/605] Data 0.002 (0.002) Batch 0.919 (0.934) Remain 13:01:05 loss: 2.5458 psnr: 16.5004 Lr: 1.92140e-03
[2025-02-17 13:45:45,986 INFO hook.py line 109 848561] Train: [18/100][100/605] Data 0.002 (0.002) Batch 0.951 (0.937) Remain 13:02:28 loss: 2.6424 psnr: 15.2083 Lr: 1.92034e-03
[2025-02-17 13:46:33,039 INFO hook.py line 109 848561] Train: [18/100][150/605] Data 0.003 (0.003) Batch 0.955 (0.938) Remain 13:02:53 loss: 2.7005 psnr: 15.6546 Lr: 1.91926e-03
[2025-02-17 13:47:19,978 INFO hook.py line 109 848561] Train: [18/100][200/605] Data 0.003 (0.002) Batch 0.926 (0.938) Remain 13:02:13 loss: 2.3244 psnr: 17.9311 Lr: 1.91818e-03
[2025-02-17 13:48:07,071 INFO hook.py line 109 848561] Train: [18/100][250/605] Data 0.003 (0.002) Batch 0.974 (0.939) Remain 13:02:01 loss: 2.6224 psnr: 15.7139 Lr: 1.91710e-03
[2025-02-17 13:48:54,185 INFO hook.py line 109 848561] Train: [18/100][300/605] Data 0.003 (0.002) Batch 0.939 (0.940) Remain 13:01:41 loss: 2.4151 psnr: 16.7115 Lr: 1.91600e-03
[2025-02-17 13:49:41,270 INFO hook.py line 109 848561] Train: [18/100][350/605] Data 0.003 (0.002) Batch 0.937 (0.940) Remain 13:01:09 loss: 2.5536 psnr: 16.2931 Lr: 1.91490e-03
[2025-02-17 13:50:28,231 INFO hook.py line 109 848561] Train: [18/100][400/605] Data 0.003 (0.002) Batch 0.956 (0.940) Remain 13:00:17 loss: 2.3887 psnr: 17.2228 Lr: 1.91380e-03
[2025-02-17 13:51:15,264 INFO hook.py line 109 848561] Train: [18/100][450/605] Data 0.003 (0.002) Batch 0.938 (0.940) Remain 12:59:35 loss: 2.7330 psnr: 15.3083 Lr: 1.91268e-03
[2025-02-17 13:52:02,330 INFO hook.py line 109 848561] Train: [18/100][500/605] Data 0.002 (0.002) Batch 0.973 (0.940) Remain 12:58:55 loss: 2.3451 psnr: 17.8279 Lr: 1.91156e-03
[2025-02-17 13:52:49,303 INFO hook.py line 109 848561] Train: [18/100][550/605] Data 0.003 (0.002) Batch 0.988 (0.940) Remain 12:58:05 loss: 2.5587 psnr: 15.8392 Lr: 1.91044e-03
[2025-02-17 13:53:35,435 INFO hook.py line 109 848561] Train: [18/100][600/605] Data 0.002 (0.002) Batch 0.869 (0.939) Remain 12:56:06 loss: 2.3111 psnr: 17.3921 Lr: 1.90930e-03
[2025-02-17 13:53:39,802 INFO misc.py line 135 848561] Train result: loss: 2.4470 rgb_loss: 0.9011 psnr: 17.0091 depth_loss: 0.0725 feat_loss: 1.4734 
[2025-02-17 13:53:39,803 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 13:54:31,079 INFO hook.py line 109 848561] Train: [19/100][50/605] Data 0.002 (0.002) Batch 0.945 (0.944) Remain 12:59:58 loss: 2.3407 psnr: 18.4534 Lr: 1.90805e-03
[2025-02-17 13:55:18,303 INFO hook.py line 109 848561] Train: [19/100][100/605] Data 0.003 (0.002) Batch 0.959 (0.944) Remain 12:59:16 loss: 2.2511 psnr: 18.9827 Lr: 1.90690e-03
[2025-02-17 13:56:05,130 INFO hook.py line 109 848561] Train: [19/100][150/605] Data 0.002 (0.002) Batch 0.950 (0.942) Remain 12:56:17 loss: 2.4983 psnr: 17.1476 Lr: 1.90575e-03
[2025-02-17 13:56:51,996 INFO hook.py line 109 848561] Train: [19/100][200/605] Data 0.002 (0.002) Batch 0.937 (0.941) Remain 12:54:34 loss: 2.5079 psnr: 15.9583 Lr: 1.90458e-03
[2025-02-17 13:57:38,377 INFO hook.py line 109 848561] Train: [19/100][250/605] Data 0.002 (0.002) Batch 0.923 (0.938) Remain 12:51:38 loss: 2.2826 psnr: 18.6189 Lr: 1.90342e-03
[2025-02-17 13:58:25,409 INFO hook.py line 109 848561] Train: [19/100][300/605] Data 0.003 (0.002) Batch 0.957 (0.938) Remain 12:51:13 loss: 2.3456 psnr: 17.7765 Lr: 1.90224e-03
[2025-02-17 13:59:12,126 INFO hook.py line 109 848561] Train: [19/100][350/605] Data 0.003 (0.002) Batch 0.932 (0.938) Remain 12:49:57 loss: 2.2187 psnr: 18.2736 Lr: 1.90106e-03
[2025-02-17 13:59:59,157 INFO hook.py line 109 848561] Train: [19/100][400/605] Data 0.003 (0.002) Batch 0.964 (0.938) Remain 12:49:28 loss: 2.3736 psnr: 17.8518 Lr: 1.89987e-03
[2025-02-17 14:00:45,943 INFO hook.py line 109 848561] Train: [19/100][450/605] Data 0.002 (0.002) Batch 0.946 (0.938) Remain 12:48:27 loss: 2.1428 psnr: 20.0223 Lr: 1.89867e-03
[2025-02-17 14:01:33,001 INFO hook.py line 109 848561] Train: [19/100][500/605] Data 0.002 (0.002) Batch 1.014 (0.938) Remain 12:47:56 loss: 2.4413 psnr: 16.3953 Lr: 1.89747e-03
[2025-02-17 14:02:19,988 INFO hook.py line 109 848561] Train: [19/100][550/605] Data 0.002 (0.002) Batch 0.933 (0.938) Remain 12:47:16 loss: 2.6764 psnr: 15.3355 Lr: 1.89626e-03
[2025-02-17 14:03:06,005 INFO hook.py line 109 848561] Train: [19/100][600/605] Data 0.002 (0.002) Batch 0.865 (0.937) Remain 12:45:15 loss: 2.1704 psnr: 19.1579 Lr: 1.89505e-03
[2025-02-17 14:03:10,318 INFO misc.py line 135 848561] Train result: loss: 2.4296 rgb_loss: 0.8869 psnr: 17.1396 depth_loss: 0.0720 feat_loss: 1.4706 
[2025-02-17 14:03:10,318 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 14:04:01,678 INFO hook.py line 109 848561] Train: [20/100][50/605] Data 0.002 (0.002) Batch 0.928 (0.947) Remain 12:52:19 loss: 2.7122 psnr: 15.3661 Lr: 1.89370e-03
[2025-02-17 14:04:48,426 INFO hook.py line 109 848561] Train: [20/100][100/605] Data 0.002 (0.002) Batch 0.947 (0.941) Remain 12:46:39 loss: 2.6220 psnr: 16.1121 Lr: 1.89247e-03
[2025-02-17 14:05:35,045 INFO hook.py line 109 848561] Train: [20/100][150/605] Data 0.002 (0.002) Batch 0.932 (0.938) Remain 12:43:35 loss: 2.4383 psnr: 16.8803 Lr: 1.89124e-03
[2025-02-17 14:06:22,115 INFO hook.py line 109 848561] Train: [20/100][200/605] Data 0.004 (0.002) Batch 0.920 (0.939) Remain 12:43:33 loss: 2.3973 psnr: 17.8099 Lr: 1.88999e-03
[2025-02-17 14:07:09,278 INFO hook.py line 109 848561] Train: [20/100][250/605] Data 0.002 (0.002) Batch 0.925 (0.940) Remain 12:43:31 loss: 2.4993 psnr: 16.4911 Lr: 1.88874e-03
[2025-02-17 14:07:56,027 INFO hook.py line 109 848561] Train: [20/100][300/605] Data 0.003 (0.002) Batch 0.965 (0.939) Remain 12:42:06 loss: 2.3429 psnr: 17.5731 Lr: 1.88749e-03
[2025-02-17 14:08:43,038 INFO hook.py line 109 848561] Train: [20/100][350/605] Data 0.003 (0.002) Batch 0.956 (0.939) Remain 12:41:29 loss: 2.3452 psnr: 17.7214 Lr: 1.88623e-03
[2025-02-17 14:09:29,717 INFO hook.py line 109 848561] Train: [20/100][400/605] Data 0.003 (0.002) Batch 0.939 (0.938) Remain 12:40:08 loss: 2.5235 psnr: 16.4468 Lr: 1.88496e-03
[2025-02-17 14:10:16,647 INFO hook.py line 109 848561] Train: [20/100][450/605] Data 0.003 (0.002) Batch 0.925 (0.938) Remain 12:39:23 loss: 2.5310 psnr: 15.8698 Lr: 1.88368e-03
[2025-02-17 14:11:03,585 INFO hook.py line 109 848561] Train: [20/100][500/605] Data 0.003 (0.002) Batch 0.925 (0.938) Remain 12:38:38 loss: 2.7077 psnr: 15.1815 Lr: 1.88240e-03
[2025-02-17 14:11:50,508 INFO hook.py line 109 848561] Train: [20/100][550/605] Data 0.003 (0.002) Batch 0.950 (0.938) Remain 12:37:51 loss: 2.6817 psnr: 15.7377 Lr: 1.88111e-03
[2025-02-17 14:12:36,562 INFO hook.py line 109 848561] Train: [20/100][600/605] Data 0.002 (0.002) Batch 0.861 (0.937) Remain 12:35:54 loss: 2.2347 psnr: 18.6200 Lr: 1.87981e-03
[2025-02-17 14:12:40,883 INFO misc.py line 135 848561] Train result: loss: 2.4246 rgb_loss: 0.8848 psnr: 17.1327 depth_loss: 0.0714 feat_loss: 1.4684 
[2025-02-17 14:12:40,883 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 14:13:31,916 INFO hook.py line 109 848561] Train: [21/100][50/605] Data 0.001 (0.002) Batch 0.955 (0.939) Remain 12:36:31 loss: 2.4850 psnr: 17.0789 Lr: 1.87838e-03
[2025-02-17 14:14:18,834 INFO hook.py line 109 848561] Train: [21/100][100/605] Data 0.003 (0.002) Batch 0.964 (0.939) Remain 12:35:36 loss: 2.3326 psnr: 17.9041 Lr: 1.87707e-03
[2025-02-17 14:15:05,453 INFO hook.py line 109 848561] Train: [21/100][150/605] Data 0.002 (0.002) Batch 0.906 (0.937) Remain 12:33:06 loss: 2.1220 psnr: 19.6761 Lr: 1.87575e-03
[2025-02-17 14:15:52,334 INFO hook.py line 109 848561] Train: [21/100][200/605] Data 0.003 (0.002) Batch 0.964 (0.937) Remain 12:32:33 loss: 2.2796 psnr: 17.8455 Lr: 1.87443e-03
[2025-02-17 14:16:39,397 INFO hook.py line 109 848561] Train: [21/100][250/605] Data 0.002 (0.002) Batch 0.952 (0.938) Remain 12:32:29 loss: 2.2405 psnr: 18.0905 Lr: 1.87310e-03
[2025-02-17 14:17:25,986 INFO hook.py line 109 848561] Train: [21/100][300/605] Data 0.003 (0.002) Batch 0.927 (0.937) Remain 12:30:55 loss: 2.3041 psnr: 17.5174 Lr: 1.87177e-03
[2025-02-17 14:18:13,013 INFO hook.py line 109 848561] Train: [21/100][350/605] Data 0.002 (0.002) Batch 0.965 (0.937) Remain 12:30:34 loss: 2.4499 psnr: 17.0450 Lr: 1.87042e-03
[2025-02-17 14:18:59,856 INFO hook.py line 109 848561] Train: [21/100][400/605] Data 0.002 (0.002) Batch 0.957 (0.937) Remain 12:29:45 loss: 2.3746 psnr: 17.8069 Lr: 1.86908e-03
[2025-02-17 14:19:46,633 INFO hook.py line 109 848561] Train: [21/100][450/605] Data 0.003 (0.002) Batch 0.954 (0.937) Remain 12:28:49 loss: 2.5168 psnr: 16.2085 Lr: 1.86772e-03
[2025-02-17 14:20:33,579 INFO hook.py line 109 848561] Train: [21/100][500/605] Data 0.003 (0.002) Batch 0.941 (0.937) Remain 12:28:12 loss: 2.4580 psnr: 16.6628 Lr: 1.86636e-03
[2025-02-17 14:21:20,327 INFO hook.py line 109 848561] Train: [21/100][550/605] Data 0.002 (0.002) Batch 0.938 (0.937) Remain 12:27:15 loss: 2.3148 psnr: 18.2399 Lr: 1.86499e-03
[2025-02-17 14:22:06,519 INFO hook.py line 109 848561] Train: [21/100][600/605] Data 0.003 (0.002) Batch 0.867 (0.936) Remain 12:25:35 loss: 2.3681 psnr: 17.0436 Lr: 1.86362e-03
[2025-02-17 14:22:10,839 INFO misc.py line 135 848561] Train result: loss: 2.4155 rgb_loss: 0.8782 psnr: 17.1792 depth_loss: 0.0709 feat_loss: 1.4664 
[2025-02-17 14:22:10,841 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 14:23:01,897 INFO hook.py line 109 848561] Train: [22/100][50/605] Data 0.003 (0.002) Batch 0.945 (0.939) Remain 12:27:20 loss: 2.3151 psnr: 18.3041 Lr: 1.86210e-03
[2025-02-17 14:23:49,245 INFO hook.py line 109 848561] Train: [22/100][100/605] Data 0.002 (0.002) Batch 0.952 (0.943) Remain 12:29:45 loss: 2.3500 psnr: 17.6814 Lr: 1.86071e-03
[2025-02-17 14:24:36,054 INFO hook.py line 109 848561] Train: [22/100][150/605] Data 0.002 (0.002) Batch 0.918 (0.941) Remain 12:27:04 loss: 2.2559 psnr: 18.3813 Lr: 1.85931e-03
[2025-02-17 14:25:23,010 INFO hook.py line 109 848561] Train: [22/100][200/605] Data 0.003 (0.002) Batch 0.942 (0.940) Remain 12:25:56 loss: 2.4508 psnr: 16.8319 Lr: 1.85791e-03
[2025-02-17 14:26:09,560 INFO hook.py line 109 848561] Train: [22/100][250/605] Data 0.002 (0.002) Batch 0.918 (0.938) Remain 12:23:39 loss: 2.1136 psnr: 19.8183 Lr: 1.85651e-03
[2025-02-17 14:26:56,133 INFO hook.py line 109 848561] Train: [22/100][300/605] Data 0.002 (0.002) Batch 0.914 (0.937) Remain 12:21:56 loss: 2.4901 psnr: 16.2721 Lr: 1.85509e-03
[2025-02-17 14:27:42,793 INFO hook.py line 109 848561] Train: [22/100][350/605] Data 0.002 (0.002) Batch 0.953 (0.937) Remain 12:20:41 loss: 2.5284 psnr: 16.2705 Lr: 1.85367e-03
[2025-02-17 14:28:29,693 INFO hook.py line 109 848561] Train: [22/100][400/605] Data 0.002 (0.002) Batch 0.929 (0.937) Remain 12:20:02 loss: 2.4824 psnr: 16.7113 Lr: 1.85225e-03
[2025-02-17 14:29:16,383 INFO hook.py line 109 848561] Train: [22/100][450/605] Data 0.004 (0.002) Batch 0.933 (0.937) Remain 12:18:59 loss: 2.1822 psnr: 19.4739 Lr: 1.85081e-03
[2025-02-17 14:30:03,334 INFO hook.py line 109 848561] Train: [22/100][500/605] Data 0.003 (0.002) Batch 0.926 (0.937) Remain 12:18:24 loss: 2.3335 psnr: 18.2026 Lr: 1.84937e-03
[2025-02-17 14:30:50,367 INFO hook.py line 109 848561] Train: [22/100][550/605] Data 0.003 (0.002) Batch 0.958 (0.937) Remain 12:17:54 loss: 2.5832 psnr: 15.6711 Lr: 1.84793e-03
[2025-02-17 14:31:36,615 INFO hook.py line 109 848561] Train: [22/100][600/605] Data 0.002 (0.002) Batch 0.871 (0.936) Remain 12:16:19 loss: 2.3720 psnr: 17.1894 Lr: 1.84648e-03
[2025-02-17 14:31:40,956 INFO misc.py line 135 848561] Train result: loss: 2.4201 rgb_loss: 0.8829 psnr: 17.1385 depth_loss: 0.0715 feat_loss: 1.4657 
[2025-02-17 14:31:40,957 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 14:32:31,809 INFO hook.py line 109 848561] Train: [23/100][50/605] Data 0.003 (0.002) Batch 0.960 (0.934) Remain 12:14:07 loss: 2.4599 psnr: 16.6561 Lr: 1.84487e-03
[2025-02-17 14:33:18,915 INFO hook.py line 109 848561] Train: [23/100][100/605] Data 0.002 (0.003) Batch 0.907 (0.938) Remain 12:16:28 loss: 2.2358 psnr: 18.8328 Lr: 1.84341e-03
[2025-02-17 14:34:06,191 INFO hook.py line 109 848561] Train: [23/100][150/605] Data 0.002 (0.003) Batch 0.932 (0.941) Remain 12:17:35 loss: 2.3956 psnr: 17.4858 Lr: 1.84193e-03
[2025-02-17 14:34:53,022 INFO hook.py line 109 848561] Train: [23/100][200/605] Data 0.002 (0.002) Batch 0.916 (0.940) Remain 12:15:58 loss: 2.1861 psnr: 18.7844 Lr: 1.84046e-03
[2025-02-17 14:35:40,195 INFO hook.py line 109 848561] Train: [23/100][250/605] Data 0.002 (0.002) Batch 0.933 (0.940) Remain 12:15:46 loss: 2.5248 psnr: 16.3156 Lr: 1.83897e-03
[2025-02-17 14:36:26,663 INFO hook.py line 109 848561] Train: [23/100][300/605] Data 0.002 (0.002) Batch 0.993 (0.939) Remain 12:13:32 loss: 2.2740 psnr: 18.3970 Lr: 1.83748e-03
[2025-02-17 14:37:13,396 INFO hook.py line 109 848561] Train: [23/100][350/605] Data 0.002 (0.002) Batch 0.947 (0.938) Remain 12:12:18 loss: 2.0600 psnr: 20.5261 Lr: 1.83599e-03
[2025-02-17 14:38:00,337 INFO hook.py line 109 848561] Train: [23/100][400/605] Data 0.003 (0.002) Batch 0.912 (0.938) Remain 12:11:35 loss: 2.3817 psnr: 17.3407 Lr: 1.83448e-03
[2025-02-17 14:38:46,901 INFO hook.py line 109 848561] Train: [23/100][450/605] Data 0.002 (0.002) Batch 0.934 (0.937) Remain 12:10:13 loss: 2.3754 psnr: 17.4385 Lr: 1.83297e-03
[2025-02-17 14:39:34,048 INFO hook.py line 109 848561] Train: [23/100][500/605] Data 0.005 (0.002) Batch 0.930 (0.938) Remain 12:09:52 loss: 2.6986 psnr: 15.3922 Lr: 1.83146e-03
[2025-02-17 14:40:20,857 INFO hook.py line 109 848561] Train: [23/100][550/605] Data 0.005 (0.002) Batch 0.911 (0.938) Remain 12:08:57 loss: 2.3906 psnr: 16.6024 Lr: 1.82994e-03
[2025-02-17 14:41:06,984 INFO hook.py line 109 848561] Train: [23/100][600/605] Data 0.002 (0.002) Batch 0.874 (0.937) Remain 12:07:11 loss: 2.1642 psnr: 18.0647 Lr: 1.82841e-03
[2025-02-17 14:41:11,311 INFO misc.py line 135 848561] Train result: loss: 2.4015 rgb_loss: 0.8695 psnr: 17.2430 depth_loss: 0.0713 feat_loss: 1.4606 
[2025-02-17 14:41:11,312 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 14:42:02,034 INFO hook.py line 109 848561] Train: [24/100][50/605] Data 0.002 (0.002) Batch 0.951 (0.933) Remain 12:03:52 loss: 2.5083 psnr: 16.4349 Lr: 1.82672e-03
[2025-02-17 14:42:49,003 INFO hook.py line 109 848561] Train: [24/100][100/605] Data 0.002 (0.002) Batch 0.980 (0.936) Remain 12:05:31 loss: 2.2584 psnr: 17.4709 Lr: 1.82518e-03
[2025-02-17 14:43:36,213 INFO hook.py line 109 848561] Train: [24/100][150/605] Data 0.003 (0.002) Batch 0.908 (0.939) Remain 12:06:46 loss: 2.2362 psnr: 18.4977 Lr: 1.82363e-03
[2025-02-17 14:44:23,418 INFO hook.py line 109 848561] Train: [24/100][200/605] Data 0.003 (0.002) Batch 0.934 (0.940) Remain 12:06:58 loss: 2.3874 psnr: 17.1172 Lr: 1.82208e-03
[2025-02-17 14:45:10,354 INFO hook.py line 109 848561] Train: [24/100][250/605] Data 0.001 (0.002) Batch 0.948 (0.940) Remain 12:05:55 loss: 2.2216 psnr: 19.3344 Lr: 1.82052e-03
[2025-02-17 14:45:57,093 INFO hook.py line 109 848561] Train: [24/100][300/605] Data 0.004 (0.002) Batch 0.939 (0.939) Remain 12:04:28 loss: 2.4775 psnr: 15.5767 Lr: 1.81896e-03
[2025-02-17 14:46:44,087 INFO hook.py line 109 848561] Train: [24/100][350/605] Data 0.002 (0.002) Batch 0.937 (0.939) Remain 12:03:46 loss: 2.5564 psnr: 16.3253 Lr: 1.81738e-03
[2025-02-17 14:47:31,030 INFO hook.py line 109 848561] Train: [24/100][400/605] Data 0.003 (0.002) Batch 0.942 (0.939) Remain 12:02:56 loss: 2.3733 psnr: 17.8769 Lr: 1.81581e-03
[2025-02-17 14:48:17,917 INFO hook.py line 109 848561] Train: [24/100][450/605] Data 0.002 (0.002) Batch 0.951 (0.939) Remain 12:02:02 loss: 2.6411 psnr: 16.1954 Lr: 1.81422e-03
[2025-02-17 14:49:04,919 INFO hook.py line 109 848561] Train: [24/100][500/605] Data 0.004 (0.002) Batch 0.949 (0.939) Remain 12:01:20 loss: 2.5536 psnr: 15.9821 Lr: 1.81263e-03
[2025-02-17 14:49:51,586 INFO hook.py line 109 848561] Train: [24/100][550/605] Data 0.002 (0.002) Batch 0.918 (0.939) Remain 12:00:08 loss: 2.4686 psnr: 16.6354 Lr: 1.81104e-03
[2025-02-17 14:50:37,562 INFO hook.py line 109 848561] Train: [24/100][600/605] Data 0.002 (0.002) Batch 0.860 (0.937) Remain 11:58:08 loss: 2.6580 psnr: 15.4004 Lr: 1.80944e-03
[2025-02-17 14:50:41,901 INFO misc.py line 135 848561] Train result: loss: 2.4009 rgb_loss: 0.8708 psnr: 17.2601 depth_loss: 0.0707 feat_loss: 1.4595 
[2025-02-17 14:50:41,901 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 14:51:32,747 INFO hook.py line 109 848561] Train: [25/100][50/605] Data 0.002 (0.003) Batch 0.939 (0.933) Remain 11:54:21 loss: 2.4440 psnr: 16.8469 Lr: 1.80770e-03
[2025-02-17 14:52:19,753 INFO hook.py line 109 848561] Train: [25/100][100/605] Data 0.002 (0.002) Batch 0.935 (0.937) Remain 11:56:18 loss: 2.4764 psnr: 16.7725 Lr: 1.80609e-03
[2025-02-17 14:53:06,669 INFO hook.py line 109 848561] Train: [25/100][150/605] Data 0.002 (0.002) Batch 0.925 (0.937) Remain 11:55:56 loss: 2.3140 psnr: 17.3684 Lr: 1.80446e-03
[2025-02-17 14:53:54,036 INFO hook.py line 109 848561] Train: [25/100][200/605] Data 0.002 (0.002) Batch 0.910 (0.940) Remain 11:57:06 loss: 2.6964 psnr: 15.1023 Lr: 1.80284e-03
[2025-02-17 14:54:40,860 INFO hook.py line 109 848561] Train: [25/100][250/605] Data 0.002 (0.002) Batch 0.915 (0.939) Remain 11:55:47 loss: 2.3610 psnr: 17.3097 Lr: 1.80121e-03
[2025-02-17 14:55:27,736 INFO hook.py line 109 848561] Train: [25/100][300/605] Data 0.002 (0.002) Batch 0.929 (0.939) Remain 11:54:48 loss: 2.3246 psnr: 18.6509 Lr: 1.79957e-03
[2025-02-17 14:56:14,562 INFO hook.py line 109 848561] Train: [25/100][350/605] Data 0.003 (0.002) Batch 0.908 (0.939) Remain 11:53:45 loss: 2.3371 psnr: 17.5337 Lr: 1.79792e-03
[2025-02-17 14:57:01,385 INFO hook.py line 109 848561] Train: [25/100][400/605] Data 0.001 (0.002) Batch 0.916 (0.938) Remain 11:52:46 loss: 2.1290 psnr: 19.2497 Lr: 1.79627e-03
[2025-02-17 14:57:48,416 INFO hook.py line 109 848561] Train: [25/100][450/605] Data 0.002 (0.002) Batch 0.937 (0.939) Remain 11:52:11 loss: 2.3844 psnr: 17.0176 Lr: 1.79462e-03
[2025-02-17 14:58:35,200 INFO hook.py line 109 848561] Train: [25/100][500/605] Data 0.003 (0.002) Batch 0.951 (0.938) Remain 11:51:11 loss: 2.3497 psnr: 18.1763 Lr: 1.79295e-03
[2025-02-17 14:59:22,091 INFO hook.py line 109 848561] Train: [25/100][550/605] Data 0.002 (0.002) Batch 0.952 (0.938) Remain 11:50:23 loss: 2.6094 psnr: 15.4402 Lr: 1.79129e-03
[2025-02-17 15:00:07,969 INFO hook.py line 109 848561] Train: [25/100][600/605] Data 0.002 (0.002) Batch 0.859 (0.936) Remain 11:48:17 loss: 2.2924 psnr: 18.3075 Lr: 1.78961e-03
[2025-02-17 15:00:12,284 INFO misc.py line 135 848561] Train result: loss: 2.3874 rgb_loss: 0.8595 psnr: 17.3410 depth_loss: 0.0715 feat_loss: 1.4565 
[2025-02-17 15:00:12,286 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 15:01:03,182 INFO hook.py line 109 848561] Train: [26/100][50/605] Data 0.002 (0.002) Batch 0.942 (0.936) Remain 11:46:41 loss: 2.4879 psnr: 16.2748 Lr: 1.78776e-03
[2025-02-17 15:01:49,942 INFO hook.py line 109 848561] Train: [26/100][100/605] Data 0.002 (0.002) Batch 0.927 (0.935) Remain 11:45:47 loss: 2.2208 psnr: 18.5301 Lr: 1.78608e-03
[2025-02-17 15:02:36,800 INFO hook.py line 109 848561] Train: [26/100][150/605] Data 0.002 (0.002) Batch 0.955 (0.936) Remain 11:45:29 loss: 2.3859 psnr: 17.8578 Lr: 1.78439e-03
[2025-02-17 15:03:24,241 INFO hook.py line 109 848561] Train: [26/100][200/605] Data 0.002 (0.002) Batch 0.949 (0.939) Remain 11:47:09 loss: 2.4955 psnr: 16.9008 Lr: 1.78269e-03
[2025-02-17 15:04:10,853 INFO hook.py line 109 848561] Train: [26/100][250/605] Data 0.003 (0.002) Batch 0.924 (0.938) Remain 11:45:18 loss: 2.3683 psnr: 17.0837 Lr: 1.78098e-03
[2025-02-17 15:04:57,660 INFO hook.py line 109 848561] Train: [26/100][300/605] Data 0.003 (0.002) Batch 0.928 (0.938) Remain 11:44:19 loss: 2.3228 psnr: 18.9343 Lr: 1.77927e-03
[2025-02-17 15:05:44,270 INFO hook.py line 109 848561] Train: [26/100][350/605] Data 0.002 (0.002) Batch 0.949 (0.937) Remain 11:42:57 loss: 2.3149 psnr: 17.8220 Lr: 1.77756e-03
[2025-02-17 15:06:30,938 INFO hook.py line 109 848561] Train: [26/100][400/605] Data 0.002 (0.002) Batch 0.965 (0.936) Remain 11:41:51 loss: 2.0905 psnr: 20.9785 Lr: 1.77584e-03
[2025-02-17 15:07:17,646 INFO hook.py line 109 848561] Train: [26/100][450/605] Data 0.002 (0.002) Batch 0.927 (0.936) Remain 11:40:53 loss: 2.6775 psnr: 15.9745 Lr: 1.77411e-03
[2025-02-17 15:08:04,233 INFO hook.py line 109 848561] Train: [26/100][500/605] Data 0.004 (0.002) Batch 0.917 (0.936) Remain 11:39:47 loss: 2.3423 psnr: 18.1566 Lr: 1.77238e-03
[2025-02-17 15:08:51,122 INFO hook.py line 109 848561] Train: [26/100][550/605] Data 0.002 (0.002) Batch 0.941 (0.936) Remain 11:39:09 loss: 2.3884 psnr: 16.7118 Lr: 1.77064e-03
[2025-02-17 15:09:37,205 INFO hook.py line 109 848561] Train: [26/100][600/605] Data 0.002 (0.002) Batch 0.845 (0.935) Remain 11:37:29 loss: 2.2451 psnr: 19.1651 Lr: 1.76889e-03
[2025-02-17 15:09:41,510 INFO misc.py line 135 848561] Train result: loss: 2.3958 rgb_loss: 0.8698 psnr: 17.2328 depth_loss: 0.0711 feat_loss: 1.4549 
[2025-02-17 15:09:41,510 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 15:10:32,234 INFO hook.py line 109 848561] Train: [27/100][50/605] Data 0.003 (0.002) Batch 0.951 (0.938) Remain 11:38:53 loss: 2.6427 psnr: 16.2158 Lr: 1.76697e-03
[2025-02-17 15:11:18,993 INFO hook.py line 109 848561] Train: [27/100][100/605] Data 0.002 (0.002) Batch 0.939 (0.936) Remain 11:37:08 loss: 2.3091 psnr: 17.9911 Lr: 1.76521e-03
[2025-02-17 15:12:05,852 INFO hook.py line 109 848561] Train: [27/100][150/605] Data 0.003 (0.002) Batch 0.953 (0.937) Remain 11:36:33 loss: 2.4271 psnr: 17.1971 Lr: 1.76345e-03
[2025-02-17 15:12:52,465 INFO hook.py line 109 848561] Train: [27/100][200/605] Data 0.003 (0.002) Batch 0.928 (0.936) Remain 11:34:57 loss: 2.2019 psnr: 18.8957 Lr: 1.76168e-03
[2025-02-17 15:13:39,552 INFO hook.py line 109 848561] Train: [27/100][250/605] Data 0.002 (0.002) Batch 0.965 (0.937) Remain 11:35:06 loss: 2.4370 psnr: 16.2867 Lr: 1.75991e-03
[2025-02-17 15:14:26,384 INFO hook.py line 109 848561] Train: [27/100][300/605] Data 0.002 (0.002) Batch 0.911 (0.937) Remain 11:34:18 loss: 2.4761 psnr: 16.3930 Lr: 1.75813e-03
[2025-02-17 15:15:13,238 INFO hook.py line 109 848561] Train: [27/100][350/605] Data 0.002 (0.002) Batch 0.927 (0.937) Remain 11:33:33 loss: 2.4821 psnr: 16.1419 Lr: 1.75634e-03
[2025-02-17 15:16:00,196 INFO hook.py line 109 848561] Train: [27/100][400/605] Data 0.003 (0.002) Batch 0.934 (0.937) Remain 11:32:59 loss: 2.2636 psnr: 18.2357 Lr: 1.75455e-03
[2025-02-17 15:16:47,077 INFO hook.py line 109 848561] Train: [27/100][450/605] Data 0.003 (0.002) Batch 0.959 (0.937) Remain 11:32:15 loss: 2.3724 psnr: 17.6828 Lr: 1.75276e-03
[2025-02-17 15:17:33,859 INFO hook.py line 109 848561] Train: [27/100][500/605] Data 0.002 (0.002) Batch 0.903 (0.937) Remain 11:31:21 loss: 2.6219 psnr: 14.9765 Lr: 1.75095e-03
[2025-02-17 15:18:20,448 INFO hook.py line 109 848561] Train: [27/100][550/605] Data 0.003 (0.002) Batch 0.907 (0.937) Remain 11:30:13 loss: 2.4501 psnr: 16.6345 Lr: 1.74915e-03
[2025-02-17 15:19:06,291 INFO hook.py line 109 848561] Train: [27/100][600/605] Data 0.001 (0.002) Batch 0.864 (0.935) Remain 11:28:13 loss: 2.3085 psnr: 18.1112 Lr: 1.74733e-03
[2025-02-17 15:19:10,570 INFO misc.py line 135 848561] Train result: loss: 2.3871 rgb_loss: 0.8603 psnr: 17.3290 depth_loss: 0.0704 feat_loss: 1.4564 
[2025-02-17 15:19:10,571 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 15:20:01,147 INFO hook.py line 109 848561] Train: [28/100][50/605] Data 0.003 (0.002) Batch 0.976 (0.931) Remain 11:24:23 loss: 2.4335 psnr: 16.8374 Lr: 1.74533e-03
[2025-02-17 15:20:47,903 INFO hook.py line 109 848561] Train: [28/100][100/605] Data 0.002 (0.002) Batch 0.939 (0.933) Remain 11:25:14 loss: 2.4251 psnr: 17.3541 Lr: 1.74351e-03
[2025-02-17 15:21:34,518 INFO hook.py line 109 848561] Train: [28/100][150/605] Data 0.003 (0.002) Batch 0.942 (0.933) Remain 11:24:16 loss: 2.2454 psnr: 17.8082 Lr: 1.74168e-03
[2025-02-17 15:22:21,278 INFO hook.py line 109 848561] Train: [28/100][200/605] Data 0.003 (0.002) Batch 0.894 (0.933) Remain 11:23:56 loss: 2.4701 psnr: 16.7526 Lr: 1.73984e-03
[2025-02-17 15:23:08,157 INFO hook.py line 109 848561] Train: [28/100][250/605] Data 0.002 (0.002) Batch 1.022 (0.934) Remain 11:23:47 loss: 2.5180 psnr: 15.8346 Lr: 1.73800e-03
[2025-02-17 15:23:54,984 INFO hook.py line 109 848561] Train: [28/100][300/605] Data 0.003 (0.002) Batch 0.916 (0.935) Remain 11:23:17 loss: 2.5725 psnr: 15.7114 Lr: 1.73615e-03
[2025-02-17 15:24:41,989 INFO hook.py line 109 848561] Train: [28/100][350/605] Data 0.002 (0.002) Batch 0.947 (0.935) Remain 11:23:05 loss: 2.1005 psnr: 19.9507 Lr: 1.73430e-03
[2025-02-17 15:25:29,072 INFO hook.py line 109 848561] Train: [28/100][400/605] Data 0.003 (0.002) Batch 0.956 (0.936) Remain 11:22:52 loss: 2.3345 psnr: 17.6482 Lr: 1.73244e-03
[2025-02-17 15:26:15,867 INFO hook.py line 109 848561] Train: [28/100][450/605] Data 0.002 (0.002) Batch 0.943 (0.936) Remain 11:22:04 loss: 2.3755 psnr: 17.6599 Lr: 1.73058e-03
[2025-02-17 15:27:02,692 INFO hook.py line 109 848561] Train: [28/100][500/605] Data 0.003 (0.002) Batch 0.940 (0.936) Remain 11:21:19 loss: 2.4918 psnr: 15.8744 Lr: 1.72871e-03
[2025-02-17 15:27:49,627 INFO hook.py line 109 848561] Train: [28/100][550/605] Data 0.002 (0.002) Batch 0.921 (0.936) Remain 11:20:42 loss: 2.1496 psnr: 19.8845 Lr: 1.72687e-03
[2025-02-17 15:28:35,823 INFO hook.py line 109 848561] Train: [28/100][600/605] Data 0.002 (0.002) Batch 0.862 (0.935) Remain 11:19:09 loss: 2.6450 psnr: 15.4237 Lr: 1.72499e-03
[2025-02-17 15:28:40,162 INFO misc.py line 135 848561] Train result: loss: 2.3860 rgb_loss: 0.8627 psnr: 17.2999 depth_loss: 0.0695 feat_loss: 1.4538 
[2025-02-17 15:28:40,164 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 15:29:31,220 INFO hook.py line 109 848561] Train: [29/100][50/605] Data 0.003 (0.003) Batch 0.952 (0.939) Remain 11:21:04 loss: 2.3099 psnr: 17.8327 Lr: 1.72292e-03
[2025-02-17 15:30:18,044 INFO hook.py line 109 848561] Train: [29/100][100/605] Data 0.002 (0.002) Batch 0.960 (0.938) Remain 11:19:16 loss: 2.6121 psnr: 15.9275 Lr: 1.72103e-03
[2025-02-17 15:31:04,839 INFO hook.py line 109 848561] Train: [29/100][150/605] Data 0.003 (0.002) Batch 0.940 (0.937) Remain 11:18:01 loss: 2.3127 psnr: 18.5239 Lr: 1.71913e-03
[2025-02-17 15:31:51,777 INFO hook.py line 109 848561] Train: [29/100][200/605] Data 0.003 (0.002) Batch 0.913 (0.938) Remain 11:17:32 loss: 2.0637 psnr: 20.6068 Lr: 1.71723e-03
[2025-02-17 15:32:38,862 INFO hook.py line 109 848561] Train: [29/100][250/605] Data 0.002 (0.002) Batch 0.959 (0.938) Remain 11:17:21 loss: 2.3248 psnr: 17.7725 Lr: 1.71532e-03
[2025-02-17 15:33:25,857 INFO hook.py line 109 848561] Train: [29/100][300/605] Data 0.002 (0.002) Batch 0.954 (0.939) Remain 11:16:45 loss: 2.4256 psnr: 16.7715 Lr: 1.71341e-03
[2025-02-17 15:34:12,888 INFO hook.py line 109 848561] Train: [29/100][350/605] Data 0.002 (0.002) Batch 0.959 (0.939) Remain 11:16:11 loss: 2.7661 psnr: 14.9052 Lr: 1.71149e-03
[2025-02-17 15:34:59,904 INFO hook.py line 109 848561] Train: [29/100][400/605] Data 0.003 (0.002) Batch 0.967 (0.939) Remain 11:15:31 loss: 2.1972 psnr: 19.2603 Lr: 1.70957e-03
[2025-02-17 15:35:47,158 INFO hook.py line 109 848561] Train: [29/100][450/605] Data 0.003 (0.002) Batch 0.963 (0.940) Remain 11:15:13 loss: 2.6305 psnr: 15.6578 Lr: 1.70764e-03
[2025-02-17 15:36:33,950 INFO hook.py line 109 848561] Train: [29/100][500/605] Data 0.003 (0.002) Batch 0.955 (0.939) Remain 11:14:09 loss: 2.5817 psnr: 15.2326 Lr: 1.70571e-03
[2025-02-17 15:37:20,862 INFO hook.py line 109 848561] Train: [29/100][550/605] Data 0.002 (0.002) Batch 0.962 (0.939) Remain 11:13:18 loss: 2.6823 psnr: 15.5278 Lr: 1.70377e-03
[2025-02-17 15:38:06,830 INFO hook.py line 109 848561] Train: [29/100][600/605] Data 0.003 (0.002) Batch 0.874 (0.938) Remain 11:11:19 loss: 2.6014 psnr: 16.2565 Lr: 1.70182e-03
[2025-02-17 15:38:11,178 INFO misc.py line 135 848561] Train result: loss: 2.3729 rgb_loss: 0.8506 psnr: 17.4043 depth_loss: 0.0708 feat_loss: 1.4514 
[2025-02-17 15:38:11,179 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 15:39:02,140 INFO hook.py line 109 848561] Train: [30/100][50/605] Data 0.003 (0.002) Batch 0.902 (0.936) Remain 11:09:13 loss: 2.3853 psnr: 17.1932 Lr: 1.69968e-03
[2025-02-17 15:39:48,875 INFO hook.py line 109 848561] Train: [30/100][100/605] Data 0.002 (0.002) Batch 0.921 (0.935) Remain 11:08:00 loss: 2.4116 psnr: 16.7507 Lr: 1.69772e-03
[2025-02-17 15:40:35,590 INFO hook.py line 109 848561] Train: [30/100][150/605] Data 0.003 (0.002) Batch 0.917 (0.935) Remain 11:07:00 loss: 2.1927 psnr: 19.6992 Lr: 1.69576e-03
[2025-02-17 15:41:22,609 INFO hook.py line 109 848561] Train: [30/100][200/605] Data 0.002 (0.002) Batch 0.932 (0.936) Remain 11:07:12 loss: 2.3322 psnr: 17.5012 Lr: 1.69380e-03
[2025-02-17 15:42:08,982 INFO hook.py line 109 848561] Train: [30/100][250/605] Data 0.002 (0.002) Batch 0.927 (0.935) Remain 11:05:08 loss: 2.4565 psnr: 16.2643 Lr: 1.69183e-03
[2025-02-17 15:42:56,301 INFO hook.py line 109 848561] Train: [30/100][300/605] Data 0.003 (0.002) Batch 1.109 (0.937) Remain 11:05:47 loss: 2.3824 psnr: 17.9057 Lr: 1.68985e-03
[2025-02-17 15:43:43,107 INFO hook.py line 109 848561] Train: [30/100][350/605] Data 0.002 (0.002) Batch 0.917 (0.936) Remain 11:04:57 loss: 2.2876 psnr: 17.7131 Lr: 1.68787e-03
[2025-02-17 15:44:29,940 INFO hook.py line 109 848561] Train: [30/100][400/605] Data 0.002 (0.002) Batch 0.940 (0.936) Remain 11:04:12 loss: 2.2198 psnr: 18.4721 Lr: 1.68588e-03
[2025-02-17 15:45:16,899 INFO hook.py line 109 848561] Train: [30/100][450/605] Data 0.003 (0.002) Batch 0.961 (0.937) Remain 11:03:38 loss: 2.2287 psnr: 17.6231 Lr: 1.68389e-03
[2025-02-17 15:46:03,866 INFO hook.py line 109 848561] Train: [30/100][500/605] Data 0.003 (0.002) Batch 0.961 (0.937) Remain 11:03:02 loss: 2.1163 psnr: 19.6194 Lr: 1.68190e-03
[2025-02-17 15:46:50,509 INFO hook.py line 109 848561] Train: [30/100][550/605] Data 0.003 (0.002) Batch 0.945 (0.937) Remain 11:01:59 loss: 2.6256 psnr: 15.5941 Lr: 1.67989e-03
[2025-02-17 15:47:36,349 INFO hook.py line 109 848561] Train: [30/100][600/605] Data 0.002 (0.002) Batch 0.859 (0.935) Remain 11:00:01 loss: 2.2892 psnr: 18.3764 Lr: 1.67789e-03
[2025-02-17 15:47:40,624 INFO misc.py line 135 848561] Train result: loss: 2.3754 rgb_loss: 0.8573 psnr: 17.3241 depth_loss: 0.0692 feat_loss: 1.4489 
[2025-02-17 15:47:40,625 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 15:48:31,614 INFO hook.py line 109 848561] Train: [31/100][50/605] Data 0.002 (0.002) Batch 0.927 (0.937) Remain 11:00:38 loss: 2.3338 psnr: 17.3037 Lr: 1.67567e-03
[2025-02-17 15:49:18,217 INFO hook.py line 109 848561] Train: [31/100][100/605] Data 0.003 (0.002) Batch 0.938 (0.934) Remain 10:58:02 loss: 2.4428 psnr: 16.6011 Lr: 1.67366e-03
[2025-02-17 15:50:05,095 INFO hook.py line 109 848561] Train: [31/100][150/605] Data 0.004 (0.002) Batch 0.955 (0.936) Remain 10:57:59 loss: 2.5032 psnr: 16.6801 Lr: 1.67164e-03
[2025-02-17 15:50:52,072 INFO hook.py line 109 848561] Train: [31/100][200/605] Data 0.001 (0.002) Batch 0.982 (0.937) Remain 10:57:55 loss: 2.4301 psnr: 15.7865 Lr: 1.66961e-03
[2025-02-17 15:51:38,609 INFO hook.py line 109 848561] Train: [31/100][250/605] Data 0.002 (0.002) Batch 0.948 (0.935) Remain 10:56:19 loss: 2.3780 psnr: 16.8992 Lr: 1.66758e-03
[2025-02-17 15:52:25,774 INFO hook.py line 109 848561] Train: [31/100][300/605] Data 0.003 (0.002) Batch 0.933 (0.937) Remain 10:56:28 loss: 2.1870 psnr: 19.0137 Lr: 1.66554e-03
[2025-02-17 15:53:12,802 INFO hook.py line 109 848561] Train: [31/100][350/605] Data 0.002 (0.002) Batch 0.947 (0.937) Remain 10:56:05 loss: 2.6306 psnr: 15.6078 Lr: 1.66350e-03
[2025-02-17 15:53:59,622 INFO hook.py line 109 848561] Train: [31/100][400/605] Data 0.002 (0.002) Batch 0.919 (0.937) Remain 10:55:13 loss: 2.2610 psnr: 18.6688 Lr: 1.66145e-03
[2025-02-17 15:54:46,705 INFO hook.py line 109 848561] Train: [31/100][450/605] Data 0.002 (0.002) Batch 0.965 (0.938) Remain 10:54:47 loss: 2.4519 psnr: 16.5942 Lr: 1.65940e-03
[2025-02-17 15:55:33,602 INFO hook.py line 109 848561] Train: [31/100][500/605] Data 0.003 (0.002) Batch 0.908 (0.938) Remain 10:54:02 loss: 2.3644 psnr: 16.6614 Lr: 1.65734e-03
[2025-02-17 15:56:20,344 INFO hook.py line 109 848561] Train: [31/100][550/605] Data 0.002 (0.002) Batch 0.912 (0.937) Remain 10:53:04 loss: 2.4444 psnr: 16.6895 Lr: 1.65528e-03
[2025-02-17 15:57:06,218 INFO hook.py line 109 848561] Train: [31/100][600/605] Data 0.002 (0.002) Batch 0.886 (0.936) Remain 10:51:07 loss: 2.3923 psnr: 17.5372 Lr: 1.65321e-03
[2025-02-17 15:57:10,598 INFO misc.py line 135 848561] Train result: loss: 2.3741 rgb_loss: 0.8529 psnr: 17.3657 depth_loss: 0.0704 feat_loss: 1.4507 
[2025-02-17 15:57:10,600 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 15:58:01,413 INFO hook.py line 109 848561] Train: [32/100][50/605] Data 0.002 (0.003) Batch 0.915 (0.934) Remain 10:49:16 loss: 2.1599 psnr: 18.1461 Lr: 1.65093e-03
[2025-02-17 15:58:48,101 INFO hook.py line 109 848561] Train: [32/100][100/605] Data 0.002 (0.003) Batch 0.919 (0.934) Remain 10:48:17 loss: 2.1480 psnr: 19.5417 Lr: 1.64890e-03
[2025-02-17 15:59:34,948 INFO hook.py line 109 848561] Train: [32/100][150/605] Data 0.004 (0.003) Batch 0.946 (0.935) Remain 10:48:12 loss: 2.2337 psnr: 18.4162 Lr: 1.64681e-03
[2025-02-17 16:00:22,080 INFO hook.py line 109 848561] Train: [32/100][200/605] Data 0.002 (0.002) Batch 0.955 (0.937) Remain 10:48:45 loss: 2.5462 psnr: 16.6481 Lr: 1.64473e-03
[2025-02-17 16:01:08,920 INFO hook.py line 109 848561] Train: [32/100][250/605] Data 0.002 (0.002) Batch 0.951 (0.937) Remain 10:47:57 loss: 2.2128 psnr: 18.1306 Lr: 1.64264e-03
[2025-02-17 16:01:55,995 INFO hook.py line 109 848561] Train: [32/100][300/605] Data 0.002 (0.002) Batch 0.958 (0.938) Remain 10:47:42 loss: 2.3042 psnr: 17.3936 Lr: 1.64054e-03
[2025-02-17 16:02:42,934 INFO hook.py line 109 848561] Train: [32/100][350/605] Data 0.003 (0.002) Batch 0.968 (0.938) Remain 10:47:02 loss: 2.3068 psnr: 17.1913 Lr: 1.63844e-03
[2025-02-17 16:03:30,030 INFO hook.py line 109 848561] Train: [32/100][400/605] Data 0.003 (0.002) Batch 0.951 (0.938) Remain 10:46:36 loss: 2.3656 psnr: 17.5002 Lr: 1.63633e-03
[2025-02-17 16:04:16,656 INFO hook.py line 109 848561] Train: [32/100][450/605] Data 0.003 (0.002) Batch 0.948 (0.938) Remain 10:45:22 loss: 2.3091 psnr: 17.3286 Lr: 1.63422e-03
[2025-02-17 16:05:03,182 INFO hook.py line 109 848561] Train: [32/100][500/605] Data 0.003 (0.002) Batch 0.913 (0.937) Remain 10:44:05 loss: 2.5864 psnr: 16.0082 Lr: 1.63211e-03
[2025-02-17 16:05:50,142 INFO hook.py line 109 848561] Train: [32/100][550/605] Data 0.002 (0.002) Batch 0.955 (0.937) Remain 10:43:27 loss: 2.1223 psnr: 18.8689 Lr: 1.62999e-03
[2025-02-17 16:06:36,135 INFO hook.py line 109 848561] Train: [32/100][600/605] Data 0.001 (0.002) Batch 0.882 (0.936) Remain 10:41:40 loss: 2.3874 psnr: 16.8353 Lr: 1.62786e-03
[2025-02-17 16:06:40,444 INFO misc.py line 135 848561] Train result: loss: 2.3692 rgb_loss: 0.8497 psnr: 17.4039 depth_loss: 0.0698 feat_loss: 1.4497 
[2025-02-17 16:06:40,446 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 16:07:31,493 INFO hook.py line 109 848561] Train: [33/100][50/605] Data 0.003 (0.002) Batch 0.962 (0.937) Remain 10:41:57 loss: 2.4490 psnr: 17.1140 Lr: 1.62552e-03
[2025-02-17 16:08:18,492 INFO hook.py line 109 848561] Train: [33/100][100/605] Data 0.003 (0.002) Batch 0.949 (0.939) Remain 10:42:05 loss: 2.1598 psnr: 19.0446 Lr: 1.62338e-03
[2025-02-17 16:09:05,486 INFO hook.py line 109 848561] Train: [33/100][150/605] Data 0.002 (0.002) Batch 0.971 (0.939) Remain 10:41:34 loss: 2.4036 psnr: 16.8974 Lr: 1.62124e-03
[2025-02-17 16:09:52,469 INFO hook.py line 109 848561] Train: [33/100][200/605] Data 0.003 (0.002) Batch 0.913 (0.939) Remain 10:40:52 loss: 2.3510 psnr: 17.4630 Lr: 1.61910e-03
[2025-02-17 16:10:39,386 INFO hook.py line 109 848561] Train: [33/100][250/605] Data 0.002 (0.002) Batch 0.933 (0.939) Remain 10:39:58 loss: 2.4455 psnr: 17.0153 Lr: 1.61695e-03
[2025-02-17 16:11:26,005 INFO hook.py line 109 848561] Train: [33/100][300/605] Data 0.003 (0.002) Batch 0.929 (0.938) Remain 10:38:25 loss: 2.1921 psnr: 18.9794 Lr: 1.61480e-03
[2025-02-17 16:12:12,546 INFO hook.py line 109 848561] Train: [33/100][350/605] Data 0.001 (0.002) Batch 0.933 (0.937) Remain 10:36:56 loss: 2.2200 psnr: 18.2219 Lr: 1.61264e-03
[2025-02-17 16:12:59,705 INFO hook.py line 109 848561] Train: [33/100][400/605] Data 0.002 (0.002) Batch 0.917 (0.938) Remain 10:36:42 loss: 2.4878 psnr: 16.2293 Lr: 1.61048e-03
[2025-02-17 16:13:46,369 INFO hook.py line 109 848561] Train: [33/100][450/605] Data 0.002 (0.002) Batch 0.954 (0.937) Remain 10:35:35 loss: 2.1301 psnr: 18.7335 Lr: 1.60831e-03
[2025-02-17 16:14:33,278 INFO hook.py line 109 848561] Train: [33/100][500/605] Data 0.001 (0.002) Batch 0.947 (0.937) Remain 10:34:52 loss: 2.4021 psnr: 17.3623 Lr: 1.60614e-03
[2025-02-17 16:15:20,304 INFO hook.py line 109 848561] Train: [33/100][550/605] Data 0.002 (0.002) Batch 0.941 (0.938) Remain 10:34:17 loss: 2.3789 psnr: 17.2989 Lr: 1.60396e-03
[2025-02-17 16:16:06,525 INFO hook.py line 109 848561] Train: [33/100][600/605] Data 0.003 (0.002) Batch 0.857 (0.936) Remain 10:32:45 loss: 2.1508 psnr: 18.9607 Lr: 1.60178e-03
[2025-02-17 16:16:10,843 INFO misc.py line 135 848561] Train result: loss: 2.3619 rgb_loss: 0.8432 psnr: 17.4298 depth_loss: 0.0698 feat_loss: 1.4489 
[2025-02-17 16:16:10,844 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 16:17:01,597 INFO hook.py line 109 848561] Train: [34/100][50/605] Data 0.001 (0.002) Batch 0.949 (0.936) Remain 10:31:43 loss: 2.2954 psnr: 17.1451 Lr: 1.59938e-03
[2025-02-17 16:17:48,444 INFO hook.py line 109 848561] Train: [34/100][100/605] Data 0.003 (0.002) Batch 0.931 (0.937) Remain 10:31:11 loss: 2.4212 psnr: 16.0659 Lr: 1.59719e-03
[2025-02-17 16:18:35,246 INFO hook.py line 109 848561] Train: [34/100][150/605] Data 0.003 (0.002) Batch 0.938 (0.936) Remain 10:30:16 loss: 2.6555 psnr: 15.6672 Lr: 1.59500e-03
[2025-02-17 16:19:22,024 INFO hook.py line 109 848561] Train: [34/100][200/605] Data 0.003 (0.002) Batch 0.920 (0.936) Remain 10:29:21 loss: 2.1499 psnr: 19.0290 Lr: 1.59280e-03
[2025-02-17 16:20:08,756 INFO hook.py line 109 848561] Train: [34/100][250/605] Data 0.002 (0.002) Batch 0.967 (0.936) Remain 10:28:21 loss: 2.3443 psnr: 17.2736 Lr: 1.59059e-03
[2025-02-17 16:20:55,444 INFO hook.py line 109 848561] Train: [34/100][300/605] Data 0.003 (0.002) Batch 0.942 (0.936) Remain 10:27:20 loss: 2.4237 psnr: 17.2594 Lr: 1.58839e-03
[2025-02-17 16:21:42,486 INFO hook.py line 109 848561] Train: [34/100][350/605] Data 0.002 (0.002) Batch 0.948 (0.936) Remain 10:27:04 loss: 2.4708 psnr: 17.1744 Lr: 1.58617e-03
[2025-02-17 16:22:29,543 INFO hook.py line 109 848561] Train: [34/100][400/605] Data 0.002 (0.002) Batch 0.934 (0.937) Remain 10:26:42 loss: 2.3283 psnr: 17.5162 Lr: 1.58396e-03
[2025-02-17 16:23:16,549 INFO hook.py line 109 848561] Train: [34/100][450/605] Data 0.003 (0.002) Batch 0.918 (0.937) Remain 10:26:10 loss: 2.3188 psnr: 17.2751 Lr: 1.58174e-03
[2025-02-17 16:24:03,203 INFO hook.py line 109 848561] Train: [34/100][500/605] Data 0.003 (0.002) Batch 0.949 (0.937) Remain 10:25:06 loss: 2.5124 psnr: 16.7843 Lr: 1.57951e-03
[2025-02-17 16:24:50,037 INFO hook.py line 109 848561] Train: [34/100][550/605] Data 0.003 (0.002) Batch 0.955 (0.937) Remain 10:24:18 loss: 2.4147 psnr: 17.2945 Lr: 1.57728e-03
[2025-02-17 16:25:35,837 INFO hook.py line 109 848561] Train: [34/100][600/605] Data 0.002 (0.002) Batch 0.867 (0.935) Remain 10:22:22 loss: 2.2504 psnr: 18.8885 Lr: 1.57505e-03
[2025-02-17 16:25:40,258 INFO misc.py line 135 848561] Train result: loss: 2.3680 rgb_loss: 0.8523 psnr: 17.3818 depth_loss: 0.0696 feat_loss: 1.4461 
[2025-02-17 16:25:40,259 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 16:26:31,220 INFO hook.py line 109 848561] Train: [35/100][50/605] Data 0.003 (0.002) Batch 0.957 (0.937) Remain 10:22:34 loss: 2.1610 psnr: 19.3655 Lr: 1.57259e-03
[2025-02-17 16:27:18,264 INFO hook.py line 109 848561] Train: [35/100][100/605] Data 0.003 (0.002) Batch 0.960 (0.939) Remain 10:23:13 loss: 2.2292 psnr: 17.8836 Lr: 1.57034e-03
[2025-02-17 16:28:05,093 INFO hook.py line 109 848561] Train: [35/100][150/605] Data 0.002 (0.002) Batch 0.958 (0.938) Remain 10:21:56 loss: 2.2874 psnr: 18.1861 Lr: 1.56810e-03
[2025-02-17 16:28:51,898 INFO hook.py line 109 848561] Train: [35/100][200/605] Data 0.002 (0.002) Batch 0.977 (0.938) Remain 10:20:49 loss: 2.3813 psnr: 17.0185 Lr: 1.56585e-03
[2025-02-17 16:29:38,755 INFO hook.py line 109 848561] Train: [35/100][250/605] Data 0.003 (0.002) Batch 0.922 (0.937) Remain 10:19:59 loss: 2.4462 psnr: 17.6575 Lr: 1.56359e-03
[2025-02-17 16:30:25,322 INFO hook.py line 109 848561] Train: [35/100][300/605] Data 0.002 (0.002) Batch 0.932 (0.936) Remain 10:18:31 loss: 2.2949 psnr: 17.2468 Lr: 1.56133e-03
[2025-02-17 16:31:11,973 INFO hook.py line 109 848561] Train: [35/100][350/605] Data 0.003 (0.002) Batch 0.900 (0.936) Remain 10:17:24 loss: 2.4421 psnr: 16.6830 Lr: 1.55907e-03
[2025-02-17 16:31:59,025 INFO hook.py line 109 848561] Train: [35/100][400/605] Data 0.001 (0.002) Batch 0.941 (0.937) Remain 10:17:03 loss: 2.2254 psnr: 18.4974 Lr: 1.55680e-03
[2025-02-17 16:32:46,280 INFO hook.py line 109 848561] Train: [35/100][450/605] Data 0.002 (0.002) Batch 0.915 (0.938) Remain 10:16:54 loss: 1.8725 psnr: 22.5247 Lr: 1.55453e-03
[2025-02-17 16:33:33,342 INFO hook.py line 109 848561] Train: [35/100][500/605] Data 0.003 (0.002) Batch 0.908 (0.938) Remain 10:16:21 loss: 2.3826 psnr: 17.2508 Lr: 1.55225e-03
[2025-02-17 16:34:20,186 INFO hook.py line 109 848561] Train: [35/100][550/605] Data 0.003 (0.002) Batch 0.953 (0.938) Remain 10:15:31 loss: 2.4431 psnr: 16.3928 Lr: 1.54997e-03
[2025-02-17 16:35:05,899 INFO hook.py line 109 848561] Train: [35/100][600/605] Data 0.002 (0.002) Batch 0.876 (0.936) Remain 10:13:26 loss: 2.5568 psnr: 15.8601 Lr: 1.54768e-03
[2025-02-17 16:35:10,174 INFO misc.py line 135 848561] Train result: loss: 2.3615 rgb_loss: 0.8493 psnr: 17.3775 depth_loss: 0.0684 feat_loss: 1.4438 
[2025-02-17 16:35:10,175 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 16:36:00,803 INFO hook.py line 109 848561] Train: [36/100][50/605] Data 0.002 (0.002) Batch 0.925 (0.931) Remain 10:09:18 loss: 2.4579 psnr: 16.2383 Lr: 1.54517e-03
[2025-02-17 16:36:47,441 INFO hook.py line 109 848561] Train: [36/100][100/605] Data 0.003 (0.002) Batch 0.918 (0.932) Remain 10:09:10 loss: 2.3347 psnr: 17.6031 Lr: 1.54287e-03
[2025-02-17 16:37:34,310 INFO hook.py line 109 848561] Train: [36/100][150/605] Data 0.002 (0.002) Batch 0.950 (0.934) Remain 10:09:38 loss: 2.3764 psnr: 17.5210 Lr: 1.54058e-03
[2025-02-17 16:38:20,734 INFO hook.py line 109 848561] Train: [36/100][200/605] Data 0.002 (0.002) Batch 0.956 (0.932) Remain 10:07:59 loss: 2.5242 psnr: 16.4361 Lr: 1.53828e-03
[2025-02-17 16:39:07,558 INFO hook.py line 109 848561] Train: [36/100][250/605] Data 0.002 (0.002) Batch 0.948 (0.933) Remain 10:07:45 loss: 2.6466 psnr: 14.7725 Lr: 1.53597e-03
[2025-02-17 16:39:54,329 INFO hook.py line 109 848561] Train: [36/100][300/605] Data 0.002 (0.002) Batch 0.887 (0.934) Remain 10:07:13 loss: 2.3119 psnr: 16.8986 Lr: 1.53366e-03
[2025-02-17 16:40:41,122 INFO hook.py line 109 848561] Train: [36/100][350/605] Data 0.002 (0.002) Batch 0.927 (0.934) Remain 10:06:39 loss: 2.1913 psnr: 18.6768 Lr: 1.53135e-03
[2025-02-17 16:41:28,019 INFO hook.py line 109 848561] Train: [36/100][400/605] Data 0.002 (0.002) Batch 0.959 (0.934) Remain 10:06:12 loss: 2.4028 psnr: 16.9925 Lr: 1.52903e-03
[2025-02-17 16:42:15,171 INFO hook.py line 109 848561] Train: [36/100][450/605] Data 0.003 (0.002) Batch 0.963 (0.935) Remain 10:06:02 loss: 2.3931 psnr: 17.1609 Lr: 1.52671e-03
[2025-02-17 16:43:01,979 INFO hook.py line 109 848561] Train: [36/100][500/605] Data 0.003 (0.002) Batch 0.927 (0.935) Remain 10:05:19 loss: 2.4364 psnr: 17.2725 Lr: 1.52438e-03
[2025-02-17 16:43:49,138 INFO hook.py line 109 848561] Train: [36/100][550/605] Data 0.003 (0.002) Batch 0.945 (0.936) Remain 10:04:59 loss: 2.5452 psnr: 16.4036 Lr: 1.52205e-03
[2025-02-17 16:44:35,720 INFO hook.py line 109 848561] Train: [36/100][600/605] Data 0.002 (0.002) Batch 0.871 (0.936) Remain 10:03:58 loss: 2.3914 psnr: 16.9374 Lr: 1.51972e-03
[2025-02-17 16:44:40,008 INFO misc.py line 135 848561] Train result: loss: 2.3543 rgb_loss: 0.8428 psnr: 17.4577 depth_loss: 0.0699 feat_loss: 1.4416 
[2025-02-17 16:44:40,010 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 16:45:30,794 INFO hook.py line 109 848561] Train: [37/100][50/605] Data 0.002 (0.002) Batch 0.963 (0.936) Remain 10:03:16 loss: 2.0923 psnr: 19.1331 Lr: 1.51715e-03
[2025-02-17 16:46:17,633 INFO hook.py line 109 848561] Train: [37/100][100/605] Data 0.002 (0.002) Batch 0.944 (0.936) Remain 10:02:44 loss: 2.2622 psnr: 17.5525 Lr: 1.51481e-03
[2025-02-17 16:47:04,419 INFO hook.py line 109 848561] Train: [37/100][150/605] Data 0.002 (0.002) Batch 0.951 (0.936) Remain 10:01:48 loss: 2.2372 psnr: 18.4952 Lr: 1.51247e-03
[2025-02-17 16:47:51,241 INFO hook.py line 109 848561] Train: [37/100][200/605] Data 0.001 (0.002) Batch 0.931 (0.936) Remain 10:01:03 loss: 2.2617 psnr: 17.9379 Lr: 1.51012e-03
[2025-02-17 16:48:37,921 INFO hook.py line 109 848561] Train: [37/100][250/605] Data 0.002 (0.002) Batch 0.921 (0.936) Remain 09:59:56 loss: 2.3127 psnr: 17.5220 Lr: 1.50776e-03
[2025-02-17 16:49:24,888 INFO hook.py line 109 848561] Train: [37/100][300/605] Data 0.002 (0.002) Batch 0.934 (0.936) Remain 09:59:33 loss: 2.3964 psnr: 17.0870 Lr: 1.50541e-03
[2025-02-17 16:50:11,719 INFO hook.py line 109 848561] Train: [37/100][350/605] Data 0.003 (0.002) Batch 0.947 (0.936) Remain 09:58:48 loss: 2.2295 psnr: 18.4881 Lr: 1.50305e-03
[2025-02-17 16:50:58,683 INFO hook.py line 109 848561] Train: [37/100][400/605] Data 0.001 (0.002) Batch 0.931 (0.937) Remain 09:58:15 loss: 2.3020 psnr: 17.8638 Lr: 1.50068e-03
[2025-02-17 16:51:45,636 INFO hook.py line 109 848561] Train: [37/100][450/605] Data 0.003 (0.002) Batch 0.952 (0.937) Remain 09:57:38 loss: 2.4828 psnr: 16.3180 Lr: 1.49832e-03
[2025-02-17 16:52:32,558 INFO hook.py line 109 848561] Train: [37/100][500/605] Data 0.002 (0.002) Batch 0.911 (0.937) Remain 09:56:57 loss: 2.3159 psnr: 18.2629 Lr: 1.49594e-03
[2025-02-17 16:53:19,427 INFO hook.py line 109 848561] Train: [37/100][550/605] Data 0.003 (0.002) Batch 0.903 (0.937) Remain 09:56:11 loss: 2.4019 psnr: 17.2983 Lr: 1.49357e-03
[2025-02-17 16:54:05,587 INFO hook.py line 109 848561] Train: [37/100][600/605] Data 0.002 (0.002) Batch 0.865 (0.936) Remain 09:54:39 loss: 2.5544 psnr: 15.8604 Lr: 1.49119e-03
[2025-02-17 16:54:09,908 INFO misc.py line 135 848561] Train result: loss: 2.3545 rgb_loss: 0.8443 psnr: 17.4173 depth_loss: 0.0691 feat_loss: 1.4411 
[2025-02-17 16:54:09,909 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 16:55:00,660 INFO hook.py line 109 848561] Train: [38/100][50/605] Data 0.003 (0.002) Batch 0.969 (0.932) Remain 09:51:24 loss: 2.3526 psnr: 17.0906 Lr: 1.48857e-03
[2025-02-17 16:55:47,791 INFO hook.py line 109 848561] Train: [38/100][100/605] Data 0.004 (0.002) Batch 0.923 (0.938) Remain 09:54:02 loss: 2.1650 psnr: 18.2395 Lr: 1.48618e-03
[2025-02-17 16:56:34,597 INFO hook.py line 109 848561] Train: [38/100][150/605] Data 0.003 (0.002) Batch 0.977 (0.937) Remain 09:52:56 loss: 2.2749 psnr: 18.3115 Lr: 1.48379e-03
[2025-02-17 16:57:21,272 INFO hook.py line 109 848561] Train: [38/100][200/605] Data 0.002 (0.002) Batch 0.932 (0.936) Remain 09:51:35 loss: 2.3681 psnr: 16.7569 Lr: 1.48140e-03
[2025-02-17 16:58:08,414 INFO hook.py line 109 848561] Train: [38/100][250/605] Data 0.003 (0.002) Batch 0.956 (0.938) Remain 09:51:39 loss: 2.5860 psnr: 15.5899 Lr: 1.47900e-03
[2025-02-17 16:58:55,054 INFO hook.py line 109 848561] Train: [38/100][300/605] Data 0.002 (0.002) Batch 0.940 (0.937) Remain 09:50:22 loss: 2.1694 psnr: 19.3256 Lr: 1.47660e-03
[2025-02-17 16:59:41,929 INFO hook.py line 109 848561] Train: [38/100][350/605] Data 0.002 (0.002) Batch 0.931 (0.937) Remain 09:49:39 loss: 2.3337 psnr: 17.7101 Lr: 1.47420e-03
[2025-02-17 17:00:29,029 INFO hook.py line 109 848561] Train: [38/100][400/605] Data 0.004 (0.002) Batch 0.940 (0.937) Remain 09:49:17 loss: 2.2017 psnr: 18.4007 Lr: 1.47179e-03
[2025-02-17 17:01:15,592 INFO hook.py line 109 848561] Train: [38/100][450/605] Data 0.002 (0.002) Batch 0.944 (0.937) Remain 09:48:04 loss: 2.5251 psnr: 15.9084 Lr: 1.46938e-03
[2025-02-17 17:02:02,557 INFO hook.py line 109 848561] Train: [38/100][500/605] Data 0.003 (0.002) Batch 0.951 (0.937) Remain 09:47:26 loss: 2.3089 psnr: 17.4903 Lr: 1.46696e-03
[2025-02-17 17:02:49,915 INFO hook.py line 109 848561] Train: [38/100][550/605] Data 0.003 (0.002) Batch 0.932 (0.938) Remain 09:47:14 loss: 2.2821 psnr: 17.5957 Lr: 1.46454e-03
[2025-02-17 17:03:36,128 INFO hook.py line 109 848561] Train: [38/100][600/605] Data 0.002 (0.002) Batch 0.870 (0.937) Remain 09:45:44 loss: 2.3227 psnr: 18.2016 Lr: 1.46212e-03
[2025-02-17 17:03:40,520 INFO misc.py line 135 848561] Train result: loss: 2.3529 rgb_loss: 0.8435 psnr: 17.4339 depth_loss: 0.0684 feat_loss: 1.4410 
[2025-02-17 17:03:40,522 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 17:04:30,967 INFO hook.py line 109 848561] Train: [39/100][50/605] Data 0.002 (0.002) Batch 0.941 (0.933) Remain 09:42:27 loss: 2.2425 psnr: 18.7313 Lr: 1.45945e-03
[2025-02-17 17:05:17,627 INFO hook.py line 109 848561] Train: [39/100][100/605] Data 0.003 (0.002) Batch 0.966 (0.933) Remain 09:41:46 loss: 2.5896 psnr: 15.7330 Lr: 1.45703e-03
[2025-02-17 17:06:04,256 INFO hook.py line 109 848561] Train: [39/100][150/605] Data 0.003 (0.002) Batch 0.952 (0.933) Remain 09:40:53 loss: 2.3028 psnr: 18.1682 Lr: 1.45459e-03
[2025-02-17 17:06:51,115 INFO hook.py line 109 848561] Train: [39/100][200/605] Data 0.002 (0.002) Batch 0.955 (0.934) Remain 09:40:47 loss: 2.0769 psnr: 19.4870 Lr: 1.45216e-03
[2025-02-17 17:07:37,941 INFO hook.py line 109 848561] Train: [39/100][250/605] Data 0.003 (0.002) Batch 0.938 (0.935) Remain 09:40:19 loss: 2.2133 psnr: 18.7971 Lr: 1.44972e-03
[2025-02-17 17:08:24,994 INFO hook.py line 109 848561] Train: [39/100][300/605] Data 0.002 (0.002) Batch 0.961 (0.936) Remain 09:40:13 loss: 2.5198 psnr: 16.1878 Lr: 1.44727e-03
[2025-02-17 17:09:11,877 INFO hook.py line 109 848561] Train: [39/100][350/605] Data 0.003 (0.002) Batch 0.943 (0.936) Remain 09:39:38 loss: 2.3127 psnr: 17.0888 Lr: 1.44483e-03
[2025-02-17 17:09:58,852 INFO hook.py line 109 848561] Train: [39/100][400/605] Data 0.003 (0.002) Batch 0.969 (0.936) Remain 09:39:08 loss: 2.3171 psnr: 17.8349 Lr: 1.44238e-03
[2025-02-17 17:10:46,020 INFO hook.py line 109 848561] Train: [39/100][450/605] Data 0.002 (0.002) Batch 0.902 (0.937) Remain 09:38:50 loss: 2.4794 psnr: 17.0631 Lr: 1.43993e-03
[2025-02-17 17:11:33,130 INFO hook.py line 109 848561] Train: [39/100][500/605] Data 0.003 (0.002) Batch 0.967 (0.938) Remain 09:38:22 loss: 2.3617 psnr: 17.0684 Lr: 1.43747e-03
[2025-02-17 17:12:20,484 INFO hook.py line 109 848561] Train: [39/100][550/605] Data 0.002 (0.002) Batch 0.958 (0.939) Remain 09:38:07 loss: 2.4052 psnr: 16.4517 Lr: 1.43501e-03
[2025-02-17 17:13:06,673 INFO hook.py line 109 848561] Train: [39/100][600/605] Data 0.002 (0.002) Batch 0.833 (0.937) Remain 09:36:34 loss: 2.3087 psnr: 17.2478 Lr: 1.43255e-03
[2025-02-17 17:13:10,995 INFO misc.py line 135 848561] Train result: loss: 2.3457 rgb_loss: 0.8354 psnr: 17.4982 depth_loss: 0.0685 feat_loss: 1.4419 
[2025-02-17 17:13:10,995 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 17:14:02,026 INFO hook.py line 109 848561] Train: [40/100][50/605] Data 0.003 (0.002) Batch 0.935 (0.937) Remain 09:35:33 loss: 2.3137 psnr: 17.9471 Lr: 1.42984e-03
[2025-02-17 17:14:49,037 INFO hook.py line 109 848561] Train: [40/100][100/605] Data 0.002 (0.002) Batch 0.958 (0.939) Remain 09:35:47 loss: 2.2440 psnr: 17.6680 Lr: 1.42737e-03
[2025-02-17 17:15:35,672 INFO hook.py line 109 848561] Train: [40/100][150/605] Data 0.003 (0.003) Batch 0.906 (0.937) Remain 09:33:46 loss: 2.3740 psnr: 17.6378 Lr: 1.42489e-03
[2025-02-17 17:16:22,635 INFO hook.py line 109 848561] Train: [40/100][200/605] Data 0.003 (0.002) Batch 0.949 (0.937) Remain 09:33:23 loss: 2.6224 psnr: 16.0547 Lr: 1.42242e-03
[2025-02-17 17:17:09,516 INFO hook.py line 109 848561] Train: [40/100][250/605] Data 0.002 (0.002) Batch 0.947 (0.937) Remain 09:32:39 loss: 2.5466 psnr: 16.0749 Lr: 1.41994e-03
[2025-02-17 17:17:56,023 INFO hook.py line 109 848561] Train: [40/100][300/605] Data 0.002 (0.002) Batch 0.934 (0.936) Remain 09:31:07 loss: 2.4214 psnr: 17.6802 Lr: 1.41746e-03
[2025-02-17 17:18:42,766 INFO hook.py line 109 848561] Train: [40/100][350/605] Data 0.002 (0.002) Batch 0.939 (0.936) Remain 09:30:14 loss: 2.0720 psnr: 20.7062 Lr: 1.41497e-03
[2025-02-17 17:19:29,900 INFO hook.py line 109 848561] Train: [40/100][400/605] Data 0.003 (0.002) Batch 0.918 (0.937) Remain 09:29:58 loss: 2.6390 psnr: 15.9921 Lr: 1.41254e-03
[2025-02-17 17:20:16,862 INFO hook.py line 109 848561] Train: [40/100][450/605] Data 0.002 (0.002) Batch 0.911 (0.937) Remain 09:29:21 loss: 2.4539 psnr: 17.0985 Lr: 1.41004e-03
[2025-02-17 17:21:03,847 INFO hook.py line 109 848561] Train: [40/100][500/605] Data 0.002 (0.002) Batch 0.969 (0.937) Remain 09:28:44 loss: 2.4303 psnr: 16.8639 Lr: 1.40755e-03
[2025-02-17 17:21:50,919 INFO hook.py line 109 848561] Train: [40/100][550/605] Data 0.002 (0.002) Batch 0.925 (0.938) Remain 09:28:10 loss: 2.0212 psnr: 21.7158 Lr: 1.40505e-03
[2025-02-17 17:22:37,335 INFO hook.py line 109 848561] Train: [40/100][600/605] Data 0.003 (0.002) Batch 0.861 (0.937) Remain 09:26:55 loss: 2.3623 psnr: 17.4341 Lr: 1.40255e-03
[2025-02-17 17:22:41,640 INFO misc.py line 135 848561] Train result: loss: 2.3475 rgb_loss: 0.8376 psnr: 17.4878 depth_loss: 0.0686 feat_loss: 1.4413 
[2025-02-17 17:22:41,641 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 17:23:32,702 INFO hook.py line 109 848561] Train: [41/100][50/605] Data 0.002 (0.002) Batch 0.943 (0.936) Remain 09:25:39 loss: 2.1412 psnr: 18.9578 Lr: 1.39980e-03
[2025-02-17 17:24:19,455 INFO hook.py line 109 848561] Train: [41/100][100/605] Data 0.002 (0.002) Batch 0.947 (0.936) Remain 09:24:30 loss: 2.3714 psnr: 16.7783 Lr: 1.39729e-03
[2025-02-17 17:25:06,305 INFO hook.py line 109 848561] Train: [41/100][150/605] Data 0.002 (0.002) Batch 0.912 (0.936) Remain 09:24:00 loss: 2.2324 psnr: 17.9684 Lr: 1.39478e-03
[2025-02-17 17:25:53,270 INFO hook.py line 109 848561] Train: [41/100][200/605] Data 0.003 (0.002) Batch 0.939 (0.937) Remain 09:23:42 loss: 2.2036 psnr: 19.7757 Lr: 1.39232e-03
[2025-02-17 17:26:40,337 INFO hook.py line 109 848561] Train: [41/100][250/605] Data 0.003 (0.002) Batch 0.918 (0.938) Remain 09:23:28 loss: 2.1896 psnr: 18.4676 Lr: 1.38980e-03
[2025-02-17 17:27:27,120 INFO hook.py line 109 848561] Train: [41/100][300/605] Data 0.002 (0.002) Batch 0.927 (0.937) Remain 09:22:27 loss: 2.2046 psnr: 18.7107 Lr: 1.38729e-03
[2025-02-17 17:28:13,769 INFO hook.py line 109 848561] Train: [41/100][350/605] Data 0.002 (0.002) Batch 0.940 (0.937) Remain 09:21:18 loss: 2.6040 psnr: 16.2414 Lr: 1.38477e-03
[2025-02-17 17:29:00,611 INFO hook.py line 109 848561] Train: [41/100][400/605] Data 0.003 (0.002) Batch 0.952 (0.937) Remain 09:20:31 loss: 2.5015 psnr: 16.1824 Lr: 1.38224e-03
[2025-02-17 17:29:47,566 INFO hook.py line 109 848561] Train: [41/100][450/605] Data 0.002 (0.002) Batch 0.937 (0.937) Remain 09:19:53 loss: 2.3292 psnr: 17.5260 Lr: 1.37971e-03
[2025-02-17 17:30:34,314 INFO hook.py line 109 848561] Train: [41/100][500/605] Data 0.003 (0.002) Batch 0.933 (0.937) Remain 09:18:59 loss: 2.4067 psnr: 17.4708 Lr: 1.37718e-03
[2025-02-17 17:31:21,344 INFO hook.py line 109 848561] Train: [41/100][550/605] Data 0.003 (0.002) Batch 0.954 (0.937) Remain 09:18:24 loss: 2.2690 psnr: 18.8451 Lr: 1.37465e-03
[2025-02-17 17:32:07,754 INFO hook.py line 109 848561] Train: [41/100][600/605] Data 0.002 (0.002) Batch 0.874 (0.936) Remain 09:17:10 loss: 2.3371 psnr: 17.1889 Lr: 1.37212e-03
[2025-02-17 17:32:12,045 INFO misc.py line 135 848561] Train result: loss: 2.3398 rgb_loss: 0.8339 psnr: 17.4990 depth_loss: 0.0682 feat_loss: 1.4377 
[2025-02-17 17:32:12,045 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 17:33:02,931 INFO hook.py line 109 848561] Train: [42/100][50/605] Data 0.003 (0.002) Batch 0.930 (0.934) Remain 09:14:38 loss: 2.1180 psnr: 19.1705 Lr: 1.36932e-03
[2025-02-17 17:33:49,810 INFO hook.py line 109 848561] Train: [42/100][100/605] Data 0.002 (0.002) Batch 0.910 (0.936) Remain 09:15:04 loss: 2.2125 psnr: 18.6426 Lr: 1.36678e-03
[2025-02-17 17:34:36,478 INFO hook.py line 109 848561] Train: [42/100][150/605] Data 0.003 (0.002) Batch 0.960 (0.935) Remain 09:13:49 loss: 2.2052 psnr: 18.0473 Lr: 1.36424e-03
[2025-02-17 17:35:23,422 INFO hook.py line 109 848561] Train: [42/100][200/605] Data 0.003 (0.002) Batch 0.936 (0.936) Remain 09:13:39 loss: 2.1314 psnr: 18.9308 Lr: 1.36169e-03
[2025-02-17 17:36:10,198 INFO hook.py line 109 848561] Train: [42/100][250/605] Data 0.003 (0.002) Batch 0.919 (0.936) Remain 09:12:49 loss: 2.1613 psnr: 18.9118 Lr: 1.35914e-03
[2025-02-17 17:36:57,220 INFO hook.py line 109 848561] Train: [42/100][300/605] Data 0.001 (0.002) Batch 0.945 (0.937) Remain 09:12:30 loss: 2.2623 psnr: 18.2745 Lr: 1.35659e-03
[2025-02-17 17:37:44,273 INFO hook.py line 109 848561] Train: [42/100][350/605] Data 0.002 (0.002) Batch 0.931 (0.937) Remain 09:12:06 loss: 2.3710 psnr: 17.7139 Lr: 1.35404e-03
[2025-02-17 17:38:31,123 INFO hook.py line 109 848561] Train: [42/100][400/605] Data 0.003 (0.002) Batch 0.934 (0.937) Remain 09:11:18 loss: 2.1401 psnr: 18.9669 Lr: 1.35148e-03
[2025-02-17 17:39:18,152 INFO hook.py line 109 848561] Train: [42/100][450/605] Data 0.003 (0.002) Batch 0.934 (0.938) Remain 09:10:45 loss: 2.2166 psnr: 17.9492 Lr: 1.34892e-03
[2025-02-17 17:40:05,269 INFO hook.py line 109 848561] Train: [42/100][500/605] Data 0.003 (0.002) Batch 0.922 (0.938) Remain 09:10:15 loss: 2.5033 psnr: 16.4614 Lr: 1.34636e-03
[2025-02-17 17:40:52,301 INFO hook.py line 109 848561] Train: [42/100][550/605] Data 0.003 (0.002) Batch 0.923 (0.938) Remain 09:09:36 loss: 2.2036 psnr: 17.7038 Lr: 1.34379e-03
[2025-02-17 17:41:38,773 INFO hook.py line 109 848561] Train: [42/100][600/605] Data 0.003 (0.002) Batch 0.922 (0.938) Remain 09:08:23 loss: 2.1249 psnr: 18.6452 Lr: 1.34122e-03
[2025-02-17 17:41:43,231 INFO misc.py line 135 848561] Train result: loss: 2.3231 rgb_loss: 0.8197 psnr: 17.6061 depth_loss: 0.0673 feat_loss: 1.4361 
[2025-02-17 17:41:43,233 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 17:42:34,453 INFO hook.py line 109 848561] Train: [43/100][50/605] Data 0.003 (0.002) Batch 0.943 (0.946) Remain 09:12:17 loss: 2.1094 psnr: 19.0500 Lr: 1.33840e-03
[2025-02-17 17:43:21,569 INFO hook.py line 109 848561] Train: [43/100][100/605] Data 0.003 (0.002) Batch 0.951 (0.944) Remain 09:10:29 loss: 2.3575 psnr: 17.2511 Lr: 1.33582e-03
[2025-02-17 17:44:08,402 INFO hook.py line 109 848561] Train: [43/100][150/605] Data 0.003 (0.002) Batch 0.937 (0.941) Remain 09:08:15 loss: 2.4716 psnr: 16.8521 Lr: 1.33325e-03
[2025-02-17 17:44:55,387 INFO hook.py line 109 848561] Train: [43/100][200/605] Data 0.003 (0.002) Batch 0.941 (0.941) Remain 09:07:12 loss: 2.1746 psnr: 18.3471 Lr: 1.33067e-03
[2025-02-17 17:45:42,328 INFO hook.py line 109 848561] Train: [43/100][250/605] Data 0.002 (0.002) Batch 0.933 (0.941) Remain 09:06:09 loss: 2.3984 psnr: 17.1325 Lr: 1.32809e-03
[2025-02-17 17:46:29,170 INFO hook.py line 109 848561] Train: [43/100][300/605] Data 0.003 (0.002) Batch 0.941 (0.940) Remain 09:05:00 loss: 2.3239 psnr: 17.4594 Lr: 1.32551e-03
[2025-02-17 17:47:15,894 INFO hook.py line 109 848561] Train: [43/100][350/605] Data 0.003 (0.002) Batch 0.948 (0.939) Remain 09:03:46 loss: 2.4263 psnr: 17.2680 Lr: 1.32292e-03
[2025-02-17 17:48:02,681 INFO hook.py line 109 848561] Train: [43/100][400/605] Data 0.002 (0.002) Batch 0.953 (0.939) Remain 09:02:44 loss: 2.2908 psnr: 17.9245 Lr: 1.32033e-03
[2025-02-17 17:48:49,220 INFO hook.py line 109 848561] Train: [43/100][450/605] Data 0.002 (0.002) Batch 0.986 (0.938) Remain 09:01:26 loss: 2.3807 psnr: 17.5612 Lr: 1.31774e-03
[2025-02-17 17:49:36,182 INFO hook.py line 109 848561] Train: [43/100][500/605] Data 0.002 (0.002) Batch 0.952 (0.938) Remain 09:00:44 loss: 2.4953 psnr: 15.9958 Lr: 1.31515e-03
[2025-02-17 17:50:23,021 INFO hook.py line 109 848561] Train: [43/100][550/605] Data 0.002 (0.002) Batch 0.951 (0.938) Remain 08:59:54 loss: 2.1822 psnr: 18.1093 Lr: 1.31256e-03
[2025-02-17 17:51:09,000 INFO hook.py line 109 848561] Train: [43/100][600/605] Data 0.002 (0.002) Batch 0.854 (0.936) Remain 08:58:14 loss: 2.2346 psnr: 19.0920 Lr: 1.30996e-03
[2025-02-17 17:51:13,323 INFO misc.py line 135 848561] Train result: loss: 2.3410 rgb_loss: 0.8356 psnr: 17.5013 depth_loss: 0.0690 feat_loss: 1.4364 
[2025-02-17 17:51:13,324 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 17:52:04,961 INFO hook.py line 109 848561] Train: [44/100][50/605] Data 0.003 (0.002) Batch 0.934 (0.946) Remain 09:02:53 loss: 2.2666 psnr: 18.1325 Lr: 1.30710e-03
[2025-02-17 17:52:51,856 INFO hook.py line 109 848561] Train: [44/100][100/605] Data 0.003 (0.002) Batch 0.956 (0.942) Remain 08:59:43 loss: 2.2653 psnr: 17.7963 Lr: 1.30450e-03
[2025-02-17 17:53:38,956 INFO hook.py line 109 848561] Train: [44/100][150/605] Data 0.002 (0.002) Batch 0.902 (0.942) Remain 08:58:59 loss: 2.3068 psnr: 17.6583 Lr: 1.30189e-03
[2025-02-17 17:54:25,687 INFO hook.py line 109 848561] Train: [44/100][200/605] Data 0.003 (0.002) Batch 0.923 (0.940) Remain 08:57:08 loss: 2.4355 psnr: 16.3488 Lr: 1.29929e-03
[2025-02-17 17:55:12,662 INFO hook.py line 109 848561] Train: [44/100][250/605] Data 0.002 (0.002) Batch 0.964 (0.940) Remain 08:56:18 loss: 2.0009 psnr: 20.9923 Lr: 1.29668e-03
[2025-02-17 17:55:59,234 INFO hook.py line 109 848561] Train: [44/100][300/605] Data 0.002 (0.002) Batch 0.944 (0.938) Remain 08:54:42 loss: 2.1172 psnr: 19.5802 Lr: 1.29407e-03
[2025-02-17 17:56:46,378 INFO hook.py line 109 848561] Train: [44/100][350/605] Data 0.002 (0.002) Batch 0.972 (0.939) Remain 08:54:17 loss: 2.3091 psnr: 17.9253 Lr: 1.29145e-03
[2025-02-17 17:57:33,235 INFO hook.py line 109 848561] Train: [44/100][400/605] Data 0.003 (0.002) Batch 0.913 (0.939) Remain 08:53:21 loss: 2.3204 psnr: 17.8881 Lr: 1.28884e-03
[2025-02-17 17:58:20,081 INFO hook.py line 109 848561] Train: [44/100][450/605] Data 0.003 (0.002) Batch 0.953 (0.939) Remain 08:52:27 loss: 2.4335 psnr: 16.6549 Lr: 1.28622e-03
[2025-02-17 17:59:06,920 INFO hook.py line 109 848561] Train: [44/100][500/605] Data 0.003 (0.002) Batch 0.930 (0.938) Remain 08:51:33 loss: 2.2368 psnr: 17.8486 Lr: 1.28360e-03
[2025-02-17 17:59:54,010 INFO hook.py line 109 848561] Train: [44/100][550/605] Data 0.002 (0.002) Batch 0.975 (0.939) Remain 08:50:57 loss: 2.1726 psnr: 18.9600 Lr: 1.28098e-03
[2025-02-17 18:00:40,049 INFO hook.py line 109 848561] Train: [44/100][600/605] Data 0.002 (0.002) Batch 0.855 (0.937) Remain 08:49:19 loss: 2.2629 psnr: 17.8447 Lr: 1.27836e-03
[2025-02-17 18:00:44,326 INFO misc.py line 135 848561] Train result: loss: 2.3204 rgb_loss: 0.8187 psnr: 17.6408 depth_loss: 0.0681 feat_loss: 1.4336 
[2025-02-17 18:00:44,328 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 18:01:35,540 INFO hook.py line 109 848561] Train: [45/100][50/605] Data 0.003 (0.002) Batch 0.945 (0.944) Remain 08:52:10 loss: 2.2124 psnr: 18.2452 Lr: 1.27547e-03
[2025-02-17 18:02:22,381 INFO hook.py line 109 848561] Train: [45/100][100/605] Data 0.003 (0.003) Batch 0.937 (0.940) Remain 08:49:21 loss: 2.1500 psnr: 19.4949 Lr: 1.27284e-03
[2025-02-17 18:03:09,434 INFO hook.py line 109 848561] Train: [45/100][150/605] Data 0.003 (0.003) Batch 0.970 (0.941) Remain 08:48:43 loss: 2.2679 psnr: 17.3858 Lr: 1.27021e-03
[2025-02-17 18:03:56,232 INFO hook.py line 109 848561] Train: [45/100][200/605] Data 0.002 (0.002) Batch 0.939 (0.939) Remain 08:47:17 loss: 2.3924 psnr: 17.3778 Lr: 1.26758e-03
[2025-02-17 18:04:43,349 INFO hook.py line 109 848561] Train: [45/100][250/605] Data 0.002 (0.002) Batch 0.963 (0.940) Remain 08:46:50 loss: 2.2317 psnr: 18.5073 Lr: 1.26494e-03
[2025-02-17 18:05:30,028 INFO hook.py line 109 848561] Train: [45/100][300/605] Data 0.002 (0.002) Batch 0.936 (0.939) Remain 08:45:27 loss: 2.2728 psnr: 18.3532 Lr: 1.26236e-03
[2025-02-17 18:06:16,696 INFO hook.py line 109 848561] Train: [45/100][350/605] Data 0.003 (0.002) Batch 0.926 (0.938) Remain 08:44:14 loss: 2.1067 psnr: 18.4838 Lr: 1.25972e-03
[2025-02-17 18:07:03,561 INFO hook.py line 109 848561] Train: [45/100][400/605] Data 0.002 (0.002) Batch 0.923 (0.938) Remain 08:43:23 loss: 2.0150 psnr: 20.9950 Lr: 1.25708e-03
[2025-02-17 18:07:50,964 INFO hook.py line 109 848561] Train: [45/100][450/605] Data 0.002 (0.002) Batch 0.921 (0.939) Remain 08:43:14 loss: 2.4517 psnr: 16.5385 Lr: 1.25444e-03
[2025-02-17 18:08:37,692 INFO hook.py line 109 848561] Train: [45/100][500/605] Data 0.003 (0.002) Batch 0.937 (0.939) Remain 08:42:12 loss: 2.1587 psnr: 19.2230 Lr: 1.25179e-03
[2025-02-17 18:09:24,730 INFO hook.py line 109 848561] Train: [45/100][550/605] Data 0.002 (0.002) Batch 0.933 (0.939) Remain 08:41:31 loss: 2.2222 psnr: 18.4199 Lr: 1.24915e-03
[2025-02-17 18:10:11,094 INFO hook.py line 109 848561] Train: [45/100][600/605] Data 0.002 (0.002) Batch 0.863 (0.938) Remain 08:40:12 loss: 2.3554 psnr: 17.6223 Lr: 1.24650e-03
[2025-02-17 18:10:15,477 INFO misc.py line 135 848561] Train result: loss: 2.3215 rgb_loss: 0.8187 psnr: 17.6462 depth_loss: 0.0685 feat_loss: 1.4343 
[2025-02-17 18:10:15,479 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 18:11:06,635 INFO hook.py line 109 848561] Train: [46/100][50/605] Data 0.003 (0.002) Batch 0.940 (0.938) Remain 08:39:24 loss: 2.2167 psnr: 18.7375 Lr: 1.24359e-03
[2025-02-17 18:11:53,861 INFO hook.py line 109 848561] Train: [46/100][100/605] Data 0.002 (0.002) Batch 0.933 (0.941) Remain 08:40:29 loss: 2.2803 psnr: 18.2694 Lr: 1.24093e-03
[2025-02-17 18:12:41,015 INFO hook.py line 109 848561] Train: [46/100][150/605] Data 0.002 (0.002) Batch 0.950 (0.942) Remain 08:40:01 loss: 2.4865 psnr: 17.1687 Lr: 1.23828e-03
[2025-02-17 18:13:27,920 INFO hook.py line 109 848561] Train: [46/100][200/605] Data 0.002 (0.002) Batch 0.975 (0.941) Remain 08:38:42 loss: 2.5370 psnr: 15.2530 Lr: 1.23562e-03
[2025-02-17 18:14:14,740 INFO hook.py line 109 848561] Train: [46/100][250/605] Data 0.003 (0.002) Batch 0.893 (0.940) Remain 08:37:24 loss: 2.3201 psnr: 17.1922 Lr: 1.23297e-03
[2025-02-17 18:15:01,651 INFO hook.py line 109 848561] Train: [46/100][300/605] Data 0.002 (0.002) Batch 0.963 (0.940) Remain 08:36:27 loss: 2.3702 psnr: 16.7171 Lr: 1.23031e-03
[2025-02-17 18:15:48,159 INFO hook.py line 109 848561] Train: [46/100][350/605] Data 0.003 (0.002) Batch 0.963 (0.938) Remain 08:34:55 loss: 2.2859 psnr: 17.3633 Lr: 1.22765e-03
[2025-02-17 18:16:35,143 INFO hook.py line 109 848561] Train: [46/100][400/605] Data 0.002 (0.002) Batch 0.964 (0.939) Remain 08:34:13 loss: 2.2487 psnr: 17.9582 Lr: 1.22499e-03
[2025-02-17 18:17:22,254 INFO hook.py line 109 848561] Train: [46/100][450/605] Data 0.002 (0.002) Batch 0.931 (0.939) Remain 08:33:40 loss: 2.2829 psnr: 16.9280 Lr: 1.22232e-03
[2025-02-17 18:18:09,012 INFO hook.py line 109 848561] Train: [46/100][500/605] Data 0.003 (0.002) Batch 0.948 (0.939) Remain 08:32:41 loss: 2.5017 psnr: 16.0564 Lr: 1.21966e-03
[2025-02-17 18:18:55,917 INFO hook.py line 109 848561] Train: [46/100][550/605] Data 0.002 (0.002) Batch 0.948 (0.939) Remain 08:31:52 loss: 2.1229 psnr: 18.9907 Lr: 1.21699e-03
[2025-02-17 18:19:42,013 INFO hook.py line 109 848561] Train: [46/100][600/605] Data 0.002 (0.002) Batch 0.847 (0.937) Remain 08:30:20 loss: 2.4139 psnr: 16.6082 Lr: 1.21432e-03
[2025-02-17 18:19:46,329 INFO misc.py line 135 848561] Train result: loss: 2.3204 rgb_loss: 0.8171 psnr: 17.6329 depth_loss: 0.0685 feat_loss: 1.4348 
[2025-02-17 18:19:46,329 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 18:20:37,566 INFO hook.py line 109 848561] Train: [47/100][50/605] Data 0.002 (0.002) Batch 0.904 (0.943) Remain 08:32:54 loss: 2.1285 psnr: 18.9992 Lr: 1.21138e-03
[2025-02-17 18:21:24,561 INFO hook.py line 109 848561] Train: [47/100][100/605] Data 0.002 (0.002) Batch 0.943 (0.942) Remain 08:31:07 loss: 2.5230 psnr: 16.4940 Lr: 1.20871e-03
[2025-02-17 18:22:11,486 INFO hook.py line 109 848561] Train: [47/100][150/605] Data 0.003 (0.002) Batch 0.914 (0.941) Remain 08:29:46 loss: 2.2734 psnr: 17.5320 Lr: 1.20604e-03
[2025-02-17 18:22:58,331 INFO hook.py line 109 848561] Train: [47/100][200/605] Data 0.003 (0.002) Batch 0.904 (0.940) Remain 08:28:29 loss: 2.1692 psnr: 18.8704 Lr: 1.20336e-03
[2025-02-17 18:23:45,077 INFO hook.py line 109 848561] Train: [47/100][250/605] Data 0.002 (0.002) Batch 0.931 (0.939) Remain 08:27:11 loss: 2.5562 psnr: 15.8979 Lr: 1.20069e-03
[2025-02-17 18:24:32,240 INFO hook.py line 109 848561] Train: [47/100][300/605] Data 0.002 (0.002) Batch 0.938 (0.939) Remain 08:26:49 loss: 2.3489 psnr: 17.1191 Lr: 1.19801e-03
[2025-02-17 18:25:19,198 INFO hook.py line 109 848561] Train: [47/100][350/605] Data 0.002 (0.002) Batch 0.956 (0.939) Remain 08:26:01 loss: 2.2297 psnr: 18.5121 Lr: 1.19533e-03
[2025-02-17 18:26:06,014 INFO hook.py line 109 848561] Train: [47/100][400/605] Data 0.002 (0.002) Batch 0.944 (0.939) Remain 08:25:01 loss: 2.2381 psnr: 18.3719 Lr: 1.19265e-03
[2025-02-17 18:26:52,820 INFO hook.py line 109 848561] Train: [47/100][450/605] Data 0.003 (0.002) Batch 0.944 (0.939) Remain 08:24:04 loss: 2.0718 psnr: 20.0336 Lr: 1.18997e-03
[2025-02-17 18:27:39,595 INFO hook.py line 109 848561] Train: [47/100][500/605] Data 0.003 (0.002) Batch 0.954 (0.938) Remain 08:23:07 loss: 2.3481 psnr: 17.1607 Lr: 1.18728e-03
[2025-02-17 18:28:26,719 INFO hook.py line 109 848561] Train: [47/100][550/605] Data 0.003 (0.002) Batch 0.919 (0.939) Remain 08:22:32 loss: 2.3349 psnr: 17.9479 Lr: 1.18460e-03
[2025-02-17 18:29:12,387 INFO hook.py line 109 848561] Train: [47/100][600/605] Data 0.002 (0.002) Batch 0.828 (0.937) Remain 08:20:37 loss: 2.2211 psnr: 19.0392 Lr: 1.18191e-03
[2025-02-17 18:29:16,629 INFO misc.py line 135 848561] Train result: loss: 2.3217 rgb_loss: 0.8217 psnr: 17.5811 depth_loss: 0.0678 feat_loss: 1.4322 
[2025-02-17 18:29:16,630 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 18:30:07,625 INFO hook.py line 109 848561] Train: [48/100][50/605] Data 0.003 (0.002) Batch 0.919 (0.939) Remain 08:21:10 loss: 2.0989 psnr: 20.3750 Lr: 1.17895e-03
[2025-02-17 18:30:54,401 INFO hook.py line 109 848561] Train: [48/100][100/605] Data 0.003 (0.002) Batch 0.951 (0.937) Remain 08:19:21 loss: 2.5163 psnr: 17.0898 Lr: 1.17626e-03
[2025-02-17 18:31:41,829 INFO hook.py line 109 848561] Train: [48/100][150/605] Data 0.002 (0.002) Batch 0.938 (0.941) Remain 08:20:36 loss: 2.2668 psnr: 17.7531 Lr: 1.17357e-03
[2025-02-17 18:32:28,763 INFO hook.py line 109 848561] Train: [48/100][200/605] Data 0.002 (0.002) Batch 0.939 (0.941) Remain 08:19:29 loss: 2.2318 psnr: 18.8810 Lr: 1.17088e-03
[2025-02-17 18:33:15,864 INFO hook.py line 109 848561] Train: [48/100][250/605] Data 0.002 (0.002) Batch 0.925 (0.941) Remain 08:18:52 loss: 2.4155 psnr: 16.5939 Lr: 1.16819e-03
[2025-02-17 18:34:02,749 INFO hook.py line 109 848561] Train: [48/100][300/605] Data 0.003 (0.002) Batch 0.945 (0.940) Remain 08:17:48 loss: 2.3618 psnr: 17.3277 Lr: 1.16549e-03
[2025-02-17 18:34:49,767 INFO hook.py line 109 848561] Train: [48/100][350/605] Data 0.002 (0.002) Batch 0.937 (0.940) Remain 08:17:01 loss: 2.4912 psnr: 17.2035 Lr: 1.16280e-03
[2025-02-17 18:35:36,447 INFO hook.py line 109 848561] Train: [48/100][400/605] Data 0.003 (0.002) Batch 0.908 (0.939) Remain 08:15:48 loss: 2.2582 psnr: 18.0410 Lr: 1.16010e-03
[2025-02-17 18:36:23,595 INFO hook.py line 109 848561] Train: [48/100][450/605] Data 0.003 (0.002) Batch 0.955 (0.940) Remain 08:15:13 loss: 2.4530 psnr: 16.6444 Lr: 1.15740e-03
[2025-02-17 18:37:10,611 INFO hook.py line 109 848561] Train: [48/100][500/605] Data 0.002 (0.002) Batch 0.942 (0.940) Remain 08:14:27 loss: 2.3155 psnr: 17.3266 Lr: 1.15470e-03
[2025-02-17 18:37:57,668 INFO hook.py line 109 848561] Train: [48/100][550/605] Data 0.002 (0.002) Batch 0.963 (0.940) Remain 08:13:44 loss: 1.8784 psnr: 22.4989 Lr: 1.15200e-03
[2025-02-17 18:38:43,571 INFO hook.py line 109 848561] Train: [48/100][600/605] Data 0.002 (0.002) Batch 0.850 (0.938) Remain 08:11:59 loss: 2.2062 psnr: 18.8458 Lr: 1.14930e-03
[2025-02-17 18:38:47,811 INFO misc.py line 135 848561] Train result: loss: 2.3113 rgb_loss: 0.8108 psnr: 17.6950 depth_loss: 0.0675 feat_loss: 1.4329 
[2025-02-17 18:38:47,812 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 18:39:39,162 INFO hook.py line 109 848561] Train: [49/100][50/605] Data 0.003 (0.002) Batch 0.969 (0.942) Remain 08:12:54 loss: 2.0290 psnr: 19.6320 Lr: 1.14633e-03
[2025-02-17 18:40:26,091 INFO hook.py line 109 848561] Train: [49/100][100/605] Data 0.003 (0.002) Batch 0.940 (0.940) Remain 08:11:19 loss: 2.2484 psnr: 17.6233 Lr: 1.14362e-03
[2025-02-17 18:41:12,894 INFO hook.py line 109 848561] Train: [49/100][150/605] Data 0.002 (0.002) Batch 1.044 (0.939) Remain 08:09:50 loss: 2.3066 psnr: 17.8017 Lr: 1.14092e-03
[2025-02-17 18:41:59,917 INFO hook.py line 109 848561] Train: [49/100][200/605] Data 0.002 (0.002) Batch 0.901 (0.939) Remain 08:09:17 loss: 2.2991 psnr: 17.9354 Lr: 1.13821e-03
[2025-02-17 18:42:46,985 INFO hook.py line 109 848561] Train: [49/100][250/605] Data 0.002 (0.002) Batch 0.929 (0.940) Remain 08:08:44 loss: 2.4142 psnr: 16.6562 Lr: 1.13550e-03
[2025-02-17 18:43:34,155 INFO hook.py line 109 848561] Train: [49/100][300/605] Data 0.003 (0.002) Batch 0.934 (0.940) Remain 08:08:17 loss: 2.1937 psnr: 18.2724 Lr: 1.13279e-03
[2025-02-17 18:44:21,307 INFO hook.py line 109 848561] Train: [49/100][350/605] Data 0.003 (0.002) Batch 0.937 (0.941) Remain 08:07:42 loss: 2.4067 psnr: 16.6157 Lr: 1.13009e-03
[2025-02-17 18:45:08,172 INFO hook.py line 109 848561] Train: [49/100][400/605] Data 0.002 (0.002) Batch 0.944 (0.940) Remain 08:06:42 loss: 2.3610 psnr: 17.5806 Lr: 1.12738e-03
[2025-02-17 18:45:55,410 INFO hook.py line 109 848561] Train: [49/100][450/605] Data 0.002 (0.002) Batch 0.955 (0.941) Remain 08:06:11 loss: 2.2101 psnr: 18.3274 Lr: 1.12466e-03
[2025-02-17 18:46:42,454 INFO hook.py line 109 848561] Train: [49/100][500/605] Data 0.002 (0.002) Batch 0.924 (0.941) Remain 08:05:25 loss: 2.2943 psnr: 17.6682 Lr: 1.12195e-03
[2025-02-17 18:47:29,380 INFO hook.py line 109 848561] Train: [49/100][550/605] Data 0.002 (0.002) Batch 0.947 (0.941) Remain 08:04:31 loss: 2.1354 psnr: 19.8515 Lr: 1.11924e-03
[2025-02-17 18:48:15,828 INFO hook.py line 109 848561] Train: [49/100][600/605] Data 0.002 (0.002) Batch 0.877 (0.940) Remain 08:03:14 loss: 2.3742 psnr: 17.6620 Lr: 1.11653e-03
[2025-02-17 18:48:20,113 INFO misc.py line 135 848561] Train result: loss: 2.3269 rgb_loss: 0.8267 psnr: 17.5595 depth_loss: 0.0675 feat_loss: 1.4327 
[2025-02-17 18:48:20,114 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 18:49:10,819 INFO hook.py line 109 848561] Train: [50/100][50/605] Data 0.003 (0.002) Batch 0.944 (0.936) Remain 08:00:18 loss: 2.0795 psnr: 19.3658 Lr: 1.11354e-03
[2025-02-17 18:49:57,673 INFO hook.py line 109 848561] Train: [50/100][100/605] Data 0.002 (0.002) Batch 0.946 (0.936) Remain 07:59:56 loss: 2.5218 psnr: 16.4295 Lr: 1.11082e-03
[2025-02-17 18:50:44,685 INFO hook.py line 109 848561] Train: [50/100][150/605] Data 0.003 (0.002) Batch 0.965 (0.938) Remain 07:59:50 loss: 2.0673 psnr: 19.1857 Lr: 1.10811e-03
[2025-02-17 18:51:32,217 INFO hook.py line 109 848561] Train: [50/100][200/605] Data 0.002 (0.002) Batch 0.936 (0.941) Remain 08:00:44 loss: 2.1672 psnr: 19.1400 Lr: 1.10539e-03
[2025-02-17 18:52:19,192 INFO hook.py line 109 848561] Train: [50/100][250/605] Data 0.002 (0.002) Batch 0.939 (0.941) Remain 07:59:48 loss: 2.1011 psnr: 19.6871 Lr: 1.10267e-03
[2025-02-17 18:53:06,153 INFO hook.py line 109 848561] Train: [50/100][300/605] Data 0.003 (0.002) Batch 0.924 (0.940) Remain 07:58:54 loss: 2.3872 psnr: 16.8114 Lr: 1.09995e-03
[2025-02-17 18:53:53,211 INFO hook.py line 109 848561] Train: [50/100][350/605] Data 0.003 (0.002) Batch 0.997 (0.941) Remain 07:58:10 loss: 2.1959 psnr: 17.9901 Lr: 1.09723e-03
[2025-02-17 18:54:39,969 INFO hook.py line 109 848561] Train: [50/100][400/605] Data 0.002 (0.002) Batch 0.939 (0.940) Remain 07:57:03 loss: 2.1321 psnr: 19.3533 Lr: 1.09451e-03
[2025-02-17 18:55:26,702 INFO hook.py line 109 848561] Train: [50/100][450/605] Data 0.002 (0.002) Batch 0.939 (0.939) Remain 07:55:58 loss: 2.2449 psnr: 18.0026 Lr: 1.09179e-03
[2025-02-17 18:56:13,457 INFO hook.py line 109 848561] Train: [50/100][500/605] Data 0.002 (0.002) Batch 0.917 (0.939) Remain 07:54:58 loss: 2.3711 psnr: 16.8912 Lr: 1.08907e-03
[2025-02-17 18:57:00,162 INFO hook.py line 109 848561] Train: [50/100][550/605] Data 0.003 (0.002) Batch 0.943 (0.938) Remain 07:53:58 loss: 2.2629 psnr: 18.3399 Lr: 1.08635e-03
[2025-02-17 18:57:46,109 INFO hook.py line 109 848561] Train: [50/100][600/605] Data 0.002 (0.002) Batch 0.846 (0.937) Remain 07:52:22 loss: 2.1909 psnr: 18.2751 Lr: 1.08362e-03
[2025-02-17 18:57:50,394 INFO misc.py line 135 848561] Train result: loss: 2.3185 rgb_loss: 0.8187 psnr: 17.6447 depth_loss: 0.0680 feat_loss: 1.4318 
[2025-02-17 18:57:50,395 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 18:58:41,465 INFO hook.py line 109 848561] Train: [51/100][50/605] Data 0.002 (0.002) Batch 0.934 (0.937) Remain 07:51:27 loss: 2.4862 psnr: 16.3439 Lr: 1.08063e-03
[2025-02-17 18:59:28,048 INFO hook.py line 109 848561] Train: [51/100][100/605] Data 0.003 (0.002) Batch 0.935 (0.934) Remain 07:49:22 loss: 2.2758 psnr: 17.5126 Lr: 1.07790e-03
[2025-02-17 19:00:15,129 INFO hook.py line 109 848561] Train: [51/100][150/605] Data 0.003 (0.002) Batch 0.970 (0.937) Remain 07:49:53 loss: 2.3284 psnr: 18.0364 Lr: 1.07518e-03
[2025-02-17 19:01:02,034 INFO hook.py line 109 848561] Train: [51/100][200/605] Data 0.002 (0.002) Batch 0.974 (0.937) Remain 07:49:17 loss: 2.1922 psnr: 18.2012 Lr: 1.07245e-03
[2025-02-17 19:01:49,167 INFO hook.py line 109 848561] Train: [51/100][250/605] Data 0.002 (0.002) Batch 0.905 (0.938) Remain 07:49:04 loss: 2.5138 psnr: 16.7077 Lr: 1.06973e-03
[2025-02-17 19:02:35,935 INFO hook.py line 109 848561] Train: [51/100][300/605] Data 0.002 (0.002) Batch 0.922 (0.938) Remain 07:48:03 loss: 2.3608 psnr: 17.4676 Lr: 1.06700e-03
[2025-02-17 19:03:22,933 INFO hook.py line 109 848561] Train: [51/100][350/605] Data 0.002 (0.002) Batch 0.973 (0.938) Remain 07:47:26 loss: 2.2856 psnr: 17.2294 Lr: 1.06427e-03
[2025-02-17 19:04:09,762 INFO hook.py line 109 848561] Train: [51/100][400/605] Data 0.001 (0.002) Batch 0.918 (0.938) Remain 07:46:34 loss: 2.6553 psnr: 15.5022 Lr: 1.06155e-03
[2025-02-17 19:04:56,835 INFO hook.py line 109 848561] Train: [51/100][450/605] Data 0.003 (0.002) Batch 0.928 (0.938) Remain 07:45:59 loss: 2.1006 psnr: 18.7973 Lr: 1.05882e-03
[2025-02-17 19:05:43,750 INFO hook.py line 109 848561] Train: [51/100][500/605] Data 0.002 (0.002) Batch 0.940 (0.938) Remain 07:45:12 loss: 2.1743 psnr: 18.2544 Lr: 1.05609e-03
[2025-02-17 19:06:30,756 INFO hook.py line 109 848561] Train: [51/100][550/605] Data 0.002 (0.002) Batch 0.954 (0.938) Remain 07:44:30 loss: 2.4586 psnr: 16.9448 Lr: 1.05336e-03
[2025-02-17 19:07:16,929 INFO hook.py line 109 848561] Train: [51/100][600/605] Data 0.003 (0.002) Batch 0.886 (0.937) Remain 07:43:06 loss: 2.2630 psnr: 17.1547 Lr: 1.05063e-03
[2025-02-17 19:07:21,306 INFO misc.py line 135 848561] Train result: loss: 2.3127 rgb_loss: 0.8170 psnr: 17.6098 depth_loss: 0.0675 feat_loss: 1.4281 
[2025-02-17 19:07:21,307 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 19:08:12,161 INFO hook.py line 109 848561] Train: [52/100][50/605] Data 0.002 (0.002) Batch 0.951 (0.936) Remain 07:41:53 loss: 2.2422 psnr: 17.7536 Lr: 1.04763e-03
[2025-02-17 19:08:58,858 INFO hook.py line 109 848561] Train: [52/100][100/605] Data 0.002 (0.002) Batch 0.940 (0.935) Remain 07:40:28 loss: 2.3012 psnr: 17.6133 Lr: 1.04490e-03
[2025-02-17 19:09:45,840 INFO hook.py line 109 848561] Train: [52/100][150/605] Data 0.003 (0.002) Batch 0.944 (0.937) Remain 07:40:27 loss: 2.4185 psnr: 16.9554 Lr: 1.04222e-03
[2025-02-17 19:10:32,570 INFO hook.py line 109 848561] Train: [52/100][200/605] Data 0.002 (0.002) Batch 0.917 (0.936) Remain 07:39:24 loss: 2.4025 psnr: 16.8261 Lr: 1.03949e-03
[2025-02-17 19:11:19,925 INFO hook.py line 109 848561] Train: [52/100][250/605] Data 0.003 (0.002) Batch 0.933 (0.938) Remain 07:39:43 loss: 2.4880 psnr: 16.4685 Lr: 1.03676e-03
[2025-02-17 19:12:06,738 INFO hook.py line 109 848561] Train: [52/100][300/605] Data 0.002 (0.002) Batch 0.928 (0.938) Remain 07:38:45 loss: 2.0761 psnr: 19.5431 Lr: 1.03403e-03
[2025-02-17 19:12:53,757 INFO hook.py line 109 848561] Train: [52/100][350/605] Data 0.002 (0.002) Batch 0.945 (0.938) Remain 07:38:08 loss: 2.2269 psnr: 17.7023 Lr: 1.03130e-03
[2025-02-17 19:13:40,610 INFO hook.py line 109 848561] Train: [52/100][400/605] Data 0.002 (0.002) Batch 0.937 (0.938) Remain 07:37:17 loss: 2.4795 psnr: 16.4842 Lr: 1.02857e-03
[2025-02-17 19:14:27,558 INFO hook.py line 109 848561] Train: [52/100][450/605] Data 0.003 (0.002) Batch 0.916 (0.938) Remain 07:36:32 loss: 2.4207 psnr: 15.6003 Lr: 1.02583e-03
[2025-02-17 19:15:14,458 INFO hook.py line 109 848561] Train: [52/100][500/605] Data 0.003 (0.002) Batch 0.919 (0.938) Remain 07:35:45 loss: 2.0939 psnr: 18.9886 Lr: 1.02310e-03
[2025-02-17 19:16:01,232 INFO hook.py line 109 848561] Train: [52/100][550/605] Data 0.003 (0.002) Batch 0.924 (0.938) Remain 07:34:50 loss: 2.3616 psnr: 17.2509 Lr: 1.02037e-03
[2025-02-17 19:16:47,583 INFO hook.py line 109 848561] Train: [52/100][600/605] Data 0.001 (0.002) Batch 0.875 (0.937) Remain 07:33:37 loss: 2.3055 psnr: 18.0173 Lr: 1.01764e-03
[2025-02-17 19:16:51,945 INFO misc.py line 135 848561] Train result: loss: 2.2997 rgb_loss: 0.8028 psnr: 17.7396 depth_loss: 0.0674 feat_loss: 1.4295 
[2025-02-17 19:16:51,946 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 19:17:42,828 INFO hook.py line 109 848561] Train: [53/100][50/605] Data 0.002 (0.002) Batch 0.940 (0.937) Remain 07:32:53 loss: 2.3181 psnr: 17.3371 Lr: 1.01463e-03
[2025-02-17 19:18:29,750 INFO hook.py line 109 848561] Train: [53/100][100/605] Data 0.002 (0.002) Batch 0.955 (0.938) Remain 07:32:23 loss: 2.2975 psnr: 17.5845 Lr: 1.01190e-03
[2025-02-17 19:19:16,400 INFO hook.py line 109 848561] Train: [53/100][150/605] Data 0.002 (0.002) Batch 0.941 (0.936) Remain 07:30:47 loss: 2.5338 psnr: 16.3541 Lr: 1.00922e-03
[2025-02-17 19:20:03,056 INFO hook.py line 109 848561] Train: [53/100][200/605] Data 0.003 (0.002) Batch 0.913 (0.935) Remain 07:29:38 loss: 2.3598 psnr: 17.0740 Lr: 1.00649e-03
[2025-02-17 19:20:49,826 INFO hook.py line 109 848561] Train: [53/100][250/605] Data 0.002 (0.002) Batch 0.930 (0.935) Remain 07:28:51 loss: 2.2047 psnr: 17.9853 Lr: 1.00375e-03
[2025-02-17 19:21:37,353 INFO hook.py line 109 848561] Train: [53/100][300/605] Data 0.002 (0.002) Batch 0.910 (0.938) Remain 07:29:17 loss: 2.5963 psnr: 16.2268 Lr: 1.00102e-03
[2025-02-17 19:22:24,418 INFO hook.py line 109 848561] Train: [53/100][350/605] Data 0.003 (0.002) Batch 0.929 (0.938) Remain 07:28:44 loss: 2.3753 psnr: 17.2971 Lr: 9.98288e-04
[2025-02-17 19:23:11,468 INFO hook.py line 109 848561] Train: [53/100][400/605] Data 0.003 (0.002) Batch 0.947 (0.939) Remain 07:28:06 loss: 2.4334 psnr: 17.1014 Lr: 9.95555e-04
[2025-02-17 19:23:58,517 INFO hook.py line 109 848561] Train: [53/100][450/605] Data 0.001 (0.002) Batch 0.977 (0.939) Remain 07:27:26 loss: 2.1590 psnr: 18.6610 Lr: 9.92822e-04
[2025-02-17 19:24:45,555 INFO hook.py line 109 848561] Train: [53/100][500/605] Data 0.001 (0.002) Batch 0.922 (0.939) Remain 07:26:44 loss: 2.0963 psnr: 19.6139 Lr: 9.90089e-04
[2025-02-17 19:25:32,575 INFO hook.py line 109 848561] Train: [53/100][550/605] Data 0.002 (0.002) Batch 0.937 (0.939) Remain 07:26:00 loss: 1.9105 psnr: 21.3460 Lr: 9.87357e-04
[2025-02-17 19:26:18,719 INFO hook.py line 109 848561] Train: [53/100][600/605] Data 0.002 (0.002) Batch 0.861 (0.938) Remain 07:24:34 loss: 2.1979 psnr: 18.9009 Lr: 9.84624e-04
[2025-02-17 19:26:22,964 INFO misc.py line 135 848561] Train result: loss: 2.3068 rgb_loss: 0.8113 psnr: 17.6891 depth_loss: 0.0684 feat_loss: 1.4272 
[2025-02-17 19:26:22,965 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 19:27:13,797 INFO hook.py line 109 848561] Train: [54/100][50/605] Data 0.002 (0.002) Batch 0.906 (0.936) Remain 07:23:02 loss: 2.1051 psnr: 19.2626 Lr: 9.81618e-04
[2025-02-17 19:28:00,983 INFO hook.py line 109 848561] Train: [54/100][100/605] Data 0.002 (0.002) Batch 0.930 (0.940) Remain 07:24:01 loss: 2.3241 psnr: 17.4046 Lr: 9.78886e-04
[2025-02-17 19:28:48,045 INFO hook.py line 109 848561] Train: [54/100][150/605] Data 0.003 (0.002) Batch 0.909 (0.941) Remain 07:23:23 loss: 2.2337 psnr: 18.7716 Lr: 9.76153e-04
[2025-02-17 19:29:35,051 INFO hook.py line 109 848561] Train: [54/100][200/605] Data 0.002 (0.002) Batch 0.936 (0.940) Remain 07:22:33 loss: 2.1508 psnr: 18.5223 Lr: 9.73421e-04
[2025-02-17 19:30:21,858 INFO hook.py line 109 848561] Train: [54/100][250/605] Data 0.004 (0.002) Batch 0.933 (0.940) Remain 07:21:21 loss: 2.3054 psnr: 17.7330 Lr: 9.70689e-04
[2025-02-17 19:31:08,770 INFO hook.py line 109 848561] Train: [54/100][300/605] Data 0.002 (0.002) Batch 0.980 (0.939) Remain 07:20:28 loss: 2.4830 psnr: 16.5982 Lr: 9.67958e-04
[2025-02-17 19:31:55,756 INFO hook.py line 109 848561] Train: [54/100][350/605] Data 0.002 (0.002) Batch 0.971 (0.939) Remain 07:19:43 loss: 2.1926 psnr: 18.3070 Lr: 9.65226e-04
[2025-02-17 19:32:42,747 INFO hook.py line 109 848561] Train: [54/100][400/605] Data 0.002 (0.002) Batch 0.958 (0.939) Remain 07:18:57 loss: 2.2061 psnr: 18.9135 Lr: 9.62495e-04
[2025-02-17 19:33:29,845 INFO hook.py line 109 848561] Train: [54/100][450/605] Data 0.003 (0.002) Batch 0.948 (0.940) Remain 07:18:18 loss: 2.2681 psnr: 18.2066 Lr: 9.59764e-04
[2025-02-17 19:34:16,408 INFO hook.py line 109 848561] Train: [54/100][500/605] Data 0.002 (0.002) Batch 0.929 (0.939) Remain 07:17:07 loss: 2.1818 psnr: 18.9193 Lr: 9.57033e-04
[2025-02-17 19:35:03,307 INFO hook.py line 109 848561] Train: [54/100][550/605] Data 0.002 (0.002) Batch 0.936 (0.939) Remain 07:16:18 loss: 2.1169 psnr: 19.3739 Lr: 9.54358e-04
[2025-02-17 19:35:49,452 INFO hook.py line 109 848561] Train: [54/100][600/605] Data 0.002 (0.002) Batch 0.875 (0.937) Remain 07:14:54 loss: 2.2494 psnr: 16.6636 Lr: 9.51628e-04
[2025-02-17 19:35:53,745 INFO misc.py line 135 848561] Train result: loss: 2.3127 rgb_loss: 0.8177 psnr: 17.6219 depth_loss: 0.0672 feat_loss: 1.4278 
[2025-02-17 19:35:53,746 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 19:36:44,658 INFO hook.py line 109 848561] Train: [55/100][50/605] Data 0.003 (0.002) Batch 0.946 (0.942) Remain 07:15:59 loss: 2.5177 psnr: 15.9399 Lr: 9.48625e-04
[2025-02-17 19:37:31,564 INFO hook.py line 109 848561] Train: [55/100][100/605] Data 0.001 (0.002) Batch 0.922 (0.940) Remain 07:14:21 loss: 2.1267 psnr: 18.9245 Lr: 9.45896e-04
[2025-02-17 19:38:18,649 INFO hook.py line 109 848561] Train: [55/100][150/605] Data 0.002 (0.002) Batch 0.931 (0.940) Remain 07:13:52 loss: 2.0826 psnr: 20.0322 Lr: 9.43167e-04
[2025-02-17 19:39:05,356 INFO hook.py line 109 848561] Train: [55/100][200/605] Data 0.002 (0.002) Batch 0.935 (0.939) Remain 07:12:20 loss: 2.2415 psnr: 17.7801 Lr: 9.40439e-04
[2025-02-17 19:39:52,325 INFO hook.py line 109 848561] Train: [55/100][250/605] Data 0.002 (0.002) Batch 0.923 (0.939) Remain 07:11:36 loss: 2.1782 psnr: 19.4587 Lr: 9.37711e-04
[2025-02-17 19:40:39,089 INFO hook.py line 109 848561] Train: [55/100][300/605] Data 0.002 (0.002) Batch 0.919 (0.938) Remain 07:10:32 loss: 2.3472 psnr: 17.6328 Lr: 9.34984e-04
[2025-02-17 19:41:26,243 INFO hook.py line 109 848561] Train: [55/100][350/605] Data 0.002 (0.002) Batch 0.961 (0.939) Remain 07:10:04 loss: 2.6158 psnr: 15.5943 Lr: 9.32257e-04
[2025-02-17 19:42:13,020 INFO hook.py line 109 848561] Train: [55/100][400/605] Data 0.002 (0.002) Batch 0.940 (0.939) Remain 07:09:05 loss: 2.3378 psnr: 18.2394 Lr: 9.29530e-04
[2025-02-17 19:43:00,023 INFO hook.py line 109 848561] Train: [55/100][450/605] Data 0.003 (0.002) Batch 0.960 (0.939) Remain 07:08:23 loss: 2.2856 psnr: 17.2236 Lr: 9.26804e-04
[2025-02-17 19:43:46,827 INFO hook.py line 109 848561] Train: [55/100][500/605] Data 0.003 (0.002) Batch 0.930 (0.938) Remain 07:07:28 loss: 2.4678 psnr: 16.0846 Lr: 9.24079e-04
[2025-02-17 19:44:33,905 INFO hook.py line 109 848561] Train: [55/100][550/605] Data 0.002 (0.002) Batch 0.959 (0.939) Remain 07:06:49 loss: 2.4612 psnr: 16.8468 Lr: 9.21354e-04
[2025-02-17 19:45:20,094 INFO hook.py line 109 848561] Train: [55/100][600/605] Data 0.002 (0.002) Batch 0.870 (0.938) Remain 07:05:28 loss: 2.0487 psnr: 19.1274 Lr: 9.18630e-04
[2025-02-17 19:45:24,458 INFO misc.py line 135 848561] Train result: loss: 2.3040 rgb_loss: 0.8101 psnr: 17.6679 depth_loss: 0.0675 feat_loss: 1.4263 
[2025-02-17 19:45:24,459 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 19:46:15,332 INFO hook.py line 109 848561] Train: [56/100][50/605] Data 0.002 (0.002) Batch 0.973 (0.940) Remain 07:05:55 loss: 2.4080 psnr: 16.6683 Lr: 9.15634e-04
[2025-02-17 19:47:02,091 INFO hook.py line 109 848561] Train: [56/100][100/605] Data 0.002 (0.002) Batch 0.938 (0.938) Remain 07:03:55 loss: 2.0934 psnr: 19.5725 Lr: 9.12911e-04
[2025-02-17 19:47:48,839 INFO hook.py line 109 848561] Train: [56/100][150/605] Data 0.002 (0.002) Batch 0.953 (0.937) Remain 07:02:43 loss: 2.4586 psnr: 15.6722 Lr: 9.10189e-04
[2025-02-17 19:48:35,720 INFO hook.py line 109 848561] Train: [56/100][200/605] Data 0.003 (0.002) Batch 0.950 (0.937) Remain 07:02:02 loss: 2.1095 psnr: 18.5719 Lr: 9.07467e-04
[2025-02-17 19:49:22,652 INFO hook.py line 109 848561] Train: [56/100][250/605] Data 0.003 (0.002) Batch 0.933 (0.937) Remain 07:01:24 loss: 2.2832 psnr: 17.6872 Lr: 9.04746e-04
[2025-02-17 19:50:09,243 INFO hook.py line 109 848561] Train: [56/100][300/605] Data 0.002 (0.002) Batch 0.943 (0.936) Remain 07:00:12 loss: 2.3942 psnr: 17.4120 Lr: 9.02026e-04
[2025-02-17 19:50:56,570 INFO hook.py line 109 848561] Train: [56/100][350/605] Data 0.003 (0.002) Batch 0.935 (0.938) Remain 07:00:04 loss: 2.3900 psnr: 17.0057 Lr: 8.99307e-04
[2025-02-17 19:51:43,471 INFO hook.py line 109 848561] Train: [56/100][400/605] Data 0.003 (0.002) Batch 0.939 (0.938) Remain 06:59:18 loss: 2.3180 psnr: 17.6775 Lr: 8.96588e-04
[2025-02-17 19:52:30,192 INFO hook.py line 109 848561] Train: [56/100][450/605] Data 0.002 (0.002) Batch 0.939 (0.937) Remain 06:58:21 loss: 2.2707 psnr: 17.3520 Lr: 8.93870e-04
[2025-02-17 19:53:17,138 INFO hook.py line 109 848561] Train: [56/100][500/605] Data 0.002 (0.002) Batch 0.968 (0.938) Remain 06:57:38 loss: 2.5094 psnr: 17.4798 Lr: 8.91153e-04
[2025-02-17 19:54:04,201 INFO hook.py line 109 848561] Train: [56/100][550/605] Data 0.002 (0.002) Batch 0.926 (0.938) Remain 06:57:00 loss: 2.3635 psnr: 16.7598 Lr: 8.88437e-04
[2025-02-17 19:54:50,438 INFO hook.py line 109 848561] Train: [56/100][600/605] Data 0.003 (0.002) Batch 0.875 (0.937) Remain 06:55:43 loss: 2.3082 psnr: 17.9856 Lr: 8.85721e-04
[2025-02-17 19:54:54,729 INFO misc.py line 135 848561] Train result: loss: 2.3056 rgb_loss: 0.8145 psnr: 17.6324 depth_loss: 0.0662 feat_loss: 1.4249 
[2025-02-17 19:54:54,730 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 19:55:45,836 INFO hook.py line 109 848561] Train: [57/100][50/605] Data 0.002 (0.003) Batch 0.936 (0.934) Remain 06:53:36 loss: 2.0776 psnr: 20.0937 Lr: 8.82735e-04
[2025-02-17 19:56:32,484 INFO hook.py line 109 848561] Train: [57/100][100/605] Data 0.003 (0.002) Batch 0.939 (0.933) Remain 06:52:35 loss: 2.1972 psnr: 18.4511 Lr: 8.80021e-04
[2025-02-17 19:57:19,448 INFO hook.py line 109 848561] Train: [57/100][150/605] Data 0.003 (0.002) Batch 0.930 (0.935) Remain 06:52:41 loss: 2.2959 psnr: 17.5076 Lr: 8.77309e-04
[2025-02-17 19:58:06,454 INFO hook.py line 109 848561] Train: [57/100][200/605] Data 0.003 (0.002) Batch 0.943 (0.937) Remain 06:52:25 loss: 2.4214 psnr: 17.1446 Lr: 8.74597e-04
[2025-02-17 19:58:53,287 INFO hook.py line 109 848561] Train: [57/100][250/605] Data 0.002 (0.002) Batch 0.951 (0.937) Remain 06:51:38 loss: 2.3757 psnr: 17.1407 Lr: 8.71886e-04
[2025-02-17 19:59:40,337 INFO hook.py line 109 848561] Train: [57/100][300/605] Data 0.003 (0.002) Batch 0.926 (0.937) Remain 06:51:11 loss: 2.3756 psnr: 17.1908 Lr: 8.69176e-04
[2025-02-17 20:00:27,342 INFO hook.py line 109 848561] Train: [57/100][350/605] Data 0.002 (0.002) Batch 0.947 (0.938) Remain 06:50:34 loss: 2.3630 psnr: 17.3933 Lr: 8.66467e-04
[2025-02-17 20:01:14,520 INFO hook.py line 109 848561] Train: [57/100][400/605] Data 0.003 (0.002) Batch 0.957 (0.938) Remain 06:50:07 loss: 2.1586 psnr: 18.7844 Lr: 8.63759e-04
[2025-02-17 20:02:01,495 INFO hook.py line 109 848561] Train: [57/100][450/605] Data 0.003 (0.002) Batch 0.949 (0.939) Remain 06:49:23 loss: 2.2155 psnr: 18.5982 Lr: 8.61052e-04
[2025-02-17 20:02:48,367 INFO hook.py line 109 848561] Train: [57/100][500/605] Data 0.002 (0.002) Batch 0.954 (0.938) Remain 06:48:33 loss: 2.1703 psnr: 18.5359 Lr: 8.58346e-04
[2025-02-17 20:03:35,482 INFO hook.py line 109 848561] Train: [57/100][550/605] Data 0.003 (0.002) Batch 0.960 (0.939) Remain 06:47:55 loss: 2.1629 psnr: 18.7523 Lr: 8.55641e-04
[2025-02-17 20:04:21,506 INFO hook.py line 109 848561] Train: [57/100][600/605] Data 0.002 (0.002) Batch 0.853 (0.937) Remain 06:46:28 loss: 2.1943 psnr: 17.9024 Lr: 8.52937e-04
[2025-02-17 20:04:25,833 INFO misc.py line 135 848561] Train result: loss: 2.2933 rgb_loss: 0.8000 psnr: 17.7752 depth_loss: 0.0665 feat_loss: 1.4268 
[2025-02-17 20:04:25,835 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 20:05:16,785 INFO hook.py line 109 848561] Train: [58/100][50/605] Data 0.002 (0.003) Batch 0.958 (0.937) Remain 06:45:38 loss: 2.1327 psnr: 18.9895 Lr: 8.49964e-04
[2025-02-17 20:06:03,736 INFO hook.py line 109 848561] Train: [58/100][100/605] Data 0.002 (0.003) Batch 0.986 (0.938) Remain 06:45:13 loss: 2.1562 psnr: 17.8090 Lr: 8.47263e-04
[2025-02-17 20:06:50,656 INFO hook.py line 109 848561] Train: [58/100][150/605] Data 0.003 (0.003) Batch 0.940 (0.938) Remain 06:44:28 loss: 2.2872 psnr: 17.3861 Lr: 8.44562e-04
[2025-02-17 20:07:37,685 INFO hook.py line 109 848561] Train: [58/100][200/605] Data 0.002 (0.002) Batch 0.925 (0.939) Remain 06:43:56 loss: 2.6094 psnr: 15.7239 Lr: 8.41863e-04
[2025-02-17 20:08:24,324 INFO hook.py line 109 848561] Train: [58/100][250/605] Data 0.002 (0.002) Batch 0.914 (0.938) Remain 06:42:38 loss: 2.1487 psnr: 18.8484 Lr: 8.39165e-04
[2025-02-17 20:09:11,246 INFO hook.py line 109 848561] Train: [58/100][300/605] Data 0.003 (0.002) Batch 0.920 (0.938) Remain 06:41:54 loss: 2.1498 psnr: 18.5011 Lr: 8.36468e-04
[2025-02-17 20:09:58,312 INFO hook.py line 109 848561] Train: [58/100][350/605] Data 0.003 (0.002) Batch 0.979 (0.938) Remain 06:41:20 loss: 2.1340 psnr: 19.1858 Lr: 8.33773e-04
[2025-02-17 20:10:45,477 INFO hook.py line 109 848561] Train: [58/100][400/605] Data 0.002 (0.002) Batch 0.948 (0.939) Remain 06:40:50 loss: 2.2415 psnr: 17.4481 Lr: 8.31079e-04
[2025-02-17 20:11:32,373 INFO hook.py line 109 848561] Train: [58/100][450/605] Data 0.002 (0.002) Batch 0.941 (0.939) Remain 06:40:00 loss: 2.4329 psnr: 17.0060 Lr: 8.28386e-04
[2025-02-17 20:12:19,213 INFO hook.py line 109 848561] Train: [58/100][500/605] Data 0.003 (0.002) Batch 0.950 (0.939) Remain 06:39:08 loss: 2.3782 psnr: 17.5531 Lr: 8.25694e-04
[2025-02-17 20:13:06,278 INFO hook.py line 109 848561] Train: [58/100][550/605] Data 0.003 (0.002) Batch 0.952 (0.939) Remain 06:38:27 loss: 2.4080 psnr: 16.1527 Lr: 8.23003e-04
[2025-02-17 20:13:52,406 INFO hook.py line 109 848561] Train: [58/100][600/605] Data 0.002 (0.002) Batch 0.856 (0.937) Remain 06:37:06 loss: 2.2972 psnr: 17.7042 Lr: 8.20314e-04
[2025-02-17 20:13:56,672 INFO misc.py line 135 848561] Train result: loss: 2.2876 rgb_loss: 0.7991 psnr: 17.7574 depth_loss: 0.0660 feat_loss: 1.4225 
[2025-02-17 20:13:56,673 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 20:14:47,468 INFO hook.py line 109 848561] Train: [59/100][50/605] Data 0.002 (0.002) Batch 0.954 (0.934) Remain 06:34:34 loss: 2.4522 psnr: 16.7277 Lr: 8.17358e-04
[2025-02-17 20:15:34,200 INFO hook.py line 109 848561] Train: [59/100][100/605] Data 0.003 (0.002) Batch 0.931 (0.934) Remain 06:34:02 loss: 2.1823 psnr: 19.1737 Lr: 8.14671e-04
[2025-02-17 20:16:21,189 INFO hook.py line 109 848561] Train: [59/100][150/605] Data 0.004 (0.002) Batch 0.947 (0.936) Remain 06:34:04 loss: 2.2217 psnr: 18.2636 Lr: 8.11986e-04
[2025-02-17 20:17:08,380 INFO hook.py line 109 848561] Train: [59/100][200/605] Data 0.002 (0.002) Batch 0.948 (0.938) Remain 06:34:07 loss: 2.2095 psnr: 17.9804 Lr: 8.09303e-04
[2025-02-17 20:17:55,187 INFO hook.py line 109 848561] Train: [59/100][250/605] Data 0.002 (0.002) Batch 0.931 (0.938) Remain 06:33:10 loss: 2.3480 psnr: 17.5026 Lr: 8.06621e-04
[2025-02-17 20:18:42,310 INFO hook.py line 109 848561] Train: [59/100][300/605] Data 0.002 (0.002) Batch 0.948 (0.938) Remain 06:32:44 loss: 2.3669 psnr: 16.9762 Lr: 8.03940e-04
[2025-02-17 20:19:28,950 INFO hook.py line 109 848561] Train: [59/100][350/605] Data 0.002 (0.002) Batch 0.914 (0.938) Remain 06:31:37 loss: 2.5126 psnr: 16.1863 Lr: 8.01261e-04
[2025-02-17 20:20:16,004 INFO hook.py line 109 848561] Train: [59/100][400/605] Data 0.003 (0.002) Batch 0.934 (0.938) Remain 06:31:01 loss: 2.2639 psnr: 18.0096 Lr: 7.98583e-04
[2025-02-17 20:21:03,219 INFO hook.py line 109 848561] Train: [59/100][450/605] Data 0.003 (0.002) Batch 0.938 (0.939) Remain 06:30:31 loss: 2.1157 psnr: 19.0656 Lr: 7.95907e-04
[2025-02-17 20:21:50,444 INFO hook.py line 109 848561] Train: [59/100][500/605] Data 0.002 (0.002) Batch 0.931 (0.939) Remain 06:29:58 loss: 2.0535 psnr: 18.8782 Lr: 7.93232e-04
[2025-02-17 20:22:37,164 INFO hook.py line 109 848561] Train: [59/100][550/605] Data 0.002 (0.002) Batch 0.930 (0.939) Remain 06:29:00 loss: 2.0536 psnr: 19.4582 Lr: 7.90559e-04
[2025-02-17 20:23:23,411 INFO hook.py line 109 848561] Train: [59/100][600/605] Data 0.003 (0.002) Batch 0.856 (0.938) Remain 06:27:44 loss: 2.5581 psnr: 15.8503 Lr: 7.87887e-04
[2025-02-17 20:23:27,759 INFO misc.py line 135 848561] Train result: loss: 2.2818 rgb_loss: 0.7934 psnr: 17.8119 depth_loss: 0.0666 feat_loss: 1.4217 
[2025-02-17 20:23:27,761 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 20:24:18,472 INFO hook.py line 109 848561] Train: [60/100][50/605] Data 0.002 (0.002) Batch 0.916 (0.932) Remain 06:24:29 loss: 2.4653 psnr: 16.4953 Lr: 7.84951e-04
[2025-02-17 20:25:05,039 INFO hook.py line 109 848561] Train: [60/100][100/605] Data 0.002 (0.002) Batch 0.905 (0.932) Remain 06:23:35 loss: 2.2556 psnr: 18.2960 Lr: 7.82282e-04
[2025-02-17 20:25:52,264 INFO hook.py line 109 848561] Train: [60/100][150/605] Data 0.003 (0.002) Batch 0.946 (0.936) Remain 06:24:37 loss: 2.1270 psnr: 19.4030 Lr: 7.79616e-04
[2025-02-17 20:26:39,232 INFO hook.py line 109 848561] Train: [60/100][200/605] Data 0.002 (0.002) Batch 0.944 (0.937) Remain 06:24:11 loss: 2.3696 psnr: 17.1574 Lr: 7.76951e-04
[2025-02-17 20:27:26,299 INFO hook.py line 109 848561] Train: [60/100][250/605] Data 0.002 (0.002) Batch 0.941 (0.938) Remain 06:23:46 loss: 2.2746 psnr: 17.5125 Lr: 7.74288e-04
[2025-02-17 20:28:13,080 INFO hook.py line 109 848561] Train: [60/100][300/605] Data 0.002 (0.002) Batch 0.946 (0.937) Remain 06:22:50 loss: 2.0540 psnr: 19.6002 Lr: 7.71626e-04
[2025-02-17 20:29:00,123 INFO hook.py line 109 848561] Train: [60/100][350/605] Data 0.003 (0.002) Batch 0.944 (0.938) Remain 06:22:16 loss: 2.2612 psnr: 17.8819 Lr: 7.68966e-04
[2025-02-17 20:29:47,139 INFO hook.py line 109 848561] Train: [60/100][400/605] Data 0.003 (0.002) Batch 0.934 (0.938) Remain 06:21:36 loss: 2.4552 psnr: 16.3992 Lr: 7.66308e-04
[2025-02-17 20:30:34,361 INFO hook.py line 109 848561] Train: [60/100][450/605] Data 0.002 (0.002) Batch 0.925 (0.939) Remain 06:21:06 loss: 2.4272 psnr: 16.8360 Lr: 7.63651e-04
[2025-02-17 20:31:21,541 INFO hook.py line 109 848561] Train: [60/100][500/605] Data 0.003 (0.002) Batch 0.928 (0.939) Remain 06:20:31 loss: 2.3383 psnr: 17.6759 Lr: 7.60997e-04
[2025-02-17 20:32:08,492 INFO hook.py line 109 848561] Train: [60/100][550/605] Data 0.003 (0.002) Batch 0.953 (0.939) Remain 06:19:43 loss: 2.2889 psnr: 18.0691 Lr: 7.58344e-04
[2025-02-17 20:32:54,857 INFO hook.py line 109 848561] Train: [60/100][600/605] Data 0.001 (0.002) Batch 0.859 (0.938) Remain 06:18:32 loss: 2.2811 psnr: 17.8894 Lr: 7.55693e-04
[2025-02-17 20:32:59,230 INFO misc.py line 135 848561] Train result: loss: 2.2816 rgb_loss: 0.7926 psnr: 17.8262 depth_loss: 0.0667 feat_loss: 1.4223 
[2025-02-17 20:32:59,231 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 20:33:50,044 INFO hook.py line 109 848561] Train: [61/100][50/605] Data 0.002 (0.002) Batch 0.941 (0.938) Remain 06:17:41 loss: 2.2255 psnr: 17.8541 Lr: 7.52779e-04
[2025-02-17 20:34:36,973 INFO hook.py line 109 848561] Train: [61/100][100/605] Data 0.002 (0.002) Batch 0.930 (0.938) Remain 06:16:56 loss: 2.3579 psnr: 17.1361 Lr: 7.50132e-04
[2025-02-17 20:35:24,017 INFO hook.py line 109 848561] Train: [61/100][150/605] Data 0.004 (0.002) Batch 0.946 (0.939) Remain 06:16:29 loss: 2.2553 psnr: 18.6147 Lr: 7.47486e-04
[2025-02-17 20:36:11,176 INFO hook.py line 109 848561] Train: [61/100][200/605] Data 0.002 (0.002) Batch 0.928 (0.940) Remain 06:16:06 loss: 2.6267 psnr: 15.8520 Lr: 7.44843e-04
[2025-02-17 20:36:58,362 INFO hook.py line 109 848561] Train: [61/100][250/605] Data 0.002 (0.002) Batch 0.926 (0.941) Remain 06:15:36 loss: 2.1499 psnr: 18.5591 Lr: 7.42201e-04
[2025-02-17 20:37:45,339 INFO hook.py line 109 848561] Train: [61/100][300/605] Data 0.002 (0.002) Batch 0.930 (0.941) Remain 06:14:43 loss: 2.3506 psnr: 17.5134 Lr: 7.39562e-04
[2025-02-17 20:38:32,261 INFO hook.py line 109 848561] Train: [61/100][350/605] Data 0.004 (0.002) Batch 0.930 (0.940) Remain 06:13:48 loss: 2.2100 psnr: 18.3656 Lr: 7.36924e-04
[2025-02-17 20:39:19,498 INFO hook.py line 109 848561] Train: [61/100][400/605] Data 0.002 (0.002) Batch 0.927 (0.941) Remain 06:13:14 loss: 2.2756 psnr: 18.1604 Lr: 7.34288e-04
[2025-02-17 20:40:06,333 INFO hook.py line 109 848561] Train: [61/100][450/605] Data 0.002 (0.002) Batch 0.951 (0.940) Remain 06:12:16 loss: 2.3116 psnr: 17.1501 Lr: 7.31654e-04
[2025-02-17 20:40:53,528 INFO hook.py line 109 848561] Train: [61/100][500/605] Data 0.003 (0.002) Batch 0.919 (0.941) Remain 06:11:37 loss: 2.3701 psnr: 16.7943 Lr: 7.29023e-04
[2025-02-17 20:41:40,937 INFO hook.py line 109 848561] Train: [61/100][550/605] Data 0.001 (0.002) Batch 0.941 (0.941) Remain 06:11:06 loss: 2.5461 psnr: 16.3786 Lr: 7.26393e-04
[2025-02-17 20:42:27,125 INFO hook.py line 109 848561] Train: [61/100][600/605] Data 0.002 (0.002) Batch 0.866 (0.940) Remain 06:09:44 loss: 2.3484 psnr: 16.9795 Lr: 7.23765e-04
[2025-02-17 20:42:31,478 INFO misc.py line 135 848561] Train result: loss: 2.2901 rgb_loss: 0.8027 psnr: 17.7182 depth_loss: 0.0657 feat_loss: 1.4217 
[2025-02-17 20:42:31,479 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 20:43:22,498 INFO hook.py line 109 848561] Train: [62/100][50/605] Data 0.003 (0.002) Batch 0.948 (0.937) Remain 06:07:34 loss: 2.2162 psnr: 18.7450 Lr: 7.20877e-04
[2025-02-17 20:44:09,350 INFO hook.py line 109 848561] Train: [62/100][100/605] Data 0.005 (0.002) Batch 0.925 (0.937) Remain 06:06:51 loss: 2.2112 psnr: 18.4178 Lr: 7.18254e-04
[2025-02-17 20:44:56,230 INFO hook.py line 109 848561] Train: [62/100][150/605] Data 0.002 (0.002) Batch 0.922 (0.937) Remain 06:06:10 loss: 2.2125 psnr: 18.2887 Lr: 7.15633e-04
[2025-02-17 20:45:42,986 INFO hook.py line 109 848561] Train: [62/100][200/605] Data 0.002 (0.002) Batch 0.896 (0.937) Remain 06:05:12 loss: 2.3802 psnr: 17.1602 Lr: 7.13014e-04
[2025-02-17 20:46:29,837 INFO hook.py line 109 848561] Train: [62/100][250/605] Data 0.002 (0.002) Batch 0.959 (0.937) Remain 06:04:27 loss: 2.2469 psnr: 17.4046 Lr: 7.10397e-04
[2025-02-17 20:47:16,855 INFO hook.py line 109 848561] Train: [62/100][300/605] Data 0.002 (0.002) Batch 0.926 (0.937) Remain 06:03:54 loss: 2.1520 psnr: 18.5614 Lr: 7.07782e-04
[2025-02-17 20:48:03,890 INFO hook.py line 109 848561] Train: [62/100][350/605] Data 0.002 (0.002) Batch 0.969 (0.938) Remain 06:03:19 loss: 2.1670 psnr: 19.1276 Lr: 7.05169e-04
[2025-02-17 20:48:51,029 INFO hook.py line 109 848561] Train: [62/100][400/605] Data 0.002 (0.002) Batch 0.937 (0.938) Remain 06:02:46 loss: 2.0731 psnr: 19.9078 Lr: 7.02559e-04
[2025-02-17 20:49:38,071 INFO hook.py line 109 848561] Train: [62/100][450/605] Data 0.003 (0.002) Batch 0.932 (0.939) Remain 06:02:06 loss: 2.1429 psnr: 18.7630 Lr: 6.99951e-04
[2025-02-17 20:50:25,493 INFO hook.py line 109 848561] Train: [62/100][500/605] Data 0.003 (0.002) Batch 0.948 (0.940) Remain 06:01:41 loss: 2.5650 psnr: 15.7523 Lr: 6.97345e-04
[2025-02-17 20:51:12,505 INFO hook.py line 109 848561] Train: [62/100][550/605] Data 0.004 (0.002) Batch 0.904 (0.940) Remain 06:00:56 loss: 2.2093 psnr: 18.2406 Lr: 6.94741e-04
[2025-02-17 20:51:58,786 INFO hook.py line 109 848561] Train: [62/100][600/605] Data 0.001 (0.002) Batch 0.867 (0.939) Remain 05:59:41 loss: 2.3239 psnr: 17.7181 Lr: 6.92140e-04
[2025-02-17 20:52:03,135 INFO misc.py line 135 848561] Train result: loss: 2.2729 rgb_loss: 0.7881 psnr: 17.8649 depth_loss: 0.0649 feat_loss: 1.4199 
[2025-02-17 20:52:03,137 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 20:52:54,441 INFO hook.py line 109 848561] Train: [63/100][50/605] Data 0.004 (0.003) Batch 0.943 (0.941) Remain 05:59:55 loss: 2.3620 psnr: 17.2630 Lr: 6.89281e-04
[2025-02-17 20:53:41,461 INFO hook.py line 109 848561] Train: [63/100][100/605] Data 0.002 (0.002) Batch 0.926 (0.941) Remain 05:58:56 loss: 2.1793 psnr: 18.5424 Lr: 6.86685e-04
[2025-02-17 20:54:28,408 INFO hook.py line 109 848561] Train: [63/100][150/605] Data 0.002 (0.002) Batch 0.945 (0.940) Remain 05:57:54 loss: 2.5127 psnr: 16.4162 Lr: 6.84090e-04
[2025-02-17 20:55:15,478 INFO hook.py line 109 848561] Train: [63/100][200/605] Data 0.002 (0.002) Batch 0.932 (0.941) Remain 05:57:14 loss: 1.9713 psnr: 20.5902 Lr: 6.81499e-04
[2025-02-17 20:56:02,120 INFO hook.py line 109 848561] Train: [63/100][250/605] Data 0.002 (0.002) Batch 0.964 (0.939) Remain 05:55:52 loss: 2.2535 psnr: 17.8797 Lr: 6.78909e-04
[2025-02-17 20:56:49,277 INFO hook.py line 109 848561] Train: [63/100][300/605] Data 0.003 (0.002) Batch 0.928 (0.940) Remain 05:55:21 loss: 2.2689 psnr: 18.0128 Lr: 6.76322e-04
[2025-02-17 20:57:36,250 INFO hook.py line 109 848561] Train: [63/100][350/605] Data 0.002 (0.002) Batch 0.923 (0.940) Remain 05:54:33 loss: 2.3260 psnr: 19.0960 Lr: 6.73737e-04
[2025-02-17 20:58:22,965 INFO hook.py line 109 848561] Train: [63/100][400/605] Data 0.002 (0.002) Batch 0.925 (0.939) Remain 05:53:31 loss: 2.5043 psnr: 15.8252 Lr: 6.71155e-04
[2025-02-17 20:59:09,730 INFO hook.py line 109 848561] Train: [63/100][450/605] Data 0.002 (0.002) Batch 0.926 (0.939) Remain 05:52:35 loss: 2.0683 psnr: 19.5473 Lr: 6.68576e-04
[2025-02-17 20:59:56,773 INFO hook.py line 109 848561] Train: [63/100][500/605] Data 0.002 (0.002) Batch 0.944 (0.939) Remain 05:51:53 loss: 2.2591 psnr: 17.4842 Lr: 6.65998e-04
[2025-02-17 21:00:43,950 INFO hook.py line 109 848561] Train: [63/100][550/605] Data 0.001 (0.002) Batch 0.914 (0.939) Remain 05:51:16 loss: 1.9242 psnr: 21.2307 Lr: 6.63423e-04
[2025-02-17 21:01:29,907 INFO hook.py line 109 848561] Train: [63/100][600/605] Data 0.002 (0.002) Batch 0.890 (0.938) Remain 05:49:51 loss: 2.2807 psnr: 17.3756 Lr: 6.60851e-04
[2025-02-17 21:01:34,292 INFO misc.py line 135 848561] Train result: loss: 2.2733 rgb_loss: 0.7870 psnr: 17.8511 depth_loss: 0.0664 feat_loss: 1.4199 
[2025-02-17 21:01:34,294 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 21:02:25,532 INFO hook.py line 109 848561] Train: [64/100][50/605] Data 0.003 (0.002) Batch 0.937 (0.941) Remain 05:50:26 loss: 2.0202 psnr: 19.4205 Lr: 6.58025e-04
[2025-02-17 21:03:12,330 INFO hook.py line 109 848561] Train: [64/100][100/605] Data 0.002 (0.002) Batch 0.961 (0.939) Remain 05:48:36 loss: 2.2957 psnr: 17.6412 Lr: 6.55458e-04
[2025-02-17 21:03:59,210 INFO hook.py line 109 848561] Train: [64/100][150/605] Data 0.002 (0.002) Batch 0.962 (0.938) Remain 05:47:42 loss: 2.3134 psnr: 17.6490 Lr: 6.52893e-04
[2025-02-17 21:04:46,205 INFO hook.py line 109 848561] Train: [64/100][200/605] Data 0.002 (0.002) Batch 0.940 (0.939) Remain 05:47:04 loss: 2.4725 psnr: 16.2959 Lr: 6.50332e-04
[2025-02-17 21:05:33,401 INFO hook.py line 109 848561] Train: [64/100][250/605] Data 0.001 (0.002) Batch 0.921 (0.940) Remain 05:46:41 loss: 2.2839 psnr: 17.9305 Lr: 6.47773e-04
[2025-02-17 21:06:20,637 INFO hook.py line 109 848561] Train: [64/100][300/605] Data 0.002 (0.002) Batch 0.955 (0.941) Remain 05:46:12 loss: 2.2624 psnr: 17.2950 Lr: 6.45216e-04
[2025-02-17 21:07:07,723 INFO hook.py line 109 848561] Train: [64/100][350/605] Data 0.003 (0.002) Batch 0.957 (0.941) Remain 05:45:29 loss: 2.3690 psnr: 17.0539 Lr: 6.42662e-04
[2025-02-17 21:07:54,604 INFO hook.py line 109 848561] Train: [64/100][400/605] Data 0.002 (0.002) Batch 0.925 (0.940) Remain 05:44:33 loss: 2.3151 psnr: 18.5009 Lr: 6.40111e-04
[2025-02-17 21:08:41,684 INFO hook.py line 109 848561] Train: [64/100][450/605] Data 0.003 (0.002) Batch 0.934 (0.940) Remain 05:43:49 loss: 2.3825 psnr: 16.4965 Lr: 6.37562e-04
[2025-02-17 21:09:28,598 INFO hook.py line 109 848561] Train: [64/100][500/605] Data 0.002 (0.002) Batch 0.923 (0.940) Remain 05:42:57 loss: 2.0468 psnr: 20.1632 Lr: 6.35017e-04
[2025-02-17 21:10:15,724 INFO hook.py line 109 848561] Train: [64/100][550/605] Data 0.003 (0.002) Batch 0.948 (0.940) Remain 05:42:15 loss: 2.0239 psnr: 20.6943 Lr: 6.32474e-04
[2025-02-17 21:11:01,948 INFO hook.py line 109 848561] Train: [64/100][600/605] Data 0.002 (0.002) Batch 0.856 (0.939) Remain 05:40:59 loss: 2.4704 psnr: 16.6624 Lr: 6.29984e-04
[2025-02-17 21:11:06,239 INFO misc.py line 135 848561] Train result: loss: 2.2733 rgb_loss: 0.7871 psnr: 17.8563 depth_loss: 0.0661 feat_loss: 1.4201 
[2025-02-17 21:11:06,240 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 21:11:57,262 INFO hook.py line 109 848561] Train: [65/100][50/605] Data 0.002 (0.002) Batch 0.939 (0.936) Remain 05:39:06 loss: 2.1888 psnr: 17.6772 Lr: 6.27193e-04
[2025-02-17 21:12:44,412 INFO hook.py line 109 848561] Train: [65/100][100/605] Data 0.002 (0.002) Batch 0.953 (0.940) Remain 05:39:34 loss: 2.2294 psnr: 17.9765 Lr: 6.24658e-04
[2025-02-17 21:13:31,292 INFO hook.py line 109 848561] Train: [65/100][150/605] Data 0.003 (0.002) Batch 0.943 (0.939) Remain 05:38:31 loss: 2.1034 psnr: 19.9573 Lr: 6.22127e-04
[2025-02-17 21:14:18,208 INFO hook.py line 109 848561] Train: [65/100][200/605] Data 0.003 (0.002) Batch 0.946 (0.939) Remain 05:37:40 loss: 2.2549 psnr: 17.6494 Lr: 6.19598e-04
[2025-02-17 21:15:05,089 INFO hook.py line 109 848561] Train: [65/100][250/605] Data 0.002 (0.002) Batch 0.926 (0.939) Remain 05:36:48 loss: 2.4205 psnr: 16.3012 Lr: 6.17072e-04
[2025-02-17 21:15:52,139 INFO hook.py line 109 848561] Train: [65/100][300/605] Data 0.004 (0.002) Batch 0.956 (0.939) Remain 05:36:09 loss: 2.2572 psnr: 18.3032 Lr: 6.14548e-04
[2025-02-17 21:16:39,085 INFO hook.py line 109 848561] Train: [65/100][350/605] Data 0.003 (0.002) Batch 0.940 (0.939) Remain 05:35:22 loss: 2.2153 psnr: 17.4761 Lr: 6.12028e-04
[2025-02-17 21:17:26,019 INFO hook.py line 109 848561] Train: [65/100][400/605] Data 0.002 (0.002) Batch 0.938 (0.939) Remain 05:34:34 loss: 2.2965 psnr: 17.5738 Lr: 6.09511e-04
[2025-02-17 21:18:12,891 INFO hook.py line 109 848561] Train: [65/100][450/605] Data 0.002 (0.002) Batch 0.943 (0.939) Remain 05:33:44 loss: 2.0970 psnr: 19.4326 Lr: 6.06996e-04
[2025-02-17 21:18:59,734 INFO hook.py line 109 848561] Train: [65/100][500/605] Data 0.003 (0.002) Batch 0.976 (0.939) Remain 05:32:53 loss: 2.1598 psnr: 17.9345 Lr: 6.04484e-04
[2025-02-17 21:19:46,741 INFO hook.py line 109 848561] Train: [65/100][550/605] Data 0.003 (0.002) Batch 0.923 (0.939) Remain 05:32:09 loss: 2.3865 psnr: 17.2301 Lr: 6.01976e-04
[2025-02-17 21:20:33,056 INFO hook.py line 109 848561] Train: [65/100][600/605] Data 0.002 (0.002) Batch 0.857 (0.938) Remain 05:31:00 loss: 2.2187 psnr: 18.2251 Lr: 5.99470e-04
[2025-02-17 21:20:37,410 INFO misc.py line 135 848561] Train result: loss: 2.2811 rgb_loss: 0.7938 psnr: 17.8287 depth_loss: 0.0669 feat_loss: 1.4204 
[2025-02-17 21:20:37,411 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 21:21:28,771 INFO hook.py line 109 848561] Train: [66/100][50/605] Data 0.003 (0.002) Batch 0.948 (0.944) Remain 05:32:31 loss: 2.1166 psnr: 18.9044 Lr: 5.96717e-04
[2025-02-17 21:22:15,909 INFO hook.py line 109 848561] Train: [66/100][100/605] Data 0.002 (0.002) Batch 0.922 (0.944) Remain 05:31:26 loss: 2.1402 psnr: 18.9197 Lr: 5.94218e-04
[2025-02-17 21:23:02,968 INFO hook.py line 109 848561] Train: [66/100][150/605] Data 0.001 (0.002) Batch 0.930 (0.943) Remain 05:30:21 loss: 1.9977 psnr: 20.5212 Lr: 5.91722e-04
[2025-02-17 21:23:49,970 INFO hook.py line 109 848561] Train: [66/100][200/605] Data 0.002 (0.002) Batch 0.940 (0.942) Remain 05:29:19 loss: 2.2188 psnr: 18.5136 Lr: 5.89228e-04
[2025-02-17 21:24:36,737 INFO hook.py line 109 848561] Train: [66/100][250/605] Data 0.003 (0.002) Batch 0.924 (0.941) Remain 05:28:04 loss: 1.9792 psnr: 20.9201 Lr: 5.86738e-04
[2025-02-17 21:25:23,721 INFO hook.py line 109 848561] Train: [66/100][300/605] Data 0.003 (0.002) Batch 0.948 (0.941) Remain 05:27:13 loss: 1.9893 psnr: 20.3135 Lr: 5.84251e-04
[2025-02-17 21:26:10,863 INFO hook.py line 109 848561] Train: [66/100][350/605] Data 0.002 (0.002) Batch 0.967 (0.941) Remain 05:26:33 loss: 2.3255 psnr: 17.9297 Lr: 5.81767e-04
[2025-02-17 21:26:57,858 INFO hook.py line 109 848561] Train: [66/100][400/605] Data 0.002 (0.002) Batch 0.942 (0.941) Remain 05:25:44 loss: 2.1738 psnr: 18.6230 Lr: 5.79286e-04
[2025-02-17 21:27:44,697 INFO hook.py line 109 848561] Train: [66/100][450/605] Data 0.003 (0.002) Batch 0.965 (0.940) Remain 05:24:47 loss: 2.3516 psnr: 17.7462 Lr: 5.76808e-04
[2025-02-17 21:28:31,814 INFO hook.py line 109 848561] Train: [66/100][500/605] Data 0.002 (0.002) Batch 0.962 (0.941) Remain 05:24:04 loss: 2.3563 psnr: 16.3841 Lr: 5.74334e-04
[2025-02-17 21:29:19,089 INFO hook.py line 109 848561] Train: [66/100][550/605] Data 0.002 (0.002) Batch 0.944 (0.941) Remain 05:23:27 loss: 1.9675 psnr: 20.5550 Lr: 5.71862e-04
[2025-02-17 21:30:05,713 INFO hook.py line 109 848561] Train: [66/100][600/605] Data 0.002 (0.002) Batch 0.913 (0.940) Remain 05:22:25 loss: 2.1789 psnr: 18.5745 Lr: 5.69394e-04
[2025-02-17 21:30:10,070 INFO misc.py line 135 848561] Train result: loss: 2.2746 rgb_loss: 0.7895 psnr: 17.8517 depth_loss: 0.0665 feat_loss: 1.4186 
[2025-02-17 21:30:10,070 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 21:31:00,966 INFO hook.py line 109 848561] Train: [67/100][50/605] Data 0.002 (0.002) Batch 0.920 (0.939) Remain 05:21:03 loss: 2.3165 psnr: 17.4134 Lr: 5.66683e-04
[2025-02-17 21:31:47,772 INFO hook.py line 109 848561] Train: [67/100][100/605] Data 0.002 (0.002) Batch 0.950 (0.937) Remain 05:19:48 loss: 2.1832 psnr: 17.8795 Lr: 5.64222e-04
[2025-02-17 21:32:34,615 INFO hook.py line 109 848561] Train: [67/100][150/605] Data 0.002 (0.002) Batch 0.925 (0.937) Remain 05:18:57 loss: 2.5878 psnr: 15.4945 Lr: 5.61763e-04
[2025-02-17 21:33:21,464 INFO hook.py line 109 848561] Train: [67/100][200/605] Data 0.003 (0.002) Batch 0.958 (0.937) Remain 05:18:09 loss: 2.2965 psnr: 17.7177 Lr: 5.59308e-04
[2025-02-17 21:34:08,565 INFO hook.py line 109 848561] Train: [67/100][250/605] Data 0.002 (0.002) Batch 0.932 (0.938) Remain 05:17:42 loss: 2.2178 psnr: 18.2144 Lr: 5.56857e-04
[2025-02-17 21:34:55,766 INFO hook.py line 109 848561] Train: [67/100][300/605] Data 0.004 (0.002) Batch 0.912 (0.939) Remain 05:17:16 loss: 2.3586 psnr: 17.1035 Lr: 5.54409e-04
[2025-02-17 21:35:42,894 INFO hook.py line 109 848561] Train: [67/100][350/605] Data 0.002 (0.002) Batch 0.914 (0.940) Remain 05:16:39 loss: 2.6027 psnr: 15.4393 Lr: 5.51964e-04
[2025-02-17 21:36:30,034 INFO hook.py line 109 848561] Train: [67/100][400/605] Data 0.002 (0.002) Batch 0.967 (0.940) Remain 05:16:00 loss: 2.3155 psnr: 17.4018 Lr: 5.49522e-04
[2025-02-17 21:37:17,031 INFO hook.py line 109 848561] Train: [67/100][450/605] Data 0.002 (0.002) Batch 0.936 (0.940) Remain 05:15:13 loss: 2.3301 psnr: 16.7710 Lr: 5.47084e-04
[2025-02-17 21:38:04,280 INFO hook.py line 109 848561] Train: [67/100][500/605] Data 0.002 (0.002) Batch 0.965 (0.941) Remain 05:14:36 loss: 2.2402 psnr: 17.9008 Lr: 5.44649e-04
[2025-02-17 21:38:51,281 INFO hook.py line 109 848561] Train: [67/100][550/605] Data 0.002 (0.002) Batch 0.931 (0.940) Remain 05:13:48 loss: 2.1852 psnr: 18.7178 Lr: 5.42217e-04
[2025-02-17 21:39:37,342 INFO hook.py line 109 848561] Train: [67/100][600/605] Data 0.002 (0.002) Batch 0.846 (0.939) Remain 05:12:28 loss: 2.1902 psnr: 18.3385 Lr: 5.39789e-04
[2025-02-17 21:39:41,707 INFO misc.py line 135 848561] Train result: loss: 2.2665 rgb_loss: 0.7857 psnr: 17.8656 depth_loss: 0.0643 feat_loss: 1.4165 
[2025-02-17 21:39:41,708 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 21:40:32,904 INFO hook.py line 109 848561] Train: [68/100][50/605] Data 0.002 (0.002) Batch 0.935 (0.941) Remain 05:12:12 loss: 2.2405 psnr: 17.7888 Lr: 5.37171e-04
[2025-02-17 21:41:19,841 INFO hook.py line 109 848561] Train: [68/100][100/605] Data 0.003 (0.002) Batch 0.934 (0.940) Remain 05:11:05 loss: 2.2936 psnr: 17.9290 Lr: 5.34750e-04
[2025-02-17 21:42:07,086 INFO hook.py line 109 848561] Train: [68/100][150/605] Data 0.003 (0.002) Batch 0.939 (0.941) Remain 05:10:54 loss: 2.3943 psnr: 16.7330 Lr: 5.32332e-04
[2025-02-17 21:42:54,183 INFO hook.py line 109 848561] Train: [68/100][200/605] Data 0.002 (0.002) Batch 0.929 (0.942) Remain 05:10:09 loss: 2.1162 psnr: 20.1559 Lr: 5.29919e-04
[2025-02-17 21:43:41,108 INFO hook.py line 109 848561] Train: [68/100][250/605] Data 0.003 (0.002) Batch 0.922 (0.941) Remain 05:09:10 loss: 2.0785 psnr: 18.8455 Lr: 5.27508e-04
[2025-02-17 21:44:28,261 INFO hook.py line 109 848561] Train: [68/100][300/605] Data 0.005 (0.002) Batch 0.925 (0.941) Remain 05:08:30 loss: 2.2336 psnr: 18.1251 Lr: 5.25101e-04
[2025-02-17 21:45:15,075 INFO hook.py line 109 848561] Train: [68/100][350/605] Data 0.003 (0.002) Batch 0.924 (0.941) Remain 05:07:29 loss: 2.3646 psnr: 16.7744 Lr: 5.22698e-04
[2025-02-17 21:46:02,182 INFO hook.py line 109 848561] Train: [68/100][400/605] Data 0.001 (0.002) Batch 0.950 (0.941) Remain 05:06:46 loss: 2.1189 psnr: 18.2852 Lr: 5.20298e-04
[2025-02-17 21:46:48,914 INFO hook.py line 109 848561] Train: [68/100][450/605] Data 0.002 (0.002) Batch 0.944 (0.940) Remain 05:05:45 loss: 2.1355 psnr: 18.3502 Lr: 5.17902e-04
[2025-02-17 21:47:35,817 INFO hook.py line 109 848561] Train: [68/100][500/605] Data 0.002 (0.002) Batch 0.934 (0.940) Remain 05:04:54 loss: 2.4207 psnr: 17.3198 Lr: 5.15509e-04
[2025-02-17 21:48:22,805 INFO hook.py line 109 848561] Train: [68/100][550/605] Data 0.003 (0.002) Batch 0.939 (0.940) Remain 05:04:07 loss: 2.2249 psnr: 18.3122 Lr: 5.13120e-04
[2025-02-17 21:49:08,841 INFO hook.py line 109 848561] Train: [68/100][600/605] Data 0.002 (0.002) Batch 0.837 (0.938) Remain 05:02:49 loss: 2.1267 psnr: 19.0551 Lr: 5.10735e-04
[2025-02-17 21:49:13,132 INFO misc.py line 135 848561] Train result: loss: 2.2517 rgb_loss: 0.7735 psnr: 17.9828 depth_loss: 0.0647 feat_loss: 1.4134 
[2025-02-17 21:49:13,133 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 21:50:04,790 INFO hook.py line 109 848561] Train: [69/100][50/605] Data 0.002 (0.002) Batch 0.937 (0.950) Remain 05:05:53 loss: 2.0767 psnr: 18.9947 Lr: 5.08115e-04
[2025-02-17 21:50:52,164 INFO hook.py line 109 848561] Train: [69/100][100/605] Data 0.003 (0.002) Batch 0.938 (0.949) Remain 05:04:36 loss: 2.7948 psnr: 14.4508 Lr: 5.05738e-04
[2025-02-17 21:51:39,306 INFO hook.py line 109 848561] Train: [69/100][150/605] Data 0.003 (0.003) Batch 0.949 (0.947) Remain 05:03:09 loss: 2.1431 psnr: 19.1169 Lr: 5.03364e-04
[2025-02-17 21:52:26,238 INFO hook.py line 109 848561] Train: [69/100][200/605] Data 0.003 (0.003) Batch 0.936 (0.945) Remain 05:01:41 loss: 2.3320 psnr: 17.7045 Lr: 5.00994e-04
[2025-02-17 21:53:13,341 INFO hook.py line 109 848561] Train: [69/100][250/605] Data 0.002 (0.003) Batch 0.960 (0.944) Remain 05:00:44 loss: 2.2805 psnr: 17.9251 Lr: 4.98627e-04
[2025-02-17 21:54:00,321 INFO hook.py line 109 848561] Train: [69/100][300/605] Data 0.002 (0.003) Batch 0.925 (0.943) Remain 04:59:42 loss: 2.3044 psnr: 18.1067 Lr: 4.96264e-04
[2025-02-17 21:54:47,335 INFO hook.py line 109 848561] Train: [69/100][350/605] Data 0.002 (0.002) Batch 0.947 (0.943) Remain 04:58:46 loss: 2.4757 psnr: 16.2752 Lr: 4.93905e-04
[2025-02-17 21:55:34,280 INFO hook.py line 109 848561] Train: [69/100][400/605] Data 0.003 (0.002) Batch 0.964 (0.942) Remain 04:57:49 loss: 2.3646 psnr: 16.5348 Lr: 4.91550e-04
[2025-02-17 21:56:21,456 INFO hook.py line 109 848561] Train: [69/100][450/605] Data 0.003 (0.002) Batch 0.940 (0.943) Remain 04:57:04 loss: 2.2812 psnr: 18.0503 Lr: 4.89199e-04
[2025-02-17 21:57:08,276 INFO hook.py line 109 848561] Train: [69/100][500/605] Data 0.002 (0.002) Batch 0.934 (0.942) Remain 04:56:05 loss: 2.4950 psnr: 16.0954 Lr: 4.86851e-04
[2025-02-17 21:57:55,039 INFO hook.py line 109 848561] Train: [69/100][550/605] Data 0.002 (0.002) Batch 0.945 (0.941) Remain 04:55:06 loss: 2.1289 psnr: 19.1173 Lr: 4.84507e-04
[2025-02-17 21:58:41,423 INFO hook.py line 109 848561] Train: [69/100][600/605] Data 0.002 (0.002) Batch 0.853 (0.940) Remain 04:53:58 loss: 2.2007 psnr: 17.8161 Lr: 4.82167e-04
[2025-02-17 21:58:45,763 INFO misc.py line 135 848561] Train result: loss: 2.2644 rgb_loss: 0.7819 psnr: 17.9101 depth_loss: 0.0651 feat_loss: 1.4174 
[2025-02-17 21:58:45,764 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 21:59:37,223 INFO hook.py line 109 848561] Train: [70/100][50/605] Data 0.003 (0.002) Batch 0.941 (0.946) Remain 04:54:55 loss: 2.3643 psnr: 16.3525 Lr: 4.79598e-04
[2025-02-17 22:00:24,181 INFO hook.py line 109 848561] Train: [70/100][100/605] Data 0.003 (0.002) Batch 0.910 (0.943) Remain 04:53:02 loss: 2.1663 psnr: 18.0850 Lr: 4.77266e-04
[2025-02-17 22:01:11,155 INFO hook.py line 109 848561] Train: [70/100][150/605] Data 0.003 (0.002) Batch 0.950 (0.941) Remain 04:51:56 loss: 2.1258 psnr: 17.9501 Lr: 4.74938e-04
[2025-02-17 22:01:58,096 INFO hook.py line 109 848561] Train: [70/100][200/605] Data 0.002 (0.002) Batch 0.976 (0.941) Remain 04:50:56 loss: 2.2365 psnr: 18.8781 Lr: 4.72614e-04
[2025-02-17 22:02:45,257 INFO hook.py line 109 848561] Train: [70/100][250/605] Data 0.002 (0.002) Batch 0.936 (0.941) Remain 04:50:18 loss: 2.2233 psnr: 17.3613 Lr: 4.70294e-04
[2025-02-17 22:03:32,163 INFO hook.py line 109 848561] Train: [70/100][300/605] Data 0.002 (0.002) Batch 0.950 (0.941) Remain 04:49:21 loss: 2.0914 psnr: 19.2123 Lr: 4.67978e-04
[2025-02-17 22:04:18,973 INFO hook.py line 109 848561] Train: [70/100][350/605] Data 0.003 (0.002) Batch 0.950 (0.940) Remain 04:48:22 loss: 2.3783 psnr: 16.4443 Lr: 4.65666e-04
[2025-02-17 22:05:06,104 INFO hook.py line 109 848561] Train: [70/100][400/605] Data 0.002 (0.002) Batch 0.927 (0.940) Remain 04:47:41 loss: 2.1799 psnr: 18.7041 Lr: 4.63358e-04
[2025-02-17 22:05:53,175 INFO hook.py line 109 848561] Train: [70/100][450/605] Data 0.002 (0.002) Batch 0.911 (0.941) Remain 04:46:56 loss: 2.1845 psnr: 18.8433 Lr: 4.61054e-04
[2025-02-17 22:06:40,266 INFO hook.py line 109 848561] Train: [70/100][500/605] Data 0.002 (0.002) Batch 0.951 (0.941) Remain 04:46:11 loss: 2.1576 psnr: 18.4506 Lr: 4.58754e-04
[2025-02-17 22:07:27,273 INFO hook.py line 109 848561] Train: [70/100][550/605] Data 0.003 (0.002) Batch 0.947 (0.941) Remain 04:45:23 loss: 2.2183 psnr: 17.4316 Lr: 4.56458e-04
[2025-02-17 22:08:13,301 INFO hook.py line 109 848561] Train: [70/100][600/605] Data 0.002 (0.002) Batch 0.859 (0.939) Remain 04:44:06 loss: 2.1868 psnr: 18.2713 Lr: 4.54166e-04
[2025-02-17 22:08:17,625 INFO misc.py line 135 848561] Train result: loss: 2.2611 rgb_loss: 0.7797 psnr: 17.9297 depth_loss: 0.0650 feat_loss: 1.4164 
[2025-02-17 22:08:17,626 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 22:09:08,765 INFO hook.py line 109 848561] Train: [71/100][50/605] Data 0.002 (0.002) Batch 0.955 (0.939) Remain 04:43:22 loss: 2.1114 psnr: 18.4602 Lr: 4.51650e-04
[2025-02-17 22:09:55,915 INFO hook.py line 109 848561] Train: [71/100][100/605] Data 0.002 (0.002) Batch 0.973 (0.941) Remain 04:43:09 loss: 2.2080 psnr: 18.2497 Lr: 4.49366e-04
[2025-02-17 22:10:42,847 INFO hook.py line 109 848561] Train: [71/100][150/605] Data 0.002 (0.002) Batch 0.919 (0.940) Remain 04:42:06 loss: 2.1652 psnr: 17.8992 Lr: 4.47087e-04
[2025-02-17 22:11:29,662 INFO hook.py line 109 848561] Train: [71/100][200/605] Data 0.002 (0.002) Batch 0.927 (0.939) Remain 04:41:00 loss: 2.2039 psnr: 18.6649 Lr: 4.44812e-04
[2025-02-17 22:12:16,688 INFO hook.py line 109 848561] Train: [71/100][250/605] Data 0.003 (0.002) Batch 0.939 (0.940) Remain 04:40:18 loss: 2.2697 psnr: 17.7340 Lr: 4.42541e-04
[2025-02-17 22:13:03,415 INFO hook.py line 109 848561] Train: [71/100][300/605] Data 0.003 (0.002) Batch 0.950 (0.939) Remain 04:39:16 loss: 1.9879 psnr: 20.0738 Lr: 4.40274e-04
[2025-02-17 22:13:50,569 INFO hook.py line 109 848561] Train: [71/100][350/605] Data 0.002 (0.002) Batch 0.927 (0.939) Remain 04:38:40 loss: 2.4580 psnr: 16.1786 Lr: 4.38011e-04
[2025-02-17 22:14:37,613 INFO hook.py line 109 848561] Train: [71/100][400/605] Data 0.003 (0.002) Batch 0.950 (0.940) Remain 04:37:56 loss: 2.0536 psnr: 19.9911 Lr: 4.35753e-04
[2025-02-17 22:15:24,725 INFO hook.py line 109 848561] Train: [71/100][450/605] Data 0.003 (0.002) Batch 0.930 (0.940) Remain 04:37:15 loss: 2.4182 psnr: 16.6164 Lr: 4.33499e-04
[2025-02-17 22:16:11,619 INFO hook.py line 109 848561] Train: [71/100][500/605] Data 0.003 (0.002) Batch 0.945 (0.940) Remain 04:36:24 loss: 2.1647 psnr: 18.7583 Lr: 4.31249e-04
[2025-02-17 22:16:58,469 INFO hook.py line 109 848561] Train: [71/100][550/605] Data 0.003 (0.002) Batch 0.967 (0.939) Remain 04:35:33 loss: 2.0997 psnr: 19.3002 Lr: 4.29003e-04
[2025-02-17 22:17:44,674 INFO hook.py line 109 848561] Train: [71/100][600/605] Data 0.002 (0.002) Batch 0.865 (0.938) Remain 04:34:23 loss: 2.2679 psnr: 17.0691 Lr: 4.26761e-04
[2025-02-17 22:17:48,994 INFO misc.py line 135 848561] Train result: loss: 2.2492 rgb_loss: 0.7691 psnr: 17.9970 depth_loss: 0.0649 feat_loss: 1.4152 
[2025-02-17 22:17:48,995 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 22:18:40,170 INFO hook.py line 109 848561] Train: [72/100][50/605] Data 0.003 (0.002) Batch 0.943 (0.941) Remain 04:34:31 loss: 2.2824 psnr: 17.0308 Lr: 4.24301e-04
[2025-02-17 22:19:27,028 INFO hook.py line 109 848561] Train: [72/100][100/605] Data 0.003 (0.002) Batch 0.933 (0.939) Remain 04:33:05 loss: 2.2792 psnr: 17.6994 Lr: 4.22068e-04
[2025-02-17 22:20:14,199 INFO hook.py line 109 848561] Train: [72/100][150/605] Data 0.002 (0.002) Batch 0.940 (0.941) Remain 04:32:43 loss: 2.3294 psnr: 17.7019 Lr: 4.19840e-04
[2025-02-17 22:21:01,235 INFO hook.py line 109 848561] Train: [72/100][200/605] Data 0.001 (0.002) Batch 0.915 (0.941) Remain 04:31:56 loss: 2.2689 psnr: 17.4768 Lr: 4.17616e-04
[2025-02-17 22:21:48,178 INFO hook.py line 109 848561] Train: [72/100][250/605] Data 0.002 (0.002) Batch 0.937 (0.940) Remain 04:31:02 loss: 2.1901 psnr: 17.7238 Lr: 4.15397e-04
[2025-02-17 22:22:34,989 INFO hook.py line 109 848561] Train: [72/100][300/605] Data 0.002 (0.002) Batch 0.925 (0.940) Remain 04:30:03 loss: 2.2260 psnr: 19.0754 Lr: 4.13182e-04
[2025-02-17 22:23:22,236 INFO hook.py line 109 848561] Train: [72/100][350/605] Data 0.002 (0.002) Batch 0.940 (0.940) Remain 04:29:30 loss: 2.1521 psnr: 18.5107 Lr: 4.10971e-04
[2025-02-17 22:24:09,392 INFO hook.py line 109 848561] Train: [72/100][400/605] Data 0.003 (0.002) Batch 0.969 (0.941) Remain 04:28:48 loss: 2.0960 psnr: 18.7101 Lr: 4.08765e-04
[2025-02-17 22:24:56,401 INFO hook.py line 109 848561] Train: [72/100][450/605] Data 0.003 (0.002) Batch 0.926 (0.941) Remain 04:28:00 loss: 2.2607 psnr: 18.1178 Lr: 4.06563e-04
[2025-02-17 22:25:43,364 INFO hook.py line 109 848561] Train: [72/100][500/605] Data 0.003 (0.002) Batch 0.953 (0.941) Remain 04:27:11 loss: 2.0080 psnr: 20.2115 Lr: 4.04365e-04
[2025-02-17 22:26:30,300 INFO hook.py line 109 848561] Train: [72/100][550/605] Data 0.003 (0.002) Batch 0.938 (0.940) Remain 04:26:21 loss: 2.1619 psnr: 18.4419 Lr: 4.02172e-04
[2025-02-17 22:27:16,365 INFO hook.py line 109 848561] Train: [72/100][600/605] Data 0.002 (0.002) Batch 0.883 (0.939) Remain 04:25:07 loss: 2.2844 psnr: 17.8584 Lr: 3.99984e-04
[2025-02-17 22:27:20,667 INFO misc.py line 135 848561] Train result: loss: 2.2569 rgb_loss: 0.7784 psnr: 17.9138 depth_loss: 0.0649 feat_loss: 1.4135 
[2025-02-17 22:27:20,668 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 22:28:11,843 INFO hook.py line 109 848561] Train: [73/100][50/605] Data 0.003 (0.003) Batch 0.961 (0.938) Remain 04:23:58 loss: 2.3498 psnr: 17.3236 Lr: 3.97582e-04
[2025-02-17 22:28:58,799 INFO hook.py line 109 848561] Train: [73/100][100/605] Data 0.003 (0.003) Batch 0.951 (0.938) Remain 04:23:23 loss: 1.9570 psnr: 21.1390 Lr: 3.95402e-04
[2025-02-17 22:29:46,260 INFO hook.py line 109 848561] Train: [73/100][150/605] Data 0.002 (0.002) Batch 0.965 (0.942) Remain 04:23:38 loss: 2.2613 psnr: 18.0066 Lr: 3.93228e-04
[2025-02-17 22:30:33,180 INFO hook.py line 109 848561] Train: [73/100][200/605] Data 0.002 (0.002) Batch 0.983 (0.941) Remain 04:22:35 loss: 2.3067 psnr: 17.7996 Lr: 3.91058e-04
[2025-02-17 22:31:20,044 INFO hook.py line 109 848561] Train: [73/100][250/605] Data 0.002 (0.002) Batch 0.922 (0.940) Remain 04:21:35 loss: 2.1762 psnr: 18.0683 Lr: 3.88892e-04
[2025-02-17 22:32:07,227 INFO hook.py line 109 848561] Train: [73/100][300/605] Data 0.003 (0.002) Batch 0.944 (0.941) Remain 04:20:57 loss: 2.1623 psnr: 18.1852 Lr: 3.86731e-04
[2025-02-17 22:32:54,323 INFO hook.py line 109 848561] Train: [73/100][350/605] Data 0.002 (0.002) Batch 0.917 (0.941) Remain 04:20:12 loss: 2.2861 psnr: 17.9072 Lr: 3.84575e-04
[2025-02-17 22:33:41,377 INFO hook.py line 109 848561] Train: [73/100][400/605] Data 0.003 (0.002) Batch 0.925 (0.941) Remain 04:19:25 loss: 2.1009 psnr: 19.3351 Lr: 3.82423e-04
[2025-02-17 22:34:28,506 INFO hook.py line 109 848561] Train: [73/100][450/605] Data 0.003 (0.002) Batch 0.951 (0.941) Remain 04:18:41 loss: 2.4128 psnr: 17.1248 Lr: 3.80276e-04
[2025-02-17 22:35:15,396 INFO hook.py line 109 848561] Train: [73/100][500/605] Data 0.002 (0.002) Batch 0.924 (0.941) Remain 04:17:48 loss: 2.4402 psnr: 17.7696 Lr: 3.78133e-04
[2025-02-17 22:36:02,761 INFO hook.py line 109 848561] Train: [73/100][550/605] Data 0.002 (0.002) Batch 0.955 (0.941) Remain 04:17:10 loss: 2.1392 psnr: 18.7059 Lr: 3.75995e-04
[2025-02-17 22:36:48,929 INFO hook.py line 109 848561] Train: [73/100][600/605] Data 0.002 (0.002) Batch 0.866 (0.940) Remain 04:15:59 loss: 2.3457 psnr: 16.6653 Lr: 3.73862e-04
[2025-02-17 22:36:53,270 INFO misc.py line 135 848561] Train result: loss: 2.2452 rgb_loss: 0.7671 psnr: 18.0221 depth_loss: 0.0648 feat_loss: 1.4132 
[2025-02-17 22:36:53,271 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 22:37:44,301 INFO hook.py line 109 848561] Train: [74/100][50/605] Data 0.003 (0.002) Batch 0.922 (0.938) Remain 04:14:30 loss: 2.4497 psnr: 17.2454 Lr: 3.71521e-04
[2025-02-17 22:38:31,401 INFO hook.py line 109 848561] Train: [74/100][100/605] Data 0.003 (0.002) Batch 0.944 (0.940) Remain 04:14:19 loss: 2.3974 psnr: 16.7911 Lr: 3.69398e-04
[2025-02-17 22:39:18,223 INFO hook.py line 109 848561] Train: [74/100][150/605] Data 0.003 (0.002) Batch 0.928 (0.939) Remain 04:13:13 loss: 2.1987 psnr: 18.5764 Lr: 3.67279e-04
[2025-02-17 22:40:05,460 INFO hook.py line 109 848561] Train: [74/100][200/605] Data 0.002 (0.002) Batch 0.935 (0.940) Remain 04:12:50 loss: 2.1869 psnr: 19.0987 Lr: 3.65165e-04
[2025-02-17 22:40:52,345 INFO hook.py line 109 848561] Train: [74/100][250/605] Data 0.002 (0.002) Batch 0.959 (0.940) Remain 04:11:55 loss: 2.6816 psnr: 15.2509 Lr: 3.63056e-04
[2025-02-17 22:41:39,206 INFO hook.py line 109 848561] Train: [74/100][300/605] Data 0.003 (0.002) Batch 0.931 (0.939) Remain 04:11:01 loss: 2.0809 psnr: 18.9332 Lr: 3.60951e-04
[2025-02-17 22:42:26,208 INFO hook.py line 109 848561] Train: [74/100][350/605] Data 0.003 (0.002) Batch 0.953 (0.939) Remain 04:10:16 loss: 2.0858 psnr: 19.3373 Lr: 3.58852e-04
[2025-02-17 22:43:13,496 INFO hook.py line 109 848561] Train: [74/100][400/605] Data 0.003 (0.002) Batch 0.933 (0.940) Remain 04:09:42 loss: 2.3062 psnr: 17.8005 Lr: 3.56757e-04
[2025-02-17 22:44:00,483 INFO hook.py line 109 848561] Train: [74/100][450/605] Data 0.003 (0.002) Batch 0.936 (0.940) Remain 04:08:54 loss: 2.2998 psnr: 17.1673 Lr: 3.54667e-04
[2025-02-17 22:44:47,628 INFO hook.py line 109 848561] Train: [74/100][500/605] Data 0.002 (0.002) Batch 0.954 (0.940) Remain 04:08:11 loss: 2.2363 psnr: 18.5820 Lr: 3.52581e-04
[2025-02-17 22:45:34,936 INFO hook.py line 109 848561] Train: [74/100][550/605] Data 0.002 (0.002) Batch 0.954 (0.941) Remain 04:07:33 loss: 2.2429 psnr: 18.5391 Lr: 3.50501e-04
[2025-02-17 22:46:20,779 INFO hook.py line 109 848561] Train: [74/100][600/605] Data 0.002 (0.002) Batch 0.864 (0.939) Remain 04:06:14 loss: 2.3057 psnr: 17.6444 Lr: 3.48425e-04
[2025-02-17 22:46:25,088 INFO misc.py line 135 848561] Train result: loss: 2.2463 rgb_loss: 0.7694 psnr: 18.0015 depth_loss: 0.0644 feat_loss: 1.4126 
[2025-02-17 22:46:25,089 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 22:47:16,343 INFO hook.py line 109 848561] Train: [75/100][50/605] Data 0.002 (0.002) Batch 0.948 (0.942) Remain 04:06:11 loss: 2.1777 psnr: 17.9639 Lr: 3.46148e-04
[2025-02-17 22:48:03,440 INFO hook.py line 109 848561] Train: [75/100][100/605] Data 0.002 (0.002) Batch 0.953 (0.942) Remain 04:05:23 loss: 2.3032 psnr: 16.9787 Lr: 3.44082e-04
[2025-02-17 22:48:50,366 INFO hook.py line 109 848561] Train: [75/100][150/605] Data 0.002 (0.002) Batch 0.943 (0.941) Remain 04:04:17 loss: 2.0577 psnr: 19.7959 Lr: 3.42022e-04
[2025-02-17 22:49:37,814 INFO hook.py line 109 848561] Train: [75/100][200/605] Data 0.003 (0.002) Batch 0.949 (0.943) Remain 04:04:02 loss: 2.2806 psnr: 18.3682 Lr: 3.39966e-04
[2025-02-17 22:50:24,730 INFO hook.py line 109 848561] Train: [75/100][250/605] Data 0.002 (0.002) Batch 0.924 (0.942) Remain 04:03:01 loss: 2.0575 psnr: 19.8856 Lr: 3.37957e-04
[2025-02-17 22:51:12,003 INFO hook.py line 109 848561] Train: [75/100][300/605] Data 0.003 (0.002) Batch 0.953 (0.943) Remain 04:02:23 loss: 2.2041 psnr: 17.5709 Lr: 3.35911e-04
[2025-02-17 22:51:59,027 INFO hook.py line 109 848561] Train: [75/100][350/605] Data 0.002 (0.002) Batch 0.934 (0.942) Remain 04:01:31 loss: 2.2377 psnr: 18.2522 Lr: 3.33870e-04
[2025-02-17 22:52:45,818 INFO hook.py line 109 848561] Train: [75/100][400/605] Data 0.003 (0.002) Batch 0.964 (0.941) Remain 04:00:32 loss: 2.2304 psnr: 17.4568 Lr: 3.31834e-04
[2025-02-17 22:53:32,796 INFO hook.py line 109 848561] Train: [75/100][450/605] Data 0.002 (0.002) Batch 0.929 (0.941) Remain 03:59:41 loss: 2.2536 psnr: 17.8673 Lr: 3.29804e-04
[2025-02-17 22:54:19,665 INFO hook.py line 109 848561] Train: [75/100][500/605] Data 0.002 (0.002) Batch 0.956 (0.941) Remain 03:58:48 loss: 1.9408 psnr: 21.1745 Lr: 3.27778e-04
[2025-02-17 22:55:06,542 INFO hook.py line 109 848561] Train: [75/100][550/605] Data 0.003 (0.002) Batch 0.949 (0.941) Remain 03:57:57 loss: 2.0707 psnr: 19.2456 Lr: 3.25757e-04
[2025-02-17 22:55:52,752 INFO hook.py line 109 848561] Train: [75/100][600/605] Data 0.002 (0.002) Batch 0.874 (0.939) Remain 03:56:49 loss: 2.0472 psnr: 20.8087 Lr: 3.23741e-04
[2025-02-17 22:55:57,098 INFO misc.py line 135 848561] Train result: loss: 2.2415 rgb_loss: 0.7631 psnr: 18.0451 depth_loss: 0.0653 feat_loss: 1.4131 
[2025-02-17 22:55:57,099 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 22:56:47,932 INFO hook.py line 109 848561] Train: [76/100][50/605] Data 0.003 (0.002) Batch 0.908 (0.932) Remain 03:54:13 loss: 2.4155 psnr: 16.5406 Lr: 3.21530e-04
[2025-02-17 22:57:34,703 INFO hook.py line 109 848561] Train: [76/100][100/605] Data 0.002 (0.002) Batch 0.943 (0.934) Remain 03:53:51 loss: 2.1525 psnr: 18.0746 Lr: 3.19525e-04
[2025-02-17 22:58:21,601 INFO hook.py line 109 848561] Train: [76/100][150/605] Data 0.002 (0.002) Batch 0.938 (0.935) Remain 03:53:25 loss: 2.2116 psnr: 17.7895 Lr: 3.17524e-04
[2025-02-17 22:59:08,496 INFO hook.py line 109 848561] Train: [76/100][200/605] Data 0.003 (0.002) Batch 0.936 (0.936) Remain 03:52:48 loss: 2.1512 psnr: 18.7110 Lr: 3.15530e-04
[2025-02-17 22:59:55,353 INFO hook.py line 109 848561] Train: [76/100][250/605] Data 0.003 (0.002) Batch 0.920 (0.936) Remain 03:52:05 loss: 2.3074 psnr: 18.1637 Lr: 3.13540e-04
[2025-02-17 23:00:42,284 INFO hook.py line 109 848561] Train: [76/100][300/605] Data 0.003 (0.002) Batch 0.933 (0.937) Remain 03:51:24 loss: 2.2565 psnr: 17.5030 Lr: 3.11555e-04
[2025-02-17 23:01:29,383 INFO hook.py line 109 848561] Train: [76/100][350/605] Data 0.002 (0.002) Batch 0.949 (0.937) Remain 03:50:49 loss: 2.3967 psnr: 16.6820 Lr: 3.09575e-04
[2025-02-17 23:02:16,531 INFO hook.py line 109 848561] Train: [76/100][400/605] Data 0.002 (0.002) Batch 0.925 (0.938) Remain 03:50:13 loss: 2.3148 psnr: 18.2177 Lr: 3.07601e-04
[2025-02-17 23:03:03,442 INFO hook.py line 109 848561] Train: [76/100][450/605] Data 0.002 (0.002) Batch 0.978 (0.938) Remain 03:49:26 loss: 2.2444 psnr: 17.7433 Lr: 3.05632e-04
[2025-02-17 23:03:50,642 INFO hook.py line 109 848561] Train: [76/100][500/605] Data 0.002 (0.002) Batch 0.963 (0.939) Remain 03:48:48 loss: 2.2628 psnr: 17.7450 Lr: 3.03668e-04
[2025-02-17 23:04:37,687 INFO hook.py line 109 848561] Train: [76/100][550/605] Data 0.002 (0.002) Batch 0.944 (0.939) Remain 03:48:04 loss: 2.1716 psnr: 18.1004 Lr: 3.01709e-04
[2025-02-17 23:05:23,891 INFO hook.py line 109 848561] Train: [76/100][600/605] Data 0.002 (0.002) Batch 0.883 (0.938) Remain 03:46:59 loss: 2.2602 psnr: 17.4551 Lr: 2.99755e-04
[2025-02-17 23:05:28,286 INFO misc.py line 135 848561] Train result: loss: 2.2404 rgb_loss: 0.7665 psnr: 18.0012 depth_loss: 0.0637 feat_loss: 1.4101 
[2025-02-17 23:05:28,288 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 23:06:19,359 INFO hook.py line 109 848561] Train: [77/100][50/605] Data 0.002 (0.002) Batch 0.975 (0.938) Remain 03:46:16 loss: 2.2313 psnr: 18.9646 Lr: 2.97612e-04
[2025-02-17 23:07:06,263 INFO hook.py line 109 848561] Train: [77/100][100/605] Data 0.003 (0.002) Batch 0.916 (0.938) Remain 03:45:28 loss: 2.3508 psnr: 17.5259 Lr: 2.95669e-04
[2025-02-17 23:07:53,220 INFO hook.py line 109 848561] Train: [77/100][150/605] Data 0.002 (0.002) Batch 0.934 (0.939) Remain 03:44:46 loss: 2.3742 psnr: 16.4617 Lr: 2.93732e-04
[2025-02-17 23:08:40,210 INFO hook.py line 109 848561] Train: [77/100][200/605] Data 0.002 (0.002) Batch 0.911 (0.939) Remain 03:44:04 loss: 2.0782 psnr: 19.1216 Lr: 2.91800e-04
[2025-02-17 23:09:27,639 INFO hook.py line 109 848561] Train: [77/100][250/605] Data 0.003 (0.002) Batch 0.927 (0.941) Remain 03:43:45 loss: 2.3406 psnr: 16.8399 Lr: 2.89873e-04
[2025-02-17 23:10:14,722 INFO hook.py line 109 848561] Train: [77/100][300/605] Data 0.003 (0.002) Batch 0.945 (0.941) Remain 03:43:00 loss: 2.3172 psnr: 18.0818 Lr: 2.87952e-04
[2025-02-17 23:11:01,578 INFO hook.py line 109 848561] Train: [77/100][350/605] Data 0.003 (0.002) Batch 0.931 (0.940) Remain 03:42:05 loss: 2.5611 psnr: 15.5892 Lr: 2.86035e-04
[2025-02-17 23:11:48,498 INFO hook.py line 109 848561] Train: [77/100][400/605] Data 0.003 (0.002) Batch 0.921 (0.940) Remain 03:41:14 loss: 2.3162 psnr: 17.5832 Lr: 2.84125e-04
[2025-02-17 23:12:35,170 INFO hook.py line 109 848561] Train: [77/100][450/605] Data 0.003 (0.002) Batch 0.933 (0.939) Remain 03:40:17 loss: 2.1379 psnr: 18.0539 Lr: 2.82219e-04
[2025-02-17 23:13:22,246 INFO hook.py line 109 848561] Train: [77/100][500/605] Data 0.003 (0.002) Batch 0.942 (0.940) Remain 03:39:33 loss: 2.4707 psnr: 15.8924 Lr: 2.80319e-04
[2025-02-17 23:14:09,096 INFO hook.py line 109 848561] Train: [77/100][550/605] Data 0.003 (0.002) Batch 0.925 (0.939) Remain 03:38:43 loss: 2.1250 psnr: 18.9283 Lr: 2.78424e-04
[2025-02-17 23:14:55,349 INFO hook.py line 109 848561] Train: [77/100][600/605] Data 0.002 (0.002) Batch 0.853 (0.938) Remain 03:37:39 loss: 2.1963 psnr: 18.0518 Lr: 2.76535e-04
[2025-02-17 23:14:59,745 INFO misc.py line 135 848561] Train result: loss: 2.2443 rgb_loss: 0.7668 psnr: 18.0008 depth_loss: 0.0652 feat_loss: 1.4123 
[2025-02-17 23:14:59,745 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 23:15:50,922 INFO hook.py line 109 848561] Train: [78/100][50/605] Data 0.003 (0.002) Batch 0.915 (0.943) Remain 03:37:59 loss: 2.2122 psnr: 18.5522 Lr: 2.74463e-04
[2025-02-17 23:16:37,699 INFO hook.py line 109 848561] Train: [78/100][100/605] Data 0.002 (0.002) Batch 0.916 (0.939) Remain 03:36:16 loss: 2.2762 psnr: 17.9701 Lr: 2.72585e-04
[2025-02-17 23:17:24,570 INFO hook.py line 109 848561] Train: [78/100][150/605] Data 0.002 (0.002) Batch 0.937 (0.939) Remain 03:35:20 loss: 2.3425 psnr: 16.9921 Lr: 2.70712e-04
[2025-02-17 23:18:11,486 INFO hook.py line 109 848561] Train: [78/100][200/605] Data 0.002 (0.002) Batch 0.912 (0.939) Remain 03:34:32 loss: 2.3132 psnr: 17.5697 Lr: 2.68845e-04
[2025-02-17 23:18:58,828 INFO hook.py line 109 848561] Train: [78/100][250/605] Data 0.002 (0.002) Batch 0.985 (0.940) Remain 03:34:08 loss: 2.6522 psnr: 15.4327 Lr: 2.66983e-04
[2025-02-17 23:19:46,087 INFO hook.py line 109 848561] Train: [78/100][300/605] Data 0.003 (0.002) Batch 0.961 (0.941) Remain 03:33:32 loss: 2.2525 psnr: 17.8913 Lr: 2.65127e-04
[2025-02-17 23:20:33,364 INFO hook.py line 109 848561] Train: [78/100][350/605] Data 0.003 (0.002) Batch 0.968 (0.942) Remain 03:32:54 loss: 2.5021 psnr: 16.0099 Lr: 2.63276e-04
[2025-02-17 23:21:20,614 INFO hook.py line 109 848561] Train: [78/100][400/605] Data 0.002 (0.002) Batch 0.943 (0.942) Remain 03:32:12 loss: 2.2010 psnr: 18.1463 Lr: 2.61431e-04
[2025-02-17 23:22:07,776 INFO hook.py line 109 848561] Train: [78/100][450/605] Data 0.002 (0.002) Batch 0.901 (0.942) Remain 03:31:27 loss: 2.3324 psnr: 17.8719 Lr: 2.59591e-04
[2025-02-17 23:22:55,171 INFO hook.py line 109 848561] Train: [78/100][500/605] Data 0.002 (0.002) Batch 0.956 (0.943) Remain 03:30:48 loss: 2.2970 psnr: 17.5279 Lr: 2.57757e-04
[2025-02-17 23:23:42,268 INFO hook.py line 109 848561] Train: [78/100][550/605] Data 0.002 (0.002) Batch 0.955 (0.943) Remain 03:29:59 loss: 2.2947 psnr: 17.3232 Lr: 2.55929e-04
[2025-02-17 23:24:28,588 INFO hook.py line 109 848561] Train: [78/100][600/605] Data 0.002 (0.002) Batch 0.876 (0.941) Remain 03:28:54 loss: 2.2282 psnr: 18.3348 Lr: 2.54105e-04
[2025-02-17 23:24:32,901 INFO misc.py line 135 848561] Train result: loss: 2.2434 rgb_loss: 0.7688 psnr: 17.9874 depth_loss: 0.0640 feat_loss: 1.4106 
[2025-02-17 23:24:32,902 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 23:25:23,967 INFO hook.py line 109 848561] Train: [79/100][50/605] Data 0.002 (0.003) Batch 0.951 (0.943) Remain 03:28:21 loss: 2.0166 psnr: 19.3675 Lr: 2.52106e-04
[2025-02-17 23:26:10,846 INFO hook.py line 109 848561] Train: [79/100][100/605] Data 0.002 (0.003) Batch 0.941 (0.940) Remain 03:26:58 loss: 2.3327 psnr: 16.8976 Lr: 2.50295e-04
[2025-02-17 23:26:57,936 INFO hook.py line 109 848561] Train: [79/100][150/605] Data 0.002 (0.002) Batch 0.924 (0.941) Remain 03:26:19 loss: 2.1571 psnr: 18.7098 Lr: 2.48489e-04
[2025-02-17 23:27:44,714 INFO hook.py line 109 848561] Train: [79/100][200/605] Data 0.002 (0.002) Batch 0.940 (0.939) Remain 03:25:15 loss: 2.3263 psnr: 17.1519 Lr: 2.46689e-04
[2025-02-17 23:28:31,794 INFO hook.py line 109 848561] Train: [79/100][250/605] Data 0.003 (0.002) Batch 0.906 (0.940) Remain 03:24:34 loss: 2.0601 psnr: 18.9556 Lr: 2.44895e-04
[2025-02-17 23:29:19,170 INFO hook.py line 109 848561] Train: [79/100][300/605] Data 0.003 (0.002) Batch 0.935 (0.941) Remain 03:24:04 loss: 2.0625 psnr: 20.0603 Lr: 2.43106e-04
[2025-02-17 23:30:05,909 INFO hook.py line 109 848561] Train: [79/100][350/605] Data 0.003 (0.002) Batch 0.925 (0.940) Remain 03:23:05 loss: 2.1480 psnr: 18.0815 Lr: 2.41323e-04
[2025-02-17 23:30:52,840 INFO hook.py line 109 848561] Train: [79/100][400/605] Data 0.002 (0.002) Batch 0.953 (0.940) Remain 03:22:15 loss: 2.1437 psnr: 19.1910 Lr: 2.39545e-04
[2025-02-17 23:31:40,198 INFO hook.py line 109 848561] Train: [79/100][450/605] Data 0.002 (0.002) Batch 0.972 (0.941) Remain 03:21:38 loss: 2.3203 psnr: 17.3367 Lr: 2.37773e-04
[2025-02-17 23:32:27,188 INFO hook.py line 109 848561] Train: [79/100][500/605] Data 0.003 (0.002) Batch 0.932 (0.941) Remain 03:20:50 loss: 1.9504 psnr: 20.2257 Lr: 2.36042e-04
[2025-02-17 23:33:14,397 INFO hook.py line 109 848561] Train: [79/100][550/605] Data 0.002 (0.002) Batch 0.947 (0.941) Remain 03:20:07 loss: 2.1941 psnr: 18.0296 Lr: 2.34282e-04
[2025-02-17 23:34:00,835 INFO hook.py line 109 848561] Train: [79/100][600/605] Data 0.002 (0.002) Batch 0.868 (0.940) Remain 03:19:07 loss: 2.1241 psnr: 18.2597 Lr: 2.32527e-04
[2025-02-17 23:34:05,202 INFO misc.py line 135 848561] Train result: loss: 2.2304 rgb_loss: 0.7580 psnr: 18.0897 depth_loss: 0.0638 feat_loss: 1.4086 
[2025-02-17 23:34:05,202 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 23:34:56,280 INFO hook.py line 109 848561] Train: [80/100][50/605] Data 0.003 (0.002) Batch 0.928 (0.940) Remain 03:18:15 loss: 2.1350 psnr: 18.9215 Lr: 2.30603e-04
[2025-02-17 23:35:43,184 INFO hook.py line 109 848561] Train: [80/100][100/605] Data 0.003 (0.002) Batch 0.958 (0.939) Remain 03:17:16 loss: 2.2814 psnr: 18.6626 Lr: 2.28860e-04
[2025-02-17 23:36:29,994 INFO hook.py line 109 848561] Train: [80/100][150/605] Data 0.002 (0.002) Batch 0.938 (0.938) Remain 03:16:17 loss: 2.3926 psnr: 16.7447 Lr: 2.27123e-04
[2025-02-17 23:37:16,640 INFO hook.py line 109 848561] Train: [80/100][200/605] Data 0.002 (0.002) Batch 0.955 (0.937) Remain 03:15:13 loss: 2.0924 psnr: 18.6058 Lr: 2.25392e-04
[2025-02-17 23:38:03,653 INFO hook.py line 109 848561] Train: [80/100][250/605] Data 0.003 (0.002) Batch 0.920 (0.937) Remain 03:14:36 loss: 2.0348 psnr: 19.3202 Lr: 2.23666e-04
[2025-02-17 23:38:50,923 INFO hook.py line 109 848561] Train: [80/100][300/605] Data 0.002 (0.002) Batch 1.142 (0.939) Remain 03:14:05 loss: 2.1665 psnr: 19.1973 Lr: 2.21947e-04
[2025-02-17 23:39:38,292 INFO hook.py line 109 848561] Train: [80/100][350/605] Data 0.004 (0.002) Batch 0.950 (0.940) Remain 03:13:34 loss: 2.4643 psnr: 16.2454 Lr: 2.20233e-04
[2025-02-17 23:40:25,439 INFO hook.py line 109 848561] Train: [80/100][400/605] Data 0.002 (0.002) Batch 0.941 (0.940) Remain 03:12:51 loss: 2.1126 psnr: 19.2057 Lr: 2.18525e-04
[2025-02-17 23:41:12,397 INFO hook.py line 109 848561] Train: [80/100][450/605] Data 0.002 (0.002) Batch 0.925 (0.940) Remain 03:12:02 loss: 2.1410 psnr: 19.1450 Lr: 2.16823e-04
[2025-02-17 23:41:59,419 INFO hook.py line 109 848561] Train: [80/100][500/605] Data 0.002 (0.002) Batch 0.916 (0.940) Remain 03:11:16 loss: 2.0729 psnr: 19.0484 Lr: 2.15126e-04
[2025-02-17 23:42:46,267 INFO hook.py line 109 848561] Train: [80/100][550/605] Data 0.003 (0.002) Batch 0.927 (0.940) Remain 03:10:25 loss: 2.1458 psnr: 18.7909 Lr: 2.13436e-04
[2025-02-17 23:43:32,373 INFO hook.py line 109 848561] Train: [80/100][600/605] Data 0.003 (0.002) Batch 0.883 (0.938) Remain 03:09:20 loss: 2.1671 psnr: 19.4910 Lr: 2.11751e-04
[2025-02-17 23:43:36,749 INFO misc.py line 135 848561] Train result: loss: 2.2444 rgb_loss: 0.7685 psnr: 17.9951 depth_loss: 0.0637 feat_loss: 1.4122 
[2025-02-17 23:43:36,749 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 23:44:27,736 INFO hook.py line 109 848561] Train: [81/100][50/605] Data 0.002 (0.002) Batch 0.943 (0.942) Remain 03:09:06 loss: 2.4292 psnr: 16.9021 Lr: 2.09905e-04
[2025-02-17 23:45:14,715 INFO hook.py line 109 848561] Train: [81/100][100/605] Data 0.002 (0.002) Batch 0.923 (0.941) Remain 03:08:06 loss: 2.2475 psnr: 18.0388 Lr: 2.08233e-04
[2025-02-17 23:46:01,714 INFO hook.py line 109 848561] Train: [81/100][150/605] Data 0.002 (0.002) Batch 0.932 (0.940) Remain 03:07:17 loss: 1.9808 psnr: 20.4579 Lr: 2.06566e-04
[2025-02-17 23:46:48,515 INFO hook.py line 109 848561] Train: [81/100][200/605] Data 0.002 (0.002) Batch 0.940 (0.939) Remain 03:06:17 loss: 2.1759 psnr: 18.0202 Lr: 2.04906e-04
[2025-02-17 23:47:35,304 INFO hook.py line 109 848561] Train: [81/100][250/605] Data 0.003 (0.002) Batch 0.938 (0.939) Remain 03:05:21 loss: 2.1277 psnr: 18.9485 Lr: 2.03251e-04
[2025-02-17 23:48:22,492 INFO hook.py line 109 848561] Train: [81/100][300/605] Data 0.003 (0.002) Batch 0.948 (0.939) Remain 03:04:45 loss: 2.3502 psnr: 17.1054 Lr: 2.01603e-04
[2025-02-17 23:49:09,769 INFO hook.py line 109 848561] Train: [81/100][350/605] Data 0.002 (0.002) Batch 0.914 (0.940) Remain 03:04:08 loss: 2.4134 psnr: 16.9919 Lr: 1.99960e-04
[2025-02-17 23:49:56,886 INFO hook.py line 109 848561] Train: [81/100][400/605] Data 0.002 (0.002) Batch 0.935 (0.941) Remain 03:03:24 loss: 2.4351 psnr: 16.3403 Lr: 1.98324e-04
[2025-02-17 23:50:43,755 INFO hook.py line 109 848561] Train: [81/100][450/605] Data 0.002 (0.002) Batch 0.924 (0.940) Remain 03:02:33 loss: 2.1017 psnr: 19.8166 Lr: 1.96693e-04
[2025-02-17 23:51:30,577 INFO hook.py line 109 848561] Train: [81/100][500/605] Data 0.002 (0.002) Batch 0.945 (0.940) Remain 03:01:41 loss: 2.0397 psnr: 20.3015 Lr: 1.95068e-04
[2025-02-17 23:52:17,527 INFO hook.py line 109 848561] Train: [81/100][550/605] Data 0.003 (0.002) Batch 0.921 (0.940) Remain 03:00:54 loss: 2.2542 psnr: 17.6589 Lr: 1.93450e-04
[2025-02-17 23:53:03,571 INFO hook.py line 109 848561] Train: [81/100][600/605] Data 0.002 (0.002) Batch 0.883 (0.938) Remain 02:59:48 loss: 2.3275 psnr: 17.6298 Lr: 1.91837e-04
[2025-02-17 23:53:07,866 INFO misc.py line 135 848561] Train result: loss: 2.2348 rgb_loss: 0.7612 psnr: 18.0503 depth_loss: 0.0635 feat_loss: 1.4102 
[2025-02-17 23:53:07,867 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-17 23:53:58,959 INFO hook.py line 109 848561] Train: [82/100][50/605] Data 0.003 (0.002) Batch 0.939 (0.939) Remain 02:59:01 loss: 2.2174 psnr: 17.7667 Lr: 1.90070e-04
[2025-02-17 23:54:45,981 INFO hook.py line 109 848561] Train: [82/100][100/605] Data 0.003 (0.002) Batch 0.930 (0.940) Remain 02:58:25 loss: 2.1896 psnr: 19.1125 Lr: 1.88471e-04
[2025-02-17 23:55:33,159 INFO hook.py line 109 848561] Train: [82/100][150/605] Data 0.004 (0.002) Batch 0.931 (0.941) Remain 02:57:54 loss: 2.2939 psnr: 17.1930 Lr: 1.86877e-04
[2025-02-17 23:56:20,141 INFO hook.py line 109 848561] Train: [82/100][200/605] Data 0.002 (0.002) Batch 0.932 (0.941) Remain 02:57:03 loss: 2.1256 psnr: 18.8690 Lr: 1.85289e-04
[2025-02-17 23:57:07,087 INFO hook.py line 109 848561] Train: [82/100][250/605] Data 0.002 (0.002) Batch 0.926 (0.940) Remain 02:56:12 loss: 2.1982 psnr: 17.9634 Lr: 1.83707e-04
[2025-02-17 23:57:53,963 INFO hook.py line 109 848561] Train: [82/100][300/605] Data 0.003 (0.002) Batch 0.953 (0.940) Remain 02:55:20 loss: 2.2250 psnr: 18.0681 Lr: 1.82132e-04
[2025-02-17 23:58:40,935 INFO hook.py line 109 848561] Train: [82/100][350/605] Data 0.002 (0.002) Batch 0.942 (0.940) Remain 02:54:33 loss: 2.2236 psnr: 17.9596 Lr: 1.80562e-04
[2025-02-17 23:59:28,326 INFO hook.py line 109 848561] Train: [82/100][400/605] Data 0.002 (0.002) Batch 0.920 (0.941) Remain 02:53:57 loss: 2.4201 psnr: 16.4787 Lr: 1.78999e-04
[2025-02-18 00:00:15,087 INFO hook.py line 109 848561] Train: [82/100][450/605] Data 0.003 (0.002) Batch 0.906 (0.940) Remain 02:53:03 loss: 2.2147 psnr: 17.9518 Lr: 1.77442e-04
[2025-02-18 00:01:02,053 INFO hook.py line 109 848561] Train: [82/100][500/605] Data 0.002 (0.002) Batch 0.979 (0.940) Remain 02:52:15 loss: 2.4418 psnr: 16.3606 Lr: 1.75891e-04
[2025-02-18 00:01:48,888 INFO hook.py line 109 848561] Train: [82/100][550/605] Data 0.002 (0.002) Batch 0.946 (0.940) Remain 02:51:25 loss: 2.3405 psnr: 17.0315 Lr: 1.74346e-04
[2025-02-18 00:02:35,316 INFO hook.py line 109 848561] Train: [82/100][600/605] Data 0.003 (0.002) Batch 0.854 (0.939) Remain 02:50:28 loss: 2.2393 psnr: 18.0836 Lr: 1.72807e-04
[2025-02-18 00:02:39,677 INFO misc.py line 135 848561] Train result: loss: 2.2432 rgb_loss: 0.7686 psnr: 17.9753 depth_loss: 0.0642 feat_loss: 1.4103 
[2025-02-18 00:02:39,677 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-18 00:03:30,654 INFO hook.py line 109 848561] Train: [83/100][50/605] Data 0.002 (0.002) Batch 0.927 (0.938) Remain 02:49:31 loss: 2.5289 psnr: 16.0519 Lr: 1.71122e-04
[2025-02-18 00:04:17,373 INFO hook.py line 109 848561] Train: [83/100][100/605] Data 0.003 (0.002) Batch 0.930 (0.936) Remain 02:48:22 loss: 2.3768 psnr: 16.8317 Lr: 1.69596e-04
[2025-02-18 00:05:04,406 INFO hook.py line 109 848561] Train: [83/100][150/605] Data 0.002 (0.002) Batch 0.964 (0.938) Remain 02:47:51 loss: 2.3805 psnr: 16.5470 Lr: 1.68076e-04
[2025-02-18 00:05:51,556 INFO hook.py line 109 848561] Train: [83/100][200/605] Data 0.002 (0.002) Batch 0.923 (0.939) Remain 02:47:19 loss: 2.2762 psnr: 18.4542 Lr: 1.66563e-04
[2025-02-18 00:06:38,542 INFO hook.py line 109 848561] Train: [83/100][250/605] Data 0.003 (0.002) Batch 0.939 (0.939) Remain 02:46:33 loss: 2.4639 psnr: 16.3906 Lr: 1.65056e-04
[2025-02-18 00:07:25,672 INFO hook.py line 109 848561] Train: [83/100][300/605] Data 0.003 (0.002) Batch 0.948 (0.940) Remain 02:45:52 loss: 2.0408 psnr: 18.6956 Lr: 1.63555e-04
[2025-02-18 00:08:12,395 INFO hook.py line 109 848561] Train: [83/100][350/605] Data 0.002 (0.002) Batch 0.935 (0.939) Remain 02:44:57 loss: 2.3338 psnr: 17.3419 Lr: 1.62061e-04
[2025-02-18 00:08:59,703 INFO hook.py line 109 848561] Train: [83/100][400/605] Data 0.002 (0.002) Batch 0.950 (0.940) Remain 02:44:19 loss: 2.0653 psnr: 19.9009 Lr: 1.60572e-04
[2025-02-18 00:09:46,721 INFO hook.py line 109 848561] Train: [83/100][450/605] Data 0.002 (0.002) Batch 0.924 (0.940) Remain 02:43:33 loss: 2.4087 psnr: 17.0424 Lr: 1.59090e-04
[2025-02-18 00:10:33,616 INFO hook.py line 109 848561] Train: [83/100][500/605] Data 0.002 (0.002) Batch 0.933 (0.940) Remain 02:42:44 loss: 2.0057 psnr: 19.8557 Lr: 1.57614e-04
[2025-02-18 00:11:20,493 INFO hook.py line 109 848561] Train: [83/100][550/605] Data 0.003 (0.002) Batch 0.925 (0.940) Remain 02:41:55 loss: 2.1828 psnr: 18.1021 Lr: 1.56145e-04
[2025-02-18 00:12:06,913 INFO hook.py line 109 848561] Train: [83/100][600/605] Data 0.002 (0.002) Batch 0.871 (0.939) Remain 02:40:58 loss: 2.1050 psnr: 18.2779 Lr: 1.54682e-04
[2025-02-18 00:12:11,231 INFO misc.py line 135 848561] Train result: loss: 2.2237 rgb_loss: 0.7508 psnr: 18.1249 depth_loss: 0.0639 feat_loss: 1.4089 
[2025-02-18 00:12:11,232 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-18 00:13:02,170 INFO hook.py line 109 848561] Train: [84/100][50/605] Data 0.002 (0.002) Batch 0.919 (0.938) Remain 02:39:56 loss: 2.1923 psnr: 17.8680 Lr: 1.53079e-04
[2025-02-18 00:13:49,086 INFO hook.py line 109 848561] Train: [84/100][100/605] Data 0.003 (0.002) Batch 0.951 (0.938) Remain 02:39:13 loss: 2.0817 psnr: 19.7524 Lr: 1.51629e-04
[2025-02-18 00:14:36,218 INFO hook.py line 109 848561] Train: [84/100][150/605] Data 0.003 (0.002) Batch 0.969 (0.940) Remain 02:38:42 loss: 2.3571 psnr: 16.3353 Lr: 1.50186e-04
[2025-02-18 00:15:23,331 INFO hook.py line 109 848561] Train: [84/100][200/605] Data 0.002 (0.002) Batch 0.936 (0.940) Remain 02:38:02 loss: 2.1574 psnr: 18.3915 Lr: 1.48749e-04
[2025-02-18 00:16:10,254 INFO hook.py line 109 848561] Train: [84/100][250/605] Data 0.001 (0.002) Batch 0.936 (0.940) Remain 02:37:11 loss: 2.2885 psnr: 17.7328 Lr: 1.47318e-04
[2025-02-18 00:16:57,292 INFO hook.py line 109 848561] Train: [84/100][300/605] Data 0.003 (0.002) Batch 0.933 (0.940) Remain 02:36:26 loss: 2.3241 psnr: 17.2027 Lr: 1.45893e-04
[2025-02-18 00:17:43,806 INFO hook.py line 109 848561] Train: [84/100][350/605] Data 0.003 (0.002) Batch 0.910 (0.939) Remain 02:35:25 loss: 2.3343 psnr: 16.8271 Lr: 1.44475e-04
[2025-02-18 00:18:30,829 INFO hook.py line 109 848561] Train: [84/100][400/605] Data 0.003 (0.002) Batch 0.916 (0.939) Remain 02:34:40 loss: 2.2531 psnr: 18.4997 Lr: 1.43063e-04
[2025-02-18 00:19:18,229 INFO hook.py line 109 848561] Train: [84/100][450/605] Data 0.003 (0.002) Batch 0.943 (0.940) Remain 02:34:03 loss: 2.1635 psnr: 18.1259 Lr: 1.41658e-04
[2025-02-18 00:20:05,517 INFO hook.py line 109 848561] Train: [84/100][500/605] Data 0.003 (0.002) Batch 0.947 (0.940) Remain 02:33:22 loss: 2.3186 psnr: 17.8152 Lr: 1.40259e-04
[2025-02-18 00:20:52,491 INFO hook.py line 109 848561] Train: [84/100][550/605] Data 0.002 (0.002) Batch 0.954 (0.940) Remain 02:32:34 loss: 2.4302 psnr: 16.4385 Lr: 1.38866e-04
[2025-02-18 00:21:38,619 INFO hook.py line 109 848561] Train: [84/100][600/605] Data 0.001 (0.002) Batch 0.838 (0.939) Remain 02:31:33 loss: 2.1730 psnr: 18.7290 Lr: 1.37480e-04
[2025-02-18 00:21:42,932 INFO misc.py line 135 848561] Train result: loss: 2.2304 rgb_loss: 0.7588 psnr: 18.0663 depth_loss: 0.0629 feat_loss: 1.4088 
[2025-02-18 00:21:42,934 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-18 00:22:34,219 INFO hook.py line 109 848561] Train: [85/100][50/605] Data 0.002 (0.002) Batch 0.970 (0.941) Remain 02:31:03 loss: 2.4234 psnr: 17.5622 Lr: 1.35963e-04
[2025-02-18 00:23:21,263 INFO hook.py line 109 848561] Train: [85/100][100/605] Data 0.003 (0.002) Batch 0.937 (0.941) Remain 02:30:15 loss: 2.1089 psnr: 18.3298 Lr: 1.34591e-04
[2025-02-18 00:24:08,568 INFO hook.py line 109 848561] Train: [85/100][150/605] Data 0.002 (0.002) Batch 0.930 (0.943) Remain 02:29:44 loss: 2.6579 psnr: 15.5311 Lr: 1.33224e-04
[2025-02-18 00:24:55,365 INFO hook.py line 109 848561] Train: [85/100][200/605] Data 0.001 (0.002) Batch 0.924 (0.941) Remain 02:28:40 loss: 2.2349 psnr: 18.2864 Lr: 1.31865e-04
[2025-02-18 00:25:42,388 INFO hook.py line 109 848561] Train: [85/100][250/605] Data 0.001 (0.002) Batch 0.923 (0.941) Remain 02:27:52 loss: 1.9409 psnr: 21.0899 Lr: 1.30512e-04
[2025-02-18 00:26:29,620 INFO hook.py line 109 848561] Train: [85/100][300/605] Data 0.003 (0.002) Batch 0.917 (0.942) Remain 02:27:11 loss: 2.2858 psnr: 17.7526 Lr: 1.29165e-04
[2025-02-18 00:27:16,457 INFO hook.py line 109 848561] Train: [85/100][350/605] Data 0.001 (0.002) Batch 0.976 (0.941) Remain 02:26:18 loss: 2.1823 psnr: 18.5269 Lr: 1.27825e-04
[2025-02-18 00:28:03,627 INFO hook.py line 109 848561] Train: [85/100][400/605] Data 0.002 (0.002) Batch 0.941 (0.941) Remain 02:25:34 loss: 1.9824 psnr: 20.8734 Lr: 1.26491e-04
[2025-02-18 00:28:51,061 INFO hook.py line 109 848561] Train: [85/100][450/605] Data 0.003 (0.002) Batch 1.007 (0.942) Remain 02:24:54 loss: 2.0816 psnr: 19.1265 Lr: 1.25164e-04
[2025-02-18 00:29:37,943 INFO hook.py line 109 848561] Train: [85/100][500/605] Data 0.002 (0.002) Batch 0.914 (0.942) Remain 02:24:03 loss: 2.1173 psnr: 18.9554 Lr: 1.23844e-04
[2025-02-18 00:30:24,914 INFO hook.py line 109 848561] Train: [85/100][550/605] Data 0.002 (0.002) Batch 0.940 (0.941) Remain 02:23:14 loss: 2.3711 psnr: 17.5542 Lr: 1.22530e-04
[2025-02-18 00:31:11,341 INFO hook.py line 109 848561] Train: [85/100][600/605] Data 0.002 (0.002) Batch 0.863 (0.940) Remain 02:22:17 loss: 2.5090 psnr: 16.1991 Lr: 1.21222e-04
[2025-02-18 00:31:15,662 INFO misc.py line 135 848561] Train result: loss: 2.2221 rgb_loss: 0.7504 psnr: 18.1305 depth_loss: 0.0638 feat_loss: 1.4079 
[2025-02-18 00:31:15,664 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-18 00:32:06,687 INFO hook.py line 109 848561] Train: [86/100][50/605] Data 0.003 (0.002) Batch 0.921 (0.942) Remain 02:21:41 loss: 2.1214 psnr: 18.8819 Lr: 1.19792e-04
[2025-02-18 00:32:53,536 INFO hook.py line 109 848561] Train: [86/100][100/605] Data 0.002 (0.002) Batch 0.940 (0.939) Remain 02:20:31 loss: 2.2316 psnr: 18.0418 Lr: 1.18498e-04
[2025-02-18 00:33:40,384 INFO hook.py line 109 848561] Train: [86/100][150/605] Data 0.002 (0.002) Batch 0.960 (0.939) Remain 02:19:36 loss: 2.2366 psnr: 17.8993 Lr: 1.17211e-04
[2025-02-18 00:34:27,247 INFO hook.py line 109 848561] Train: [86/100][200/605] Data 0.002 (0.002) Batch 0.924 (0.938) Remain 02:18:46 loss: 2.0559 psnr: 19.7032 Lr: 1.15931e-04
[2025-02-18 00:35:14,306 INFO hook.py line 109 848561] Train: [86/100][250/605] Data 0.002 (0.002) Batch 0.940 (0.939) Remain 02:18:05 loss: 2.0782 psnr: 19.1766 Lr: 1.14657e-04
[2025-02-18 00:36:01,499 INFO hook.py line 109 848561] Train: [86/100][300/605] Data 0.003 (0.002) Batch 0.950 (0.940) Remain 02:17:25 loss: 2.0856 psnr: 19.3356 Lr: 1.13389e-04
[2025-02-18 00:36:48,620 INFO hook.py line 109 848561] Train: [86/100][350/605] Data 0.002 (0.002) Batch 0.957 (0.940) Remain 02:16:42 loss: 2.2805 psnr: 17.3261 Lr: 1.12129e-04
[2025-02-18 00:37:35,747 INFO hook.py line 109 848561] Train: [86/100][400/605] Data 0.002 (0.002) Batch 0.932 (0.940) Remain 02:15:57 loss: 2.3545 psnr: 17.7147 Lr: 1.10900e-04
[2025-02-18 00:38:22,732 INFO hook.py line 109 848561] Train: [86/100][450/605] Data 0.003 (0.002) Batch 0.927 (0.940) Remain 02:15:10 loss: 2.3811 psnr: 16.9698 Lr: 1.09652e-04
[2025-02-18 00:39:09,963 INFO hook.py line 109 848561] Train: [86/100][500/605] Data 0.003 (0.002) Batch 0.937 (0.941) Remain 02:14:26 loss: 2.1180 psnr: 18.8119 Lr: 1.08411e-04
[2025-02-18 00:39:57,103 INFO hook.py line 109 848561] Train: [86/100][550/605] Data 0.003 (0.002) Batch 0.947 (0.941) Remain 02:13:41 loss: 2.2844 psnr: 17.7759 Lr: 1.07177e-04
[2025-02-18 00:40:43,457 INFO hook.py line 109 848561] Train: [86/100][600/605] Data 0.003 (0.002) Batch 0.896 (0.940) Remain 02:12:44 loss: 2.1215 psnr: 18.9898 Lr: 1.05950e-04
[2025-02-18 00:40:47,790 INFO misc.py line 135 848561] Train result: loss: 2.2258 rgb_loss: 0.7547 psnr: 18.0641 depth_loss: 0.0626 feat_loss: 1.4086 
[2025-02-18 00:40:47,791 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-18 00:41:39,083 INFO hook.py line 109 848561] Train: [87/100][50/605] Data 0.002 (0.002) Batch 0.941 (0.939) Remain 02:11:45 loss: 2.1075 psnr: 19.4741 Lr: 1.04607e-04
[2025-02-18 00:42:26,311 INFO hook.py line 109 848561] Train: [87/100][100/605] Data 0.003 (0.002) Batch 0.924 (0.942) Remain 02:11:23 loss: 2.2576 psnr: 17.7067 Lr: 1.03394e-04
[2025-02-18 00:43:13,173 INFO hook.py line 109 848561] Train: [87/100][150/605] Data 0.003 (0.002) Batch 0.937 (0.940) Remain 02:10:22 loss: 2.2927 psnr: 17.1542 Lr: 1.02187e-04
[2025-02-18 00:43:59,995 INFO hook.py line 109 848561] Train: [87/100][200/605] Data 0.003 (0.002) Batch 0.984 (0.939) Remain 02:09:27 loss: 2.0829 psnr: 19.0176 Lr: 1.00987e-04
[2025-02-18 00:44:46,914 INFO hook.py line 109 848561] Train: [87/100][250/605] Data 0.003 (0.002) Batch 0.915 (0.939) Remain 02:08:39 loss: 2.1636 psnr: 17.8974 Lr: 9.97934e-05
[2025-02-18 00:45:33,854 INFO hook.py line 109 848561] Train: [87/100][300/605] Data 0.002 (0.002) Batch 0.943 (0.939) Remain 02:07:52 loss: 2.0512 psnr: 19.9492 Lr: 9.86068e-05
[2025-02-18 00:46:21,104 INFO hook.py line 109 848561] Train: [87/100][350/605] Data 0.004 (0.002) Batch 0.947 (0.940) Remain 02:07:12 loss: 2.1564 psnr: 18.4466 Lr: 9.74269e-05
[2025-02-18 00:47:07,869 INFO hook.py line 109 848561] Train: [87/100][400/605] Data 0.003 (0.002) Batch 0.903 (0.939) Remain 02:06:20 loss: 2.3163 psnr: 17.4233 Lr: 9.62537e-05
[2025-02-18 00:47:54,869 INFO hook.py line 109 848561] Train: [87/100][450/605] Data 0.003 (0.002) Batch 0.953 (0.939) Remain 02:05:34 loss: 2.1442 psnr: 18.0192 Lr: 9.50873e-05
[2025-02-18 00:48:42,407 INFO hook.py line 109 848561] Train: [87/100][500/605] Data 0.003 (0.002) Batch 0.929 (0.941) Remain 02:04:56 loss: 2.1052 psnr: 18.6601 Lr: 9.39276e-05
[2025-02-18 00:49:29,424 INFO hook.py line 109 848561] Train: [87/100][550/605] Data 0.003 (0.002) Batch 0.918 (0.941) Remain 02:04:08 loss: 2.3631 psnr: 17.4366 Lr: 9.27747e-05
[2025-02-18 00:50:15,822 INFO hook.py line 109 848561] Train: [87/100][600/605] Data 0.002 (0.002) Batch 0.863 (0.939) Remain 02:03:13 loss: 2.2082 psnr: 18.1134 Lr: 9.16286e-05
[2025-02-18 00:50:20,198 INFO misc.py line 135 848561] Train result: loss: 2.2213 rgb_loss: 0.7511 psnr: 18.1529 depth_loss: 0.0634 feat_loss: 1.4068 
[2025-02-18 00:50:20,198 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-18 00:51:11,316 INFO hook.py line 109 848561] Train: [88/100][50/605] Data 0.002 (0.002) Batch 0.949 (0.939) Remain 02:02:19 loss: 2.0300 psnr: 20.4763 Lr: 9.03757e-05
[2025-02-18 00:51:58,446 INFO hook.py line 109 848561] Train: [88/100][100/605] Data 0.003 (0.003) Batch 0.959 (0.941) Remain 02:01:46 loss: 2.0809 psnr: 18.8175 Lr: 8.92439e-05
[2025-02-18 00:52:45,210 INFO hook.py line 109 848561] Train: [88/100][150/605] Data 0.003 (0.003) Batch 0.926 (0.939) Remain 02:00:44 loss: 2.2205 psnr: 17.5295 Lr: 8.81188e-05
[2025-02-18 00:53:32,091 INFO hook.py line 109 848561] Train: [88/100][200/605] Data 0.002 (0.003) Batch 0.931 (0.939) Remain 01:59:54 loss: 2.2201 psnr: 18.1939 Lr: 8.70006e-05
[2025-02-18 00:54:19,089 INFO hook.py line 109 848561] Train: [88/100][250/605] Data 0.003 (0.003) Batch 0.937 (0.939) Remain 01:59:09 loss: 2.2843 psnr: 17.7703 Lr: 8.58892e-05
[2025-02-18 00:55:05,914 INFO hook.py line 109 848561] Train: [88/100][300/605] Data 0.003 (0.003) Batch 0.930 (0.939) Remain 01:58:19 loss: 2.4427 psnr: 16.7291 Lr: 8.47846e-05
[2025-02-18 00:55:52,739 INFO hook.py line 109 848561] Train: [88/100][350/605] Data 0.003 (0.003) Batch 0.924 (0.938) Remain 01:57:30 loss: 2.2696 psnr: 17.5611 Lr: 8.36868e-05
[2025-02-18 00:56:39,956 INFO hook.py line 109 848561] Train: [88/100][400/605] Data 0.002 (0.002) Batch 0.950 (0.939) Remain 01:56:49 loss: 2.3230 psnr: 17.4571 Lr: 8.25959e-05
[2025-02-18 00:57:27,143 INFO hook.py line 109 848561] Train: [88/100][450/605] Data 0.003 (0.002) Batch 0.926 (0.940) Remain 01:56:06 loss: 2.0383 psnr: 19.3265 Lr: 8.15119e-05
[2025-02-18 00:58:14,495 INFO hook.py line 109 848561] Train: [88/100][500/605] Data 0.002 (0.002) Batch 0.946 (0.940) Remain 01:55:25 loss: 2.4219 psnr: 16.3022 Lr: 8.04347e-05
[2025-02-18 00:59:02,008 INFO hook.py line 109 848561] Train: [88/100][550/605] Data 0.004 (0.002) Batch 0.926 (0.941) Remain 01:54:44 loss: 2.3126 psnr: 16.8158 Lr: 7.93643e-05
[2025-02-18 00:59:48,416 INFO hook.py line 109 848561] Train: [88/100][600/605] Data 0.002 (0.002) Batch 0.865 (0.940) Remain 01:53:49 loss: 2.3850 psnr: 16.4477 Lr: 7.83009e-05
[2025-02-18 00:59:52,756 INFO misc.py line 135 848561] Train result: loss: 2.2298 rgb_loss: 0.7588 psnr: 18.0559 depth_loss: 0.0637 feat_loss: 1.4073 
[2025-02-18 00:59:52,756 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-18 01:00:43,805 INFO hook.py line 109 848561] Train: [89/100][50/605] Data 0.002 (0.002) Batch 0.915 (0.935) Remain 01:52:19 loss: 2.1744 psnr: 18.5032 Lr: 7.71390e-05
[2025-02-18 01:01:30,901 INFO hook.py line 109 848561] Train: [89/100][100/605] Data 0.002 (0.002) Batch 0.965 (0.938) Remain 01:51:59 loss: 2.2720 psnr: 18.0278 Lr: 7.60900e-05
[2025-02-18 01:02:17,674 INFO hook.py line 109 848561] Train: [89/100][150/605] Data 0.003 (0.002) Batch 0.905 (0.937) Remain 01:51:05 loss: 2.1617 psnr: 18.4803 Lr: 7.50479e-05
[2025-02-18 01:03:04,529 INFO hook.py line 109 848561] Train: [89/100][200/605] Data 0.005 (0.002) Batch 0.926 (0.937) Remain 01:50:17 loss: 2.1895 psnr: 18.9583 Lr: 7.40128e-05
[2025-02-18 01:03:51,733 INFO hook.py line 109 848561] Train: [89/100][250/605] Data 0.002 (0.002) Batch 0.929 (0.939) Remain 01:49:40 loss: 2.3713 psnr: 16.8552 Lr: 7.29845e-05
[2025-02-18 01:04:38,734 INFO hook.py line 109 848561] Train: [89/100][300/605] Data 0.003 (0.002) Batch 0.962 (0.939) Remain 01:48:54 loss: 2.3539 psnr: 17.0696 Lr: 7.19632e-05
[2025-02-18 01:05:25,719 INFO hook.py line 109 848561] Train: [89/100][350/605] Data 0.003 (0.002) Batch 0.920 (0.939) Remain 01:48:08 loss: 2.1135 psnr: 20.4412 Lr: 7.09488e-05
[2025-02-18 01:06:12,676 INFO hook.py line 109 848561] Train: [89/100][400/605] Data 0.003 (0.002) Batch 0.961 (0.939) Remain 01:47:21 loss: 2.2464 psnr: 17.4278 Lr: 6.99413e-05
[2025-02-18 01:06:59,726 INFO hook.py line 109 848561] Train: [89/100][450/605] Data 0.002 (0.002) Batch 0.925 (0.939) Remain 01:46:36 loss: 2.2746 psnr: 17.5481 Lr: 6.89408e-05
[2025-02-18 01:07:46,832 INFO hook.py line 109 848561] Train: [89/100][500/605] Data 0.003 (0.002) Batch 0.927 (0.940) Remain 01:45:51 loss: 2.0428 psnr: 19.7408 Lr: 6.79472e-05
[2025-02-18 01:08:34,279 INFO hook.py line 109 848561] Train: [89/100][550/605] Data 0.004 (0.002) Batch 0.933 (0.940) Remain 01:45:10 loss: 2.1380 psnr: 18.8435 Lr: 6.69606e-05
[2025-02-18 01:09:20,628 INFO hook.py line 109 848561] Train: [89/100][600/605] Data 0.002 (0.002) Batch 0.880 (0.939) Remain 01:44:15 loss: 2.1280 psnr: 18.1920 Lr: 6.59810e-05
[2025-02-18 01:09:25,047 INFO misc.py line 135 848561] Train result: loss: 2.2249 rgb_loss: 0.7560 psnr: 18.1198 depth_loss: 0.0635 feat_loss: 1.4054 
[2025-02-18 01:09:25,048 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-18 01:10:15,718 INFO hook.py line 109 848561] Train: [90/100][50/605] Data 0.002 (0.002) Batch 0.945 (0.935) Remain 01:42:56 loss: 2.0206 psnr: 19.6132 Lr: 6.49114e-05
[2025-02-18 01:11:02,448 INFO hook.py line 109 848561] Train: [90/100][100/605] Data 0.003 (0.002) Batch 0.950 (0.935) Remain 01:42:08 loss: 2.2080 psnr: 18.0084 Lr: 6.39465e-05
[2025-02-18 01:11:49,352 INFO hook.py line 109 848561] Train: [90/100][150/605] Data 0.003 (0.002) Batch 0.913 (0.936) Remain 01:41:28 loss: 2.2808 psnr: 17.1679 Lr: 6.30076e-05
[2025-02-18 01:12:36,139 INFO hook.py line 109 848561] Train: [90/100][200/605] Data 0.003 (0.002) Batch 0.974 (0.936) Remain 01:40:41 loss: 2.4118 psnr: 16.2827 Lr: 6.20565e-05
[2025-02-18 01:13:23,133 INFO hook.py line 109 848561] Train: [90/100][250/605] Data 0.002 (0.002) Batch 0.959 (0.937) Remain 01:39:59 loss: 2.0134 psnr: 19.9296 Lr: 6.11123e-05
[2025-02-18 01:14:10,044 INFO hook.py line 109 848561] Train: [90/100][300/605] Data 0.003 (0.002) Batch 0.933 (0.937) Remain 01:39:14 loss: 2.1712 psnr: 18.6278 Lr: 6.01752e-05
[2025-02-18 01:14:57,047 INFO hook.py line 109 848561] Train: [90/100][350/605] Data 0.001 (0.002) Batch 0.934 (0.937) Remain 01:38:30 loss: 2.1171 psnr: 18.4582 Lr: 5.92451e-05
[2025-02-18 01:15:43,884 INFO hook.py line 109 848561] Train: [90/100][400/605] Data 0.003 (0.002) Batch 0.957 (0.937) Remain 01:37:42 loss: 2.3873 psnr: 16.5648 Lr: 5.83221e-05
[2025-02-18 01:16:30,922 INFO hook.py line 109 848561] Train: [90/100][450/605] Data 0.003 (0.002) Batch 0.945 (0.938) Remain 01:36:58 loss: 2.2187 psnr: 17.5628 Lr: 5.74061e-05
[2025-02-18 01:17:17,979 INFO hook.py line 109 848561] Train: [90/100][500/605] Data 0.003 (0.002) Batch 0.950 (0.938) Remain 01:36:13 loss: 2.1768 psnr: 18.3176 Lr: 5.64971e-05
[2025-02-18 01:18:05,261 INFO hook.py line 109 848561] Train: [90/100][550/605] Data 0.002 (0.002) Batch 0.973 (0.939) Remain 01:35:31 loss: 2.1519 psnr: 19.6009 Lr: 5.55951e-05
[2025-02-18 01:18:51,499 INFO hook.py line 109 848561] Train: [90/100][600/605] Data 0.004 (0.002) Batch 0.864 (0.938) Remain 01:34:37 loss: 2.1518 psnr: 18.1138 Lr: 5.47003e-05
[2025-02-18 01:18:55,892 INFO misc.py line 135 848561] Train result: loss: 2.2232 rgb_loss: 0.7534 psnr: 18.1123 depth_loss: 0.0629 feat_loss: 1.4068 
[2025-02-18 01:18:55,893 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-18 01:19:47,014 INFO hook.py line 109 848561] Train: [91/100][50/605] Data 0.002 (0.002) Batch 0.936 (0.939) Remain 01:33:53 loss: 2.3823 psnr: 17.1972 Lr: 5.37241e-05
[2025-02-18 01:20:33,883 INFO hook.py line 109 848561] Train: [91/100][100/605] Data 0.002 (0.002) Batch 0.935 (0.938) Remain 01:33:01 loss: 2.2344 psnr: 18.5184 Lr: 5.28440e-05
[2025-02-18 01:21:20,834 INFO hook.py line 109 848561] Train: [91/100][150/605] Data 0.004 (0.002) Batch 0.910 (0.938) Remain 01:32:16 loss: 2.0829 psnr: 19.0045 Lr: 5.19710e-05
[2025-02-18 01:22:07,662 INFO hook.py line 109 848561] Train: [91/100][200/605] Data 0.003 (0.002) Batch 0.948 (0.938) Remain 01:31:27 loss: 2.1740 psnr: 17.7829 Lr: 5.11051e-05
[2025-02-18 01:22:54,723 INFO hook.py line 109 848561] Train: [91/100][250/605] Data 0.003 (0.002) Batch 0.963 (0.939) Remain 01:30:43 loss: 2.1928 psnr: 18.2670 Lr: 5.02463e-05
[2025-02-18 01:23:41,456 INFO hook.py line 109 848561] Train: [91/100][300/605] Data 0.002 (0.002) Batch 0.949 (0.938) Remain 01:29:53 loss: 2.2243 psnr: 17.7896 Lr: 4.93946e-05
[2025-02-18 01:24:28,297 INFO hook.py line 109 848561] Train: [91/100][350/605] Data 0.003 (0.002) Batch 0.930 (0.938) Remain 01:29:05 loss: 2.0836 psnr: 18.7402 Lr: 4.85500e-05
[2025-02-18 01:25:15,339 INFO hook.py line 109 848561] Train: [91/100][400/605] Data 0.003 (0.002) Batch 0.912 (0.938) Remain 01:28:20 loss: 2.3384 psnr: 17.1446 Lr: 4.77125e-05
[2025-02-18 01:26:02,337 INFO hook.py line 109 848561] Train: [91/100][450/605] Data 0.002 (0.002) Batch 0.920 (0.938) Remain 01:27:34 loss: 2.3676 psnr: 16.2144 Lr: 4.68821e-05
[2025-02-18 01:26:49,425 INFO hook.py line 109 848561] Train: [91/100][500/605] Data 0.002 (0.002) Batch 0.965 (0.939) Remain 01:26:49 loss: 2.2152 psnr: 17.0083 Lr: 4.60589e-05
[2025-02-18 01:27:36,279 INFO hook.py line 109 848561] Train: [91/100][550/605] Data 0.001 (0.002) Batch 0.930 (0.939) Remain 01:26:02 loss: 2.0330 psnr: 19.9518 Lr: 4.52427e-05
[2025-02-18 01:28:22,584 INFO hook.py line 109 848561] Train: [91/100][600/605] Data 0.002 (0.002) Batch 0.864 (0.938) Remain 01:25:09 loss: 2.1254 psnr: 17.9807 Lr: 4.44337e-05
[2025-02-18 01:28:26,950 INFO misc.py line 135 848561] Train result: loss: 2.2167 rgb_loss: 0.7484 psnr: 18.1237 depth_loss: 0.0626 feat_loss: 1.4057 
[2025-02-18 01:28:26,952 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-18 01:29:17,847 INFO hook.py line 109 848561] Train: [92/100][50/605] Data 0.002 (0.002) Batch 0.919 (0.937) Remain 01:24:13 loss: 1.9889 psnr: 21.0731 Lr: 4.35520e-05
[2025-02-18 01:30:04,742 INFO hook.py line 109 848561] Train: [92/100][100/605] Data 0.003 (0.002) Batch 0.941 (0.937) Remain 01:23:29 loss: 2.2315 psnr: 18.1831 Lr: 4.27580e-05
[2025-02-18 01:30:51,667 INFO hook.py line 109 848561] Train: [92/100][150/605] Data 0.002 (0.002) Batch 0.941 (0.938) Remain 01:22:45 loss: 2.3406 psnr: 16.6363 Lr: 4.19712e-05
[2025-02-18 01:31:38,658 INFO hook.py line 109 848561] Train: [92/100][200/605] Data 0.002 (0.002) Batch 0.933 (0.938) Remain 01:22:01 loss: 2.3266 psnr: 17.2235 Lr: 4.11914e-05
[2025-02-18 01:32:25,691 INFO hook.py line 109 848561] Train: [92/100][250/605] Data 0.004 (0.002) Batch 0.935 (0.939) Remain 01:21:16 loss: 2.2090 psnr: 17.9219 Lr: 4.04189e-05
[2025-02-18 01:33:12,595 INFO hook.py line 109 848561] Train: [92/100][300/605] Data 0.002 (0.002) Batch 0.959 (0.939) Remain 01:20:29 loss: 2.2609 psnr: 17.8323 Lr: 3.96535e-05
[2025-02-18 01:33:59,821 INFO hook.py line 109 848561] Train: [92/100][350/605] Data 0.002 (0.002) Batch 0.945 (0.939) Remain 01:19:46 loss: 1.9592 psnr: 21.4014 Lr: 3.88953e-05
[2025-02-18 01:34:46,623 INFO hook.py line 109 848561] Train: [92/100][400/605] Data 0.003 (0.002) Batch 0.964 (0.939) Remain 01:18:57 loss: 2.1128 psnr: 19.1828 Lr: 3.81443e-05
[2025-02-18 01:35:33,676 INFO hook.py line 109 848561] Train: [92/100][450/605] Data 0.002 (0.002) Batch 0.927 (0.939) Remain 01:18:11 loss: 2.1245 psnr: 18.8330 Lr: 3.74004e-05
[2025-02-18 01:36:20,739 INFO hook.py line 109 848561] Train: [92/100][500/605] Data 0.003 (0.002) Batch 0.939 (0.939) Remain 01:17:25 loss: 2.3733 psnr: 17.0377 Lr: 3.66638e-05
[2025-02-18 01:37:07,589 INFO hook.py line 109 848561] Train: [92/100][550/605] Data 0.003 (0.002) Batch 0.898 (0.939) Remain 01:16:37 loss: 2.4330 psnr: 16.5535 Lr: 3.59343e-05
[2025-02-18 01:37:53,738 INFO hook.py line 109 848561] Train: [92/100][600/605] Data 0.002 (0.002) Batch 0.891 (0.938) Remain 01:15:44 loss: 2.0194 psnr: 18.7381 Lr: 3.52121e-05
[2025-02-18 01:37:58,101 INFO misc.py line 135 848561] Train result: loss: 2.2056 rgb_loss: 0.7407 psnr: 18.2050 depth_loss: 0.0627 feat_loss: 1.4022 
[2025-02-18 01:37:58,102 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-18 01:38:49,712 INFO hook.py line 109 848561] Train: [93/100][50/605] Data 0.002 (0.003) Batch 0.914 (0.946) Remain 01:15:32 loss: 2.3272 psnr: 17.3179 Lr: 3.44401e-05
[2025-02-18 01:39:36,613 INFO hook.py line 109 848561] Train: [93/100][100/605] Data 0.003 (0.002) Batch 0.951 (0.942) Remain 01:14:24 loss: 2.1984 psnr: 18.3028 Lr: 3.37329e-05
[2025-02-18 01:40:23,626 INFO hook.py line 109 848561] Train: [93/100][150/605] Data 0.002 (0.002) Batch 0.986 (0.941) Remain 01:13:35 loss: 2.3399 psnr: 17.2017 Lr: 3.30328e-05
[2025-02-18 01:41:10,628 INFO hook.py line 109 848561] Train: [93/100][200/605] Data 0.002 (0.002) Batch 0.925 (0.941) Remain 01:12:46 loss: 2.2788 psnr: 17.7660 Lr: 3.23400e-05
[2025-02-18 01:41:57,717 INFO hook.py line 109 848561] Train: [93/100][250/605] Data 0.002 (0.002) Batch 0.960 (0.941) Remain 01:12:00 loss: 2.2078 psnr: 18.4780 Lr: 3.16544e-05
[2025-02-18 01:42:44,655 INFO hook.py line 109 848561] Train: [93/100][300/605] Data 0.002 (0.002) Batch 0.946 (0.941) Remain 01:11:11 loss: 2.1839 psnr: 18.4469 Lr: 3.09760e-05
[2025-02-18 01:43:31,906 INFO hook.py line 109 848561] Train: [93/100][350/605] Data 0.002 (0.002) Batch 0.955 (0.941) Remain 01:10:26 loss: 2.2213 psnr: 17.8163 Lr: 3.03049e-05
[2025-02-18 01:44:18,964 INFO hook.py line 109 848561] Train: [93/100][400/605] Data 0.003 (0.002) Batch 0.916 (0.941) Remain 01:09:39 loss: 2.1945 psnr: 17.8110 Lr: 2.96410e-05
[2025-02-18 01:45:05,993 INFO hook.py line 109 848561] Train: [93/100][450/605] Data 0.002 (0.002) Batch 0.969 (0.941) Remain 01:08:52 loss: 2.2731 psnr: 17.7899 Lr: 2.89844e-05
[2025-02-18 01:45:53,244 INFO hook.py line 109 848561] Train: [93/100][500/605] Data 0.002 (0.002) Batch 0.943 (0.942) Remain 01:08:06 loss: 2.3255 psnr: 16.9876 Lr: 2.83350e-05
[2025-02-18 01:46:40,360 INFO hook.py line 109 848561] Train: [93/100][550/605] Data 0.002 (0.002) Batch 0.920 (0.942) Remain 01:07:19 loss: 2.5431 psnr: 16.0756 Lr: 2.76929e-05
[2025-02-18 01:47:26,598 INFO hook.py line 109 848561] Train: [93/100][600/605] Data 0.002 (0.002) Batch 0.878 (0.940) Remain 01:06:26 loss: 2.2136 psnr: 18.4244 Lr: 2.70580e-05
[2025-02-18 01:47:30,958 INFO misc.py line 135 848561] Train result: loss: 2.2100 rgb_loss: 0.7429 psnr: 18.2268 depth_loss: 0.0631 feat_loss: 1.4040 
[2025-02-18 01:47:30,959 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-18 01:48:22,623 INFO hook.py line 109 848561] Train: [94/100][50/605] Data 0.003 (0.003) Batch 0.941 (0.948) Remain 01:06:07 loss: 2.1667 psnr: 18.5429 Lr: 2.63681e-05
[2025-02-18 01:49:09,439 INFO hook.py line 109 848561] Train: [94/100][100/605] Data 0.002 (0.002) Batch 0.919 (0.942) Remain 01:04:55 loss: 2.1477 psnr: 18.9539 Lr: 2.57485e-05
[2025-02-18 01:49:56,610 INFO hook.py line 109 848561] Train: [94/100][150/605] Data 0.003 (0.002) Batch 0.905 (0.942) Remain 01:04:09 loss: 2.2091 psnr: 18.3916 Lr: 2.51362e-05
[2025-02-18 01:50:43,867 INFO hook.py line 109 848561] Train: [94/100][200/605] Data 0.003 (0.002) Batch 0.938 (0.943) Remain 01:03:25 loss: 2.2385 psnr: 17.4954 Lr: 2.45311e-05
[2025-02-18 01:51:30,821 INFO hook.py line 109 848561] Train: [94/100][250/605] Data 0.001 (0.002) Batch 0.933 (0.942) Remain 01:02:35 loss: 2.0167 psnr: 20.5015 Lr: 2.39334e-05
[2025-02-18 01:52:17,652 INFO hook.py line 109 848561] Train: [94/100][300/605] Data 0.002 (0.002) Batch 0.959 (0.941) Remain 01:01:44 loss: 2.2809 psnr: 16.5660 Lr: 2.33429e-05
[2025-02-18 01:53:04,367 INFO hook.py line 109 848561] Train: [94/100][350/605] Data 0.002 (0.002) Batch 0.912 (0.940) Remain 01:00:53 loss: 2.0908 psnr: 19.8896 Lr: 2.27598e-05
[2025-02-18 01:53:51,463 INFO hook.py line 109 848561] Train: [94/100][400/605] Data 0.002 (0.002) Batch 0.956 (0.941) Remain 01:00:06 loss: 2.5142 psnr: 16.2862 Lr: 2.21839e-05
[2025-02-18 01:54:38,487 INFO hook.py line 109 848561] Train: [94/100][450/605] Data 0.002 (0.002) Batch 0.930 (0.941) Remain 00:59:19 loss: 1.9835 psnr: 21.0382 Lr: 2.16153e-05
[2025-02-18 01:55:25,374 INFO hook.py line 109 848561] Train: [94/100][500/605] Data 0.002 (0.002) Batch 0.948 (0.940) Remain 00:58:31 loss: 2.3292 psnr: 16.9548 Lr: 2.10541e-05
[2025-02-18 01:56:12,388 INFO hook.py line 109 848561] Train: [94/100][550/605] Data 0.003 (0.002) Batch 0.959 (0.940) Remain 00:57:44 loss: 2.1969 psnr: 18.1002 Lr: 2.05001e-05
[2025-02-18 01:56:58,737 INFO hook.py line 109 848561] Train: [94/100][600/605] Data 0.003 (0.002) Batch 0.878 (0.939) Remain 00:56:53 loss: 2.0795 psnr: 18.3584 Lr: 1.99535e-05
[2025-02-18 01:57:03,097 INFO misc.py line 135 848561] Train result: loss: 2.2063 rgb_loss: 0.7403 psnr: 18.2280 depth_loss: 0.0624 feat_loss: 1.4036 
[2025-02-18 01:57:03,098 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-18 01:57:54,342 INFO hook.py line 109 848561] Train: [95/100][50/605] Data 0.002 (0.002) Batch 0.944 (0.943) Remain 00:56:16 loss: 2.1773 psnr: 17.7999 Lr: 1.93607e-05
[2025-02-18 01:58:41,681 INFO hook.py line 109 848561] Train: [95/100][100/605] Data 0.002 (0.002) Batch 0.939 (0.945) Remain 00:55:36 loss: 2.3021 psnr: 17.1228 Lr: 1.88294e-05
[2025-02-18 01:59:28,362 INFO hook.py line 109 848561] Train: [95/100][150/605] Data 0.003 (0.002) Batch 0.932 (0.941) Remain 00:54:35 loss: 2.2557 psnr: 17.4284 Lr: 1.83055e-05
[2025-02-18 02:00:15,372 INFO hook.py line 109 848561] Train: [95/100][200/605] Data 0.001 (0.002) Batch 0.956 (0.941) Remain 00:53:47 loss: 2.2360 psnr: 17.6478 Lr: 1.77889e-05
[2025-02-18 02:01:02,270 INFO hook.py line 109 848561] Train: [95/100][250/605] Data 0.003 (0.002) Batch 0.903 (0.940) Remain 00:52:58 loss: 2.2470 psnr: 17.7189 Lr: 1.72797e-05
[2025-02-18 02:01:49,324 INFO hook.py line 109 848561] Train: [95/100][300/605] Data 0.002 (0.002) Batch 0.938 (0.940) Remain 00:52:11 loss: 2.3198 psnr: 16.6402 Lr: 1.67778e-05
[2025-02-18 02:02:36,127 INFO hook.py line 109 848561] Train: [95/100][350/605] Data 0.003 (0.002) Batch 0.916 (0.940) Remain 00:51:22 loss: 2.2625 psnr: 18.1602 Lr: 1.62832e-05
[2025-02-18 02:03:22,957 INFO hook.py line 109 848561] Train: [95/100][400/605] Data 0.002 (0.002) Batch 0.928 (0.939) Remain 00:50:34 loss: 2.1313 psnr: 19.6387 Lr: 1.57960e-05
[2025-02-18 02:04:10,031 INFO hook.py line 109 848561] Train: [95/100][450/605] Data 0.002 (0.002) Batch 0.932 (0.940) Remain 00:49:48 loss: 2.4358 psnr: 16.4097 Lr: 1.53162e-05
[2025-02-18 02:04:56,953 INFO hook.py line 109 848561] Train: [95/100][500/605] Data 0.003 (0.002) Batch 0.927 (0.940) Remain 00:49:00 loss: 2.0838 psnr: 20.3221 Lr: 1.48436e-05
[2025-02-18 02:05:43,833 INFO hook.py line 109 848561] Train: [95/100][550/605] Data 0.002 (0.002) Batch 0.941 (0.939) Remain 00:48:13 loss: 2.2522 psnr: 18.5717 Lr: 1.43785e-05
[2025-02-18 02:06:30,195 INFO hook.py line 109 848561] Train: [95/100][600/605] Data 0.002 (0.002) Batch 0.865 (0.938) Remain 00:47:23 loss: 2.2506 psnr: 16.7050 Lr: 1.39207e-05
[2025-02-18 02:06:34,509 INFO misc.py line 135 848561] Train result: loss: 2.2094 rgb_loss: 0.7397 psnr: 18.2470 depth_loss: 0.0640 feat_loss: 1.4057 
[2025-02-18 02:06:34,509 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-18 02:07:25,572 INFO hook.py line 109 848561] Train: [96/100][50/605] Data 0.002 (0.002) Batch 0.938 (0.941) Remain 00:46:39 loss: 2.0805 psnr: 18.8166 Lr: 1.34256e-05
[2025-02-18 02:08:12,955 INFO hook.py line 109 848561] Train: [96/100][100/605] Data 0.002 (0.002) Batch 0.939 (0.944) Remain 00:46:02 loss: 2.3034 psnr: 17.1641 Lr: 1.29833e-05
[2025-02-18 02:08:59,811 INFO hook.py line 109 848561] Train: [96/100][150/605] Data 0.003 (0.002) Batch 0.910 (0.942) Remain 00:45:08 loss: 2.4238 psnr: 16.2038 Lr: 1.25484e-05
[2025-02-18 02:09:46,582 INFO hook.py line 109 848561] Train: [96/100][200/605] Data 0.003 (0.002) Batch 0.939 (0.940) Remain 00:44:16 loss: 2.1210 psnr: 18.5797 Lr: 1.21208e-05
[2025-02-18 02:10:33,343 INFO hook.py line 109 848561] Train: [96/100][250/605] Data 0.002 (0.002) Batch 0.907 (0.939) Remain 00:43:26 loss: 2.1515 psnr: 18.6770 Lr: 1.17006e-05
[2025-02-18 02:11:20,137 INFO hook.py line 109 848561] Train: [96/100][300/605] Data 0.001 (0.002) Batch 0.924 (0.939) Remain 00:42:37 loss: 1.9770 psnr: 20.6667 Lr: 1.12878e-05
[2025-02-18 02:12:07,240 INFO hook.py line 109 848561] Train: [96/100][350/605] Data 0.003 (0.002) Batch 0.937 (0.939) Remain 00:41:52 loss: 2.1940 psnr: 17.7844 Lr: 1.08824e-05
[2025-02-18 02:12:54,034 INFO hook.py line 109 848561] Train: [96/100][400/605] Data 0.003 (0.002) Batch 0.919 (0.939) Remain 00:41:04 loss: 2.2714 psnr: 17.1763 Lr: 1.04844e-05
[2025-02-18 02:13:41,133 INFO hook.py line 109 848561] Train: [96/100][450/605] Data 0.002 (0.002) Batch 0.934 (0.939) Remain 00:40:18 loss: 2.2116 psnr: 18.1036 Lr: 1.00937e-05
[2025-02-18 02:14:28,113 INFO hook.py line 109 848561] Train: [96/100][500/605] Data 0.003 (0.002) Batch 0.927 (0.939) Remain 00:39:31 loss: 2.2331 psnr: 17.5488 Lr: 9.71046e-06
[2025-02-18 02:15:15,212 INFO hook.py line 109 848561] Train: [96/100][550/605] Data 0.002 (0.002) Batch 0.927 (0.939) Remain 00:38:45 loss: 2.1145 psnr: 19.2833 Lr: 9.33461e-06
[2025-02-18 02:16:01,831 INFO hook.py line 109 848561] Train: [96/100][600/605] Data 0.002 (0.002) Batch 0.864 (0.939) Remain 00:37:56 loss: 2.1812 psnr: 18.6259 Lr: 8.96615e-06
[2025-02-18 02:16:06,167 INFO misc.py line 135 848561] Train result: loss: 2.2127 rgb_loss: 0.7463 psnr: 18.1560 depth_loss: 0.0620 feat_loss: 1.4045 
[2025-02-18 02:16:06,168 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-18 02:16:57,138 INFO hook.py line 109 848561] Train: [97/100][50/605] Data 0.003 (0.003) Batch 0.950 (0.938) Remain 00:37:02 loss: 2.2113 psnr: 17.7659 Lr: 8.56941e-06
[2025-02-18 02:17:44,134 INFO hook.py line 109 848561] Train: [97/100][100/605] Data 0.003 (0.003) Batch 0.976 (0.939) Remain 00:36:17 loss: 2.1624 psnr: 17.7226 Lr: 8.21650e-06
[2025-02-18 02:18:31,171 INFO hook.py line 109 848561] Train: [97/100][150/605] Data 0.002 (0.003) Batch 0.954 (0.939) Remain 00:35:32 loss: 2.1768 psnr: 18.0677 Lr: 7.87100e-06
[2025-02-18 02:19:17,862 INFO hook.py line 109 848561] Train: [97/100][200/605] Data 0.003 (0.003) Batch 0.912 (0.938) Remain 00:34:42 loss: 2.2734 psnr: 17.2758 Lr: 7.53292e-06
[2025-02-18 02:20:04,551 INFO hook.py line 109 848561] Train: [97/100][250/605] Data 0.002 (0.003) Batch 0.930 (0.937) Remain 00:33:53 loss: 2.1649 psnr: 18.4021 Lr: 7.20224e-06
[2025-02-18 02:20:51,321 INFO hook.py line 109 848561] Train: [97/100][300/605] Data 0.002 (0.003) Batch 0.933 (0.937) Remain 00:33:06 loss: 2.2687 psnr: 17.2178 Lr: 6.87899e-06
[2025-02-18 02:21:38,089 INFO hook.py line 109 848561] Train: [97/100][350/605] Data 0.002 (0.003) Batch 0.927 (0.937) Remain 00:32:18 loss: 2.0144 psnr: 19.2926 Lr: 6.56315e-06
[2025-02-18 02:22:24,944 INFO hook.py line 109 848561] Train: [97/100][400/605] Data 0.002 (0.002) Batch 0.983 (0.937) Remain 00:31:32 loss: 2.2873 psnr: 17.8569 Lr: 6.25473e-06
[2025-02-18 02:23:11,830 INFO hook.py line 109 848561] Train: [97/100][450/605] Data 0.002 (0.002) Batch 0.953 (0.937) Remain 00:30:45 loss: 2.0149 psnr: 20.1946 Lr: 5.95373e-06
[2025-02-18 02:23:58,758 INFO hook.py line 109 848561] Train: [97/100][500/605] Data 0.002 (0.002) Batch 0.934 (0.937) Remain 00:29:59 loss: 2.4536 psnr: 16.5546 Lr: 5.66016e-06
[2025-02-18 02:24:45,871 INFO hook.py line 109 848561] Train: [97/100][550/605] Data 0.002 (0.002) Batch 0.945 (0.937) Remain 00:29:13 loss: 2.1576 psnr: 18.6556 Lr: 5.37401e-06
[2025-02-18 02:25:32,171 INFO hook.py line 109 848561] Train: [97/100][600/605] Data 0.002 (0.002) Batch 0.889 (0.937) Remain 00:28:24 loss: 2.2157 psnr: 17.9254 Lr: 5.09530e-06
[2025-02-18 02:25:36,556 INFO misc.py line 135 848561] Train result: loss: 2.2114 rgb_loss: 0.7458 psnr: 18.1707 depth_loss: 0.0628 feat_loss: 1.4028 
[2025-02-18 02:25:36,557 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-18 02:26:27,555 INFO hook.py line 109 848561] Train: [98/100][50/605] Data 0.003 (0.002) Batch 0.935 (0.938) Remain 00:27:34 loss: 2.3009 psnr: 17.1203 Lr: 4.79729e-06
[2025-02-18 02:27:14,368 INFO hook.py line 109 848561] Train: [98/100][100/605] Data 0.002 (0.002) Batch 0.934 (0.937) Remain 00:26:46 loss: 2.1162 psnr: 18.8259 Lr: 4.53419e-06
[2025-02-18 02:28:01,804 INFO hook.py line 109 848561] Train: [98/100][150/605] Data 0.003 (0.002) Batch 0.933 (0.941) Remain 00:26:06 loss: 2.1564 psnr: 18.3967 Lr: 4.27852e-06
[2025-02-18 02:28:48,928 INFO hook.py line 109 848561] Train: [98/100][200/605] Data 0.002 (0.002) Batch 0.968 (0.941) Remain 00:25:20 loss: 2.2964 psnr: 17.4908 Lr: 4.03028e-06
[2025-02-18 02:29:36,043 INFO hook.py line 109 848561] Train: [98/100][250/605] Data 0.003 (0.002) Batch 0.960 (0.942) Remain 00:24:33 loss: 2.3419 psnr: 17.4979 Lr: 3.78949e-06
[2025-02-18 02:30:23,241 INFO hook.py line 109 848561] Train: [98/100][300/605] Data 0.002 (0.002) Batch 0.948 (0.942) Remain 00:23:47 loss: 2.0709 psnr: 19.0498 Lr: 3.55613e-06
[2025-02-18 02:31:10,279 INFO hook.py line 109 848561] Train: [98/100][350/605] Data 0.003 (0.002) Batch 0.919 (0.942) Remain 00:22:59 loss: 2.2811 psnr: 17.8751 Lr: 3.33022e-06
[2025-02-18 02:31:57,123 INFO hook.py line 109 848561] Train: [98/100][400/605] Data 0.003 (0.002) Batch 0.940 (0.941) Remain 00:22:11 loss: 2.1506 psnr: 19.2003 Lr: 3.11176e-06
[2025-02-18 02:32:44,345 INFO hook.py line 109 848561] Train: [98/100][450/605] Data 0.003 (0.002) Batch 0.941 (0.942) Remain 00:21:25 loss: 2.1378 psnr: 18.9511 Lr: 2.90074e-06
[2025-02-18 02:33:31,377 INFO hook.py line 109 848561] Train: [98/100][500/605] Data 0.003 (0.002) Batch 0.946 (0.941) Remain 00:20:37 loss: 2.1277 psnr: 19.0263 Lr: 2.69716e-06
[2025-02-18 02:34:18,160 INFO hook.py line 109 848561] Train: [98/100][550/605] Data 0.001 (0.002) Batch 0.921 (0.941) Remain 00:19:50 loss: 2.1284 psnr: 18.7345 Lr: 2.50104e-06
[2025-02-18 02:35:04,294 INFO hook.py line 109 848561] Train: [98/100][600/605] Data 0.002 (0.002) Batch 0.877 (0.939) Remain 00:19:01 loss: 1.9821 psnr: 20.5806 Lr: 2.31237e-06
[2025-02-18 02:35:08,584 INFO misc.py line 135 848561] Train result: loss: 2.2211 rgb_loss: 0.7538 psnr: 18.0982 depth_loss: 0.0630 feat_loss: 1.4043 
[2025-02-18 02:35:08,586 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-18 02:35:59,900 INFO hook.py line 109 848561] Train: [99/100][50/605] Data 0.003 (0.003) Batch 0.924 (0.941) Remain 00:18:11 loss: 2.1736 psnr: 18.2254 Lr: 2.11343e-06
[2025-02-18 02:36:46,635 INFO hook.py line 109 848561] Train: [99/100][100/605] Data 0.003 (0.003) Batch 0.919 (0.938) Remain 00:17:20 loss: 2.3401 psnr: 18.1591 Lr: 1.94041e-06
[2025-02-18 02:37:33,559 INFO hook.py line 109 848561] Train: [99/100][150/605] Data 0.001 (0.002) Batch 0.941 (0.938) Remain 00:16:34 loss: 2.2766 psnr: 18.1242 Lr: 1.77485e-06
[2025-02-18 02:38:20,789 INFO hook.py line 109 848561] Train: [99/100][200/605] Data 0.002 (0.002) Batch 0.962 (0.940) Remain 00:15:49 loss: 2.0612 psnr: 19.8986 Lr: 1.61674e-06
[2025-02-18 02:39:07,721 INFO hook.py line 109 848561] Train: [99/100][250/605] Data 0.002 (0.002) Batch 0.965 (0.939) Remain 00:15:01 loss: 1.9524 psnr: 20.0699 Lr: 1.46608e-06
[2025-02-18 02:39:54,679 INFO hook.py line 109 848561] Train: [99/100][300/605] Data 0.002 (0.002) Batch 0.933 (0.939) Remain 00:14:14 loss: 2.4545 psnr: 16.3733 Lr: 1.32289e-06
[2025-02-18 02:40:41,745 INFO hook.py line 109 848561] Train: [99/100][350/605] Data 0.002 (0.002) Batch 0.961 (0.940) Remain 00:13:28 loss: 2.4064 psnr: 15.9795 Lr: 1.18715e-06
[2025-02-18 02:41:28,725 INFO hook.py line 109 848561] Train: [99/100][400/605] Data 0.003 (0.002) Batch 0.918 (0.940) Remain 00:12:41 loss: 2.2421 psnr: 18.3655 Lr: 1.05888e-06
[2025-02-18 02:42:15,455 INFO hook.py line 109 848561] Train: [99/100][450/605] Data 0.002 (0.002) Batch 0.966 (0.939) Remain 00:11:53 loss: 2.0431 psnr: 19.7136 Lr: 9.38064e-07
[2025-02-18 02:43:02,491 INFO hook.py line 109 848561] Train: [99/100][500/605] Data 0.002 (0.002) Batch 0.929 (0.939) Remain 00:11:06 loss: 2.2241 psnr: 17.5057 Lr: 8.24714e-07
[2025-02-18 02:43:49,800 INFO hook.py line 109 848561] Train: [99/100][550/605] Data 0.004 (0.002) Batch 0.977 (0.940) Remain 00:10:20 loss: 2.1977 psnr: 18.1654 Lr: 7.20871e-07
[2025-02-18 02:44:35,570 INFO hook.py line 109 848561] Train: [99/100][600/605] Data 0.002 (0.002) Batch 0.855 (0.938) Remain 00:09:32 loss: 2.0903 psnr: 18.9793 Lr: 6.22298e-07
[2025-02-18 02:44:39,855 INFO misc.py line 135 848561] Train result: loss: 2.2126 rgb_loss: 0.7443 psnr: 18.2041 depth_loss: 0.0628 feat_loss: 1.4055 
[2025-02-18 02:44:39,856 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth
[2025-02-18 02:45:31,034 INFO hook.py line 109 848561] Train: [100/100][50/605] Data 0.003 (0.002) Batch 0.937 (0.938) Remain 00:08:40 loss: 2.2876 psnr: 16.5893 Lr: 5.22490e-07
[2025-02-18 02:46:17,622 INFO hook.py line 109 848561] Train: [100/100][100/605] Data 0.002 (0.002) Batch 0.905 (0.935) Remain 00:07:52 loss: 2.1980 psnr: 17.9395 Lr: 4.39594e-07
[2025-02-18 02:47:04,556 INFO hook.py line 109 848561] Train: [100/100][150/605] Data 0.004 (0.002) Batch 0.946 (0.936) Remain 00:07:05 loss: 2.2826 psnr: 16.8843 Lr: 3.64164e-07
[2025-02-18 02:47:51,713 INFO hook.py line 109 848561] Train: [100/100][200/605] Data 0.002 (0.002) Batch 0.933 (0.938) Remain 00:06:19 loss: 2.0242 psnr: 21.0127 Lr: 2.96200e-07
[2025-02-18 02:48:38,588 INFO hook.py line 109 848561] Train: [100/100][250/605] Data 0.002 (0.002) Batch 0.949 (0.938) Remain 00:05:32 loss: 2.0732 psnr: 19.3931 Lr: 2.35704e-07
[2025-02-18 02:49:25,636 INFO hook.py line 109 848561] Train: [100/100][300/605] Data 0.002 (0.002) Batch 0.948 (0.938) Remain 00:04:46 loss: 2.2886 psnr: 17.3458 Lr: 1.82676e-07
[2025-02-18 02:50:12,434 INFO hook.py line 109 848561] Train: [100/100][350/605] Data 0.002 (0.002) Batch 0.915 (0.938) Remain 00:03:59 loss: 2.1833 psnr: 18.5032 Lr: 1.37116e-07
[2025-02-18 02:50:59,257 INFO hook.py line 109 848561] Train: [100/100][400/605] Data 0.002 (0.002) Batch 0.933 (0.938) Remain 00:03:12 loss: 2.3864 psnr: 16.8858 Lr: 9.90237e-08
[2025-02-18 02:51:46,209 INFO hook.py line 109 848561] Train: [100/100][450/605] Data 0.002 (0.002) Batch 0.920 (0.938) Remain 00:02:25 loss: 2.2687 psnr: 18.3758 Lr: 6.84004e-08
[2025-02-18 02:52:32,770 INFO hook.py line 109 848561] Train: [100/100][500/605] Data 0.002 (0.002) Batch 0.964 (0.937) Remain 00:01:38 loss: 2.0730 psnr: 19.8567 Lr: 4.52460e-08
[2025-02-18 02:53:19,717 INFO hook.py line 109 848561] Train: [100/100][550/605] Data 0.003 (0.002) Batch 0.923 (0.937) Remain 00:00:51 loss: 2.2962 psnr: 17.1334 Lr: 2.95606e-08
[2025-02-18 02:54:05,991 INFO hook.py line 109 848561] Train: [100/100][600/605] Data 0.003 (0.002) Batch 0.879 (0.936) Remain 00:00:04 loss: 2.2306 psnr: 18.0474 Lr: 2.13445e-08
[2025-02-18 02:54:10,297 INFO misc.py line 135 848561] Train result: loss: 2.2201 rgb_loss: 0.7512 psnr: 18.1208 depth_loss: 0.0631 feat_loss: 1.4058 
[2025-02-18 02:54:10,299 INFO misc.py line 173 848561] Saving checkpoint to: exp/scannet/pretrain-gs-v4-spunet-base-m3/model/model_last.pth