Training in progress, step 100, checkpoint
Browse files- .gitattributes +1 -0
- last-checkpoint/added_tokens.json +24 -0
- last-checkpoint/chat_template.json +3 -0
- last-checkpoint/config.json +50 -0
- last-checkpoint/generation_config.json +14 -0
- last-checkpoint/global_step100/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
- last-checkpoint/global_step100/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
- last-checkpoint/global_step100/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
- last-checkpoint/global_step100/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
- last-checkpoint/global_step100/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
- last-checkpoint/global_step100/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
- last-checkpoint/global_step100/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
- last-checkpoint/global_step100/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
- last-checkpoint/global_step100/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
- last-checkpoint/global_step100/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
- last-checkpoint/global_step100/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
- last-checkpoint/global_step100/zero_pp_rank_4_mp_rank_00_model_states.pt +3 -0
- last-checkpoint/global_step100/zero_pp_rank_5_mp_rank_00_model_states.pt +3 -0
- last-checkpoint/global_step100/zero_pp_rank_6_mp_rank_00_model_states.pt +3 -0
- last-checkpoint/latest +1 -0
- last-checkpoint/merges.txt +0 -0
- last-checkpoint/model-00001-of-00004.safetensors +3 -0
- last-checkpoint/model-00002-of-00004.safetensors +3 -0
- last-checkpoint/model-00003-of-00004.safetensors +3 -0
- last-checkpoint/model-00004-of-00004.safetensors +3 -0
- last-checkpoint/model.safetensors.index.json +736 -0
- last-checkpoint/preprocessor_config.json +29 -0
- last-checkpoint/rng_state_0.pth +3 -0
- last-checkpoint/rng_state_1.pth +3 -0
- last-checkpoint/rng_state_2.pth +3 -0
- last-checkpoint/rng_state_3.pth +3 -0
- last-checkpoint/rng_state_4.pth +3 -0
- last-checkpoint/rng_state_5.pth +3 -0
- last-checkpoint/rng_state_6.pth +3 -0
- last-checkpoint/scheduler.pt +3 -0
- last-checkpoint/special_tokens_map.json +31 -0
- last-checkpoint/tokenizer.json +3 -0
- last-checkpoint/tokenizer_config.json +209 -0
- last-checkpoint/trainer_state.json +1633 -0
- last-checkpoint/training_args.bin +3 -0
- last-checkpoint/vocab.json +0 -0
- last-checkpoint/zero_to_fp32.py +674 -0
.gitattributes
CHANGED
|
@@ -34,3 +34,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
last-checkpoint/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
last-checkpoint/added_tokens.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</tool_call>": 151658,
|
| 3 |
+
"<tool_call>": 151657,
|
| 4 |
+
"<|box_end|>": 151649,
|
| 5 |
+
"<|box_start|>": 151648,
|
| 6 |
+
"<|endoftext|>": 151643,
|
| 7 |
+
"<|file_sep|>": 151664,
|
| 8 |
+
"<|fim_middle|>": 151660,
|
| 9 |
+
"<|fim_pad|>": 151662,
|
| 10 |
+
"<|fim_prefix|>": 151659,
|
| 11 |
+
"<|fim_suffix|>": 151661,
|
| 12 |
+
"<|im_end|>": 151645,
|
| 13 |
+
"<|im_start|>": 151644,
|
| 14 |
+
"<|image_pad|>": 151655,
|
| 15 |
+
"<|object_ref_end|>": 151647,
|
| 16 |
+
"<|object_ref_start|>": 151646,
|
| 17 |
+
"<|quad_end|>": 151651,
|
| 18 |
+
"<|quad_start|>": 151650,
|
| 19 |
+
"<|repo_name|>": 151663,
|
| 20 |
+
"<|video_pad|>": 151656,
|
| 21 |
+
"<|vision_end|>": 151653,
|
| 22 |
+
"<|vision_pad|>": 151654,
|
| 23 |
+
"<|vision_start|>": 151652
|
| 24 |
+
}
|
last-checkpoint/chat_template.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
|
| 3 |
+
}
|
last-checkpoint/config.json
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "Qwen/Qwen2.5-VL-7B-Instruct",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"Qwen2_5_VLForConditionalGeneration"
|
| 5 |
+
],
|
| 6 |
+
"attention_dropout": 0.0,
|
| 7 |
+
"bos_token_id": 151643,
|
| 8 |
+
"eos_token_id": 151645,
|
| 9 |
+
"hidden_act": "silu",
|
| 10 |
+
"hidden_size": 3584,
|
| 11 |
+
"image_token_id": 151655,
|
| 12 |
+
"initializer_range": 0.02,
|
| 13 |
+
"intermediate_size": 18944,
|
| 14 |
+
"max_position_embeddings": 128000,
|
| 15 |
+
"max_window_layers": 28,
|
| 16 |
+
"model_type": "qwen2_5_vl",
|
| 17 |
+
"num_attention_heads": 28,
|
| 18 |
+
"num_hidden_layers": 28,
|
| 19 |
+
"num_key_value_heads": 4,
|
| 20 |
+
"rms_norm_eps": 1e-06,
|
| 21 |
+
"rope_scaling": {
|
| 22 |
+
"mrope_section": [
|
| 23 |
+
16,
|
| 24 |
+
24,
|
| 25 |
+
24
|
| 26 |
+
],
|
| 27 |
+
"rope_type": "default",
|
| 28 |
+
"type": "default"
|
| 29 |
+
},
|
| 30 |
+
"rope_theta": 1000000.0,
|
| 31 |
+
"sliding_window": 32768,
|
| 32 |
+
"tie_word_embeddings": false,
|
| 33 |
+
"torch_dtype": "bfloat16",
|
| 34 |
+
"transformers_version": "4.49.0.dev0",
|
| 35 |
+
"use_cache": false,
|
| 36 |
+
"use_sliding_window": false,
|
| 37 |
+
"video_token_id": 151656,
|
| 38 |
+
"vision_config": {
|
| 39 |
+
"hidden_size": 1280,
|
| 40 |
+
"in_chans": 3,
|
| 41 |
+
"model_type": "qwen2_5_vl",
|
| 42 |
+
"spatial_patch_size": 14,
|
| 43 |
+
"tokens_per_second": 2,
|
| 44 |
+
"torch_dtype": "bfloat16"
|
| 45 |
+
},
|
| 46 |
+
"vision_end_token_id": 151653,
|
| 47 |
+
"vision_start_token_id": 151652,
|
| 48 |
+
"vision_token_id": 151654,
|
| 49 |
+
"vocab_size": 152064
|
| 50 |
+
}
|
last-checkpoint/generation_config.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"attn_implementation": "flash_attention_2",
|
| 3 |
+
"bos_token_id": 151643,
|
| 4 |
+
"do_sample": true,
|
| 5 |
+
"eos_token_id": [
|
| 6 |
+
151645,
|
| 7 |
+
151643
|
| 8 |
+
],
|
| 9 |
+
"pad_token_id": 151643,
|
| 10 |
+
"repetition_penalty": 1.05,
|
| 11 |
+
"temperature": 1e-06,
|
| 12 |
+
"transformers_version": "4.49.0.dev0",
|
| 13 |
+
"use_cache": false
|
| 14 |
+
}
|
last-checkpoint/global_step100/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8e9fbb56b33c0e46448344479dafcd7dca811bd16e6a526673a8fd6d56fe3998
|
| 3 |
+
size 14215152126
|
last-checkpoint/global_step100/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b5048fcb70c140e619ca0965cfcd4c9ef22616ab360109209fd0711bec611875
|
| 3 |
+
size 14215152126
|
last-checkpoint/global_step100/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1d8dcadc4f1496f814cdac3f9e5577ff455d31a3c27859841f60b5c7bdb85436
|
| 3 |
+
size 14215152126
|
last-checkpoint/global_step100/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f77c8d0418d62db5b74ccdd829dad517d5d99c9acb2b6a9e04e12dd6bc0eaf65
|
| 3 |
+
size 14215152126
|
last-checkpoint/global_step100/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:458ae437bad08af14a3a6da21f23863ea2d5ac162a09bdb7d0ca5aca1dc3bfb0
|
| 3 |
+
size 14215152126
|
last-checkpoint/global_step100/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9eef0485fcc6c01fe32bd3cd5c721a0bfe1038f39986ee6cb096fcf34d74cc00
|
| 3 |
+
size 14215152126
|
last-checkpoint/global_step100/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:62aaca59413e85eccdcb83f1c2e826d121da6e7972d92c43c6bc510d19c38010
|
| 3 |
+
size 14215152126
|
last-checkpoint/global_step100/zero_pp_rank_0_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d3ef289a60d9e56e23d1ef010af826201601e88870684662bc0f6e62e0964a52
|
| 3 |
+
size 349379
|
last-checkpoint/global_step100/zero_pp_rank_1_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:16e8528fb83a210e8bbd9a1781ab61e6e2dccf62c195bbffe29b3f5d19f621f3
|
| 3 |
+
size 349379
|
last-checkpoint/global_step100/zero_pp_rank_2_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e7fdccf46cd71e8cd9940d81e40bbead8c4a0682b4ce5eb0adad5b7da517f633
|
| 3 |
+
size 349379
|
last-checkpoint/global_step100/zero_pp_rank_3_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:96302f8de00f370807a0d10a4b9692ce083f2dc63ba7ff3971b8a7552fd372ff
|
| 3 |
+
size 349379
|
last-checkpoint/global_step100/zero_pp_rank_4_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:93c566d74345baaaff9ef6bdae4e29805a0c70ce8d73d9f035c9b64b6197eaef
|
| 3 |
+
size 349379
|
last-checkpoint/global_step100/zero_pp_rank_5_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dd1ee97740ed83770c6aaf4053f6df9be408c00d16f51acaba3c594905b022d9
|
| 3 |
+
size 349379
|
last-checkpoint/global_step100/zero_pp_rank_6_mp_rank_00_model_states.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:98650274726f869a3919c807f40b164a18fb039505e1dcc8bf1af72a4df56cd3
|
| 3 |
+
size 349379
|
last-checkpoint/latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step100
|
last-checkpoint/merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
last-checkpoint/model-00001-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:17617993c9ab5ac2116987aaf38c656381aad905c9352a51490240d419ff62c0
|
| 3 |
+
size 4968243304
|
last-checkpoint/model-00002-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:74de14f01bda96ffd2500e51d2adf6c03dcfddbbdf2f43d9e6fd5cd0a468cf32
|
| 3 |
+
size 4991495816
|
last-checkpoint/model-00003-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:eccc8801f5f67aca7730d65a3c89c8f32dcd5ce336648141fd90121b49dfa341
|
| 3 |
+
size 4932751040
|
last-checkpoint/model-00004-of-00004.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a7ea50eb6fd468e2b667401050cbd946dc934f921aba63412c39db07f0c17365
|
| 3 |
+
size 1691924384
|
last-checkpoint/model.safetensors.index.json
ADDED
|
@@ -0,0 +1,736 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 16584333312
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"lm_head.weight": "model-00004-of-00004.safetensors",
|
| 7 |
+
"model.embed_tokens.weight": "model-00001-of-00004.safetensors",
|
| 8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 13 |
+
"model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 14 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 15 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 16 |
+
"model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 17 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 18 |
+
"model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 19 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 20 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 21 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 22 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 23 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 24 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 25 |
+
"model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 26 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 27 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 28 |
+
"model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 29 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 30 |
+
"model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 31 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 32 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 33 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 34 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 35 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 36 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 37 |
+
"model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 38 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 39 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 40 |
+
"model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 41 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 42 |
+
"model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 43 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 44 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 45 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 46 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 47 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 48 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 49 |
+
"model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 50 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 51 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 52 |
+
"model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 53 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 54 |
+
"model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 55 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 56 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 57 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 58 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 59 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 60 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 61 |
+
"model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 62 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 63 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 64 |
+
"model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 65 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 66 |
+
"model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 67 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 68 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 69 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 70 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 71 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 72 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 73 |
+
"model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 74 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 75 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 76 |
+
"model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 77 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 78 |
+
"model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 79 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 80 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 81 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 82 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 83 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 84 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 85 |
+
"model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 86 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 87 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 88 |
+
"model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 89 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 90 |
+
"model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 91 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 92 |
+
"model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 93 |
+
"model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 94 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 95 |
+
"model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 96 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 97 |
+
"model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 98 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 99 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 100 |
+
"model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 101 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 102 |
+
"model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 103 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 104 |
+
"model.layers.16.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 105 |
+
"model.layers.16.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 106 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 107 |
+
"model.layers.16.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 108 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 109 |
+
"model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 110 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 111 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 112 |
+
"model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 113 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 114 |
+
"model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 115 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 116 |
+
"model.layers.17.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 117 |
+
"model.layers.17.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 118 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 119 |
+
"model.layers.17.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 120 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 121 |
+
"model.layers.17.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 122 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 123 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 124 |
+
"model.layers.17.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 125 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 126 |
+
"model.layers.17.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 127 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 128 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 129 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 130 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 131 |
+
"model.layers.18.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 132 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 133 |
+
"model.layers.18.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 134 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 135 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 136 |
+
"model.layers.18.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 137 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 138 |
+
"model.layers.18.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 139 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 140 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 141 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 142 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 143 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 144 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 145 |
+
"model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 146 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 147 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 148 |
+
"model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 149 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 150 |
+
"model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 151 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 152 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 153 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 154 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 155 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 156 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 157 |
+
"model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 158 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 159 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 160 |
+
"model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 161 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 162 |
+
"model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 163 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 164 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 165 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 166 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 167 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 168 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 169 |
+
"model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 170 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 171 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 172 |
+
"model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 173 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 174 |
+
"model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 175 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 176 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 177 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 178 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 179 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 180 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 181 |
+
"model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 182 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 183 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 184 |
+
"model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 185 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 186 |
+
"model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 187 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 188 |
+
"model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 189 |
+
"model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 190 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 191 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 192 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 193 |
+
"model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 194 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 195 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 196 |
+
"model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 197 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 198 |
+
"model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 199 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 200 |
+
"model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 201 |
+
"model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 202 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 203 |
+
"model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 204 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 205 |
+
"model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 206 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 207 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 208 |
+
"model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 209 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 210 |
+
"model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 211 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 212 |
+
"model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 213 |
+
"model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 214 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 215 |
+
"model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 216 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 217 |
+
"model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 218 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 219 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 220 |
+
"model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 221 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 222 |
+
"model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 223 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 224 |
+
"model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 225 |
+
"model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
|
| 226 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 227 |
+
"model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 228 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
|
| 229 |
+
"model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 230 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 231 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 232 |
+
"model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 233 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 234 |
+
"model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 235 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 236 |
+
"model.layers.26.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 237 |
+
"model.layers.26.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 238 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
|
| 239 |
+
"model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
|
| 240 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 241 |
+
"model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
|
| 242 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
|
| 243 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
|
| 244 |
+
"model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
|
| 245 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
|
| 246 |
+
"model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
|
| 247 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
|
| 248 |
+
"model.layers.27.input_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 249 |
+
"model.layers.27.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
|
| 250 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
|
| 251 |
+
"model.layers.27.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
|
| 252 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
|
| 253 |
+
"model.layers.27.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
|
| 254 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
|
| 255 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
|
| 256 |
+
"model.layers.27.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
|
| 257 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
|
| 258 |
+
"model.layers.27.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
|
| 259 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
|
| 260 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 261 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 262 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 263 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 264 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 265 |
+
"model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 266 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 267 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 268 |
+
"model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 269 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 270 |
+
"model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 271 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 272 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 273 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 274 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 275 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 276 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
|
| 277 |
+
"model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 278 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 279 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 280 |
+
"model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 281 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 282 |
+
"model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 283 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 284 |
+
"model.layers.5.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 285 |
+
"model.layers.5.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 286 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 287 |
+
"model.layers.5.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 288 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 289 |
+
"model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
|
| 290 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
|
| 291 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
|
| 292 |
+
"model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
|
| 293 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
|
| 294 |
+
"model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
|
| 295 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
|
| 296 |
+
"model.layers.6.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 297 |
+
"model.layers.6.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 298 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 299 |
+
"model.layers.6.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 300 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 301 |
+
"model.layers.6.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 302 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 303 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 304 |
+
"model.layers.6.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 305 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 306 |
+
"model.layers.6.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 307 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 308 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 309 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 310 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 311 |
+
"model.layers.7.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 312 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 313 |
+
"model.layers.7.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 314 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 315 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 316 |
+
"model.layers.7.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 317 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 318 |
+
"model.layers.7.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 319 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 320 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 321 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 322 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 323 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 324 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 325 |
+
"model.layers.8.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 326 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 327 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 328 |
+
"model.layers.8.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 329 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 330 |
+
"model.layers.8.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 331 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 332 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 333 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
|
| 334 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
|
| 335 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
|
| 336 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
|
| 337 |
+
"model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
|
| 338 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
|
| 339 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
|
| 340 |
+
"model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
|
| 341 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
|
| 342 |
+
"model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
|
| 343 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
|
| 344 |
+
"model.norm.weight": "model-00004-of-00004.safetensors",
|
| 345 |
+
"visual.blocks.0.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 346 |
+
"visual.blocks.0.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 347 |
+
"visual.blocks.0.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 348 |
+
"visual.blocks.0.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 349 |
+
"visual.blocks.0.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 350 |
+
"visual.blocks.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 351 |
+
"visual.blocks.0.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 352 |
+
"visual.blocks.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 353 |
+
"visual.blocks.0.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 354 |
+
"visual.blocks.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 355 |
+
"visual.blocks.0.norm1.weight": "model-00001-of-00004.safetensors",
|
| 356 |
+
"visual.blocks.0.norm2.weight": "model-00001-of-00004.safetensors",
|
| 357 |
+
"visual.blocks.1.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 358 |
+
"visual.blocks.1.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 359 |
+
"visual.blocks.1.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 360 |
+
"visual.blocks.1.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 361 |
+
"visual.blocks.1.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 362 |
+
"visual.blocks.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 363 |
+
"visual.blocks.1.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 364 |
+
"visual.blocks.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 365 |
+
"visual.blocks.1.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 366 |
+
"visual.blocks.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 367 |
+
"visual.blocks.1.norm1.weight": "model-00001-of-00004.safetensors",
|
| 368 |
+
"visual.blocks.1.norm2.weight": "model-00001-of-00004.safetensors",
|
| 369 |
+
"visual.blocks.10.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 370 |
+
"visual.blocks.10.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 371 |
+
"visual.blocks.10.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 372 |
+
"visual.blocks.10.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 373 |
+
"visual.blocks.10.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 374 |
+
"visual.blocks.10.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 375 |
+
"visual.blocks.10.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 376 |
+
"visual.blocks.10.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 377 |
+
"visual.blocks.10.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 378 |
+
"visual.blocks.10.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 379 |
+
"visual.blocks.10.norm1.weight": "model-00001-of-00004.safetensors",
|
| 380 |
+
"visual.blocks.10.norm2.weight": "model-00001-of-00004.safetensors",
|
| 381 |
+
"visual.blocks.11.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 382 |
+
"visual.blocks.11.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 383 |
+
"visual.blocks.11.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 384 |
+
"visual.blocks.11.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 385 |
+
"visual.blocks.11.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 386 |
+
"visual.blocks.11.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 387 |
+
"visual.blocks.11.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 388 |
+
"visual.blocks.11.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 389 |
+
"visual.blocks.11.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 390 |
+
"visual.blocks.11.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 391 |
+
"visual.blocks.11.norm1.weight": "model-00001-of-00004.safetensors",
|
| 392 |
+
"visual.blocks.11.norm2.weight": "model-00001-of-00004.safetensors",
|
| 393 |
+
"visual.blocks.12.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 394 |
+
"visual.blocks.12.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 395 |
+
"visual.blocks.12.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 396 |
+
"visual.blocks.12.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 397 |
+
"visual.blocks.12.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 398 |
+
"visual.blocks.12.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 399 |
+
"visual.blocks.12.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 400 |
+
"visual.blocks.12.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 401 |
+
"visual.blocks.12.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 402 |
+
"visual.blocks.12.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 403 |
+
"visual.blocks.12.norm1.weight": "model-00001-of-00004.safetensors",
|
| 404 |
+
"visual.blocks.12.norm2.weight": "model-00001-of-00004.safetensors",
|
| 405 |
+
"visual.blocks.13.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 406 |
+
"visual.blocks.13.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 407 |
+
"visual.blocks.13.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 408 |
+
"visual.blocks.13.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 409 |
+
"visual.blocks.13.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 410 |
+
"visual.blocks.13.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 411 |
+
"visual.blocks.13.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 412 |
+
"visual.blocks.13.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 413 |
+
"visual.blocks.13.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 414 |
+
"visual.blocks.13.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 415 |
+
"visual.blocks.13.norm1.weight": "model-00001-of-00004.safetensors",
|
| 416 |
+
"visual.blocks.13.norm2.weight": "model-00001-of-00004.safetensors",
|
| 417 |
+
"visual.blocks.14.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 418 |
+
"visual.blocks.14.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 419 |
+
"visual.blocks.14.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 420 |
+
"visual.blocks.14.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 421 |
+
"visual.blocks.14.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 422 |
+
"visual.blocks.14.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 423 |
+
"visual.blocks.14.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 424 |
+
"visual.blocks.14.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 425 |
+
"visual.blocks.14.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 426 |
+
"visual.blocks.14.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 427 |
+
"visual.blocks.14.norm1.weight": "model-00001-of-00004.safetensors",
|
| 428 |
+
"visual.blocks.14.norm2.weight": "model-00001-of-00004.safetensors",
|
| 429 |
+
"visual.blocks.15.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 430 |
+
"visual.blocks.15.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 431 |
+
"visual.blocks.15.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 432 |
+
"visual.blocks.15.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 433 |
+
"visual.blocks.15.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 434 |
+
"visual.blocks.15.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 435 |
+
"visual.blocks.15.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 436 |
+
"visual.blocks.15.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 437 |
+
"visual.blocks.15.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 438 |
+
"visual.blocks.15.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 439 |
+
"visual.blocks.15.norm1.weight": "model-00001-of-00004.safetensors",
|
| 440 |
+
"visual.blocks.15.norm2.weight": "model-00001-of-00004.safetensors",
|
| 441 |
+
"visual.blocks.16.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 442 |
+
"visual.blocks.16.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 443 |
+
"visual.blocks.16.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 444 |
+
"visual.blocks.16.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 445 |
+
"visual.blocks.16.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 446 |
+
"visual.blocks.16.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 447 |
+
"visual.blocks.16.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 448 |
+
"visual.blocks.16.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 449 |
+
"visual.blocks.16.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 450 |
+
"visual.blocks.16.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 451 |
+
"visual.blocks.16.norm1.weight": "model-00001-of-00004.safetensors",
|
| 452 |
+
"visual.blocks.16.norm2.weight": "model-00001-of-00004.safetensors",
|
| 453 |
+
"visual.blocks.17.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 454 |
+
"visual.blocks.17.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 455 |
+
"visual.blocks.17.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 456 |
+
"visual.blocks.17.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 457 |
+
"visual.blocks.17.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 458 |
+
"visual.blocks.17.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 459 |
+
"visual.blocks.17.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 460 |
+
"visual.blocks.17.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 461 |
+
"visual.blocks.17.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 462 |
+
"visual.blocks.17.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 463 |
+
"visual.blocks.17.norm1.weight": "model-00001-of-00004.safetensors",
|
| 464 |
+
"visual.blocks.17.norm2.weight": "model-00001-of-00004.safetensors",
|
| 465 |
+
"visual.blocks.18.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 466 |
+
"visual.blocks.18.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 467 |
+
"visual.blocks.18.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 468 |
+
"visual.blocks.18.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 469 |
+
"visual.blocks.18.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 470 |
+
"visual.blocks.18.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 471 |
+
"visual.blocks.18.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 472 |
+
"visual.blocks.18.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 473 |
+
"visual.blocks.18.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 474 |
+
"visual.blocks.18.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 475 |
+
"visual.blocks.18.norm1.weight": "model-00001-of-00004.safetensors",
|
| 476 |
+
"visual.blocks.18.norm2.weight": "model-00001-of-00004.safetensors",
|
| 477 |
+
"visual.blocks.19.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 478 |
+
"visual.blocks.19.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 479 |
+
"visual.blocks.19.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 480 |
+
"visual.blocks.19.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 481 |
+
"visual.blocks.19.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 482 |
+
"visual.blocks.19.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 483 |
+
"visual.blocks.19.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 484 |
+
"visual.blocks.19.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 485 |
+
"visual.blocks.19.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 486 |
+
"visual.blocks.19.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 487 |
+
"visual.blocks.19.norm1.weight": "model-00001-of-00004.safetensors",
|
| 488 |
+
"visual.blocks.19.norm2.weight": "model-00001-of-00004.safetensors",
|
| 489 |
+
"visual.blocks.2.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 490 |
+
"visual.blocks.2.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 491 |
+
"visual.blocks.2.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 492 |
+
"visual.blocks.2.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 493 |
+
"visual.blocks.2.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 494 |
+
"visual.blocks.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 495 |
+
"visual.blocks.2.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 496 |
+
"visual.blocks.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 497 |
+
"visual.blocks.2.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 498 |
+
"visual.blocks.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 499 |
+
"visual.blocks.2.norm1.weight": "model-00001-of-00004.safetensors",
|
| 500 |
+
"visual.blocks.2.norm2.weight": "model-00001-of-00004.safetensors",
|
| 501 |
+
"visual.blocks.20.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 502 |
+
"visual.blocks.20.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 503 |
+
"visual.blocks.20.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 504 |
+
"visual.blocks.20.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 505 |
+
"visual.blocks.20.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 506 |
+
"visual.blocks.20.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 507 |
+
"visual.blocks.20.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 508 |
+
"visual.blocks.20.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 509 |
+
"visual.blocks.20.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 510 |
+
"visual.blocks.20.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 511 |
+
"visual.blocks.20.norm1.weight": "model-00001-of-00004.safetensors",
|
| 512 |
+
"visual.blocks.20.norm2.weight": "model-00001-of-00004.safetensors",
|
| 513 |
+
"visual.blocks.21.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 514 |
+
"visual.blocks.21.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 515 |
+
"visual.blocks.21.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 516 |
+
"visual.blocks.21.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 517 |
+
"visual.blocks.21.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 518 |
+
"visual.blocks.21.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 519 |
+
"visual.blocks.21.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 520 |
+
"visual.blocks.21.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 521 |
+
"visual.blocks.21.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 522 |
+
"visual.blocks.21.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 523 |
+
"visual.blocks.21.norm1.weight": "model-00001-of-00004.safetensors",
|
| 524 |
+
"visual.blocks.21.norm2.weight": "model-00001-of-00004.safetensors",
|
| 525 |
+
"visual.blocks.22.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 526 |
+
"visual.blocks.22.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 527 |
+
"visual.blocks.22.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 528 |
+
"visual.blocks.22.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 529 |
+
"visual.blocks.22.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 530 |
+
"visual.blocks.22.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 531 |
+
"visual.blocks.22.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 532 |
+
"visual.blocks.22.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 533 |
+
"visual.blocks.22.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 534 |
+
"visual.blocks.22.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 535 |
+
"visual.blocks.22.norm1.weight": "model-00001-of-00004.safetensors",
|
| 536 |
+
"visual.blocks.22.norm2.weight": "model-00001-of-00004.safetensors",
|
| 537 |
+
"visual.blocks.23.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 538 |
+
"visual.blocks.23.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 539 |
+
"visual.blocks.23.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 540 |
+
"visual.blocks.23.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 541 |
+
"visual.blocks.23.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 542 |
+
"visual.blocks.23.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 543 |
+
"visual.blocks.23.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 544 |
+
"visual.blocks.23.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 545 |
+
"visual.blocks.23.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 546 |
+
"visual.blocks.23.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 547 |
+
"visual.blocks.23.norm1.weight": "model-00001-of-00004.safetensors",
|
| 548 |
+
"visual.blocks.23.norm2.weight": "model-00001-of-00004.safetensors",
|
| 549 |
+
"visual.blocks.24.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 550 |
+
"visual.blocks.24.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 551 |
+
"visual.blocks.24.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 552 |
+
"visual.blocks.24.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 553 |
+
"visual.blocks.24.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 554 |
+
"visual.blocks.24.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 555 |
+
"visual.blocks.24.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 556 |
+
"visual.blocks.24.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 557 |
+
"visual.blocks.24.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 558 |
+
"visual.blocks.24.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 559 |
+
"visual.blocks.24.norm1.weight": "model-00001-of-00004.safetensors",
|
| 560 |
+
"visual.blocks.24.norm2.weight": "model-00001-of-00004.safetensors",
|
| 561 |
+
"visual.blocks.25.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 562 |
+
"visual.blocks.25.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 563 |
+
"visual.blocks.25.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 564 |
+
"visual.blocks.25.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 565 |
+
"visual.blocks.25.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 566 |
+
"visual.blocks.25.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 567 |
+
"visual.blocks.25.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 568 |
+
"visual.blocks.25.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 569 |
+
"visual.blocks.25.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 570 |
+
"visual.blocks.25.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 571 |
+
"visual.blocks.25.norm1.weight": "model-00001-of-00004.safetensors",
|
| 572 |
+
"visual.blocks.25.norm2.weight": "model-00001-of-00004.safetensors",
|
| 573 |
+
"visual.blocks.26.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 574 |
+
"visual.blocks.26.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 575 |
+
"visual.blocks.26.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 576 |
+
"visual.blocks.26.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 577 |
+
"visual.blocks.26.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 578 |
+
"visual.blocks.26.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 579 |
+
"visual.blocks.26.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 580 |
+
"visual.blocks.26.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 581 |
+
"visual.blocks.26.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 582 |
+
"visual.blocks.26.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 583 |
+
"visual.blocks.26.norm1.weight": "model-00001-of-00004.safetensors",
|
| 584 |
+
"visual.blocks.26.norm2.weight": "model-00001-of-00004.safetensors",
|
| 585 |
+
"visual.blocks.27.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 586 |
+
"visual.blocks.27.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 587 |
+
"visual.blocks.27.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 588 |
+
"visual.blocks.27.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 589 |
+
"visual.blocks.27.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 590 |
+
"visual.blocks.27.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 591 |
+
"visual.blocks.27.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 592 |
+
"visual.blocks.27.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 593 |
+
"visual.blocks.27.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 594 |
+
"visual.blocks.27.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 595 |
+
"visual.blocks.27.norm1.weight": "model-00001-of-00004.safetensors",
|
| 596 |
+
"visual.blocks.27.norm2.weight": "model-00001-of-00004.safetensors",
|
| 597 |
+
"visual.blocks.28.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 598 |
+
"visual.blocks.28.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 599 |
+
"visual.blocks.28.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 600 |
+
"visual.blocks.28.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 601 |
+
"visual.blocks.28.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 602 |
+
"visual.blocks.28.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 603 |
+
"visual.blocks.28.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 604 |
+
"visual.blocks.28.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 605 |
+
"visual.blocks.28.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 606 |
+
"visual.blocks.28.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 607 |
+
"visual.blocks.28.norm1.weight": "model-00001-of-00004.safetensors",
|
| 608 |
+
"visual.blocks.28.norm2.weight": "model-00001-of-00004.safetensors",
|
| 609 |
+
"visual.blocks.29.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 610 |
+
"visual.blocks.29.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 611 |
+
"visual.blocks.29.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 612 |
+
"visual.blocks.29.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 613 |
+
"visual.blocks.29.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 614 |
+
"visual.blocks.29.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 615 |
+
"visual.blocks.29.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 616 |
+
"visual.blocks.29.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 617 |
+
"visual.blocks.29.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 618 |
+
"visual.blocks.29.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 619 |
+
"visual.blocks.29.norm1.weight": "model-00001-of-00004.safetensors",
|
| 620 |
+
"visual.blocks.29.norm2.weight": "model-00001-of-00004.safetensors",
|
| 621 |
+
"visual.blocks.3.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 622 |
+
"visual.blocks.3.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 623 |
+
"visual.blocks.3.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 624 |
+
"visual.blocks.3.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 625 |
+
"visual.blocks.3.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 626 |
+
"visual.blocks.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 627 |
+
"visual.blocks.3.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 628 |
+
"visual.blocks.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 629 |
+
"visual.blocks.3.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 630 |
+
"visual.blocks.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 631 |
+
"visual.blocks.3.norm1.weight": "model-00001-of-00004.safetensors",
|
| 632 |
+
"visual.blocks.3.norm2.weight": "model-00001-of-00004.safetensors",
|
| 633 |
+
"visual.blocks.30.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 634 |
+
"visual.blocks.30.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 635 |
+
"visual.blocks.30.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 636 |
+
"visual.blocks.30.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 637 |
+
"visual.blocks.30.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 638 |
+
"visual.blocks.30.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 639 |
+
"visual.blocks.30.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 640 |
+
"visual.blocks.30.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 641 |
+
"visual.blocks.30.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 642 |
+
"visual.blocks.30.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 643 |
+
"visual.blocks.30.norm1.weight": "model-00001-of-00004.safetensors",
|
| 644 |
+
"visual.blocks.30.norm2.weight": "model-00001-of-00004.safetensors",
|
| 645 |
+
"visual.blocks.31.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 646 |
+
"visual.blocks.31.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 647 |
+
"visual.blocks.31.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 648 |
+
"visual.blocks.31.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 649 |
+
"visual.blocks.31.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 650 |
+
"visual.blocks.31.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 651 |
+
"visual.blocks.31.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 652 |
+
"visual.blocks.31.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 653 |
+
"visual.blocks.31.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 654 |
+
"visual.blocks.31.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 655 |
+
"visual.blocks.31.norm1.weight": "model-00001-of-00004.safetensors",
|
| 656 |
+
"visual.blocks.31.norm2.weight": "model-00001-of-00004.safetensors",
|
| 657 |
+
"visual.blocks.4.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 658 |
+
"visual.blocks.4.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 659 |
+
"visual.blocks.4.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 660 |
+
"visual.blocks.4.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 661 |
+
"visual.blocks.4.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 662 |
+
"visual.blocks.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 663 |
+
"visual.blocks.4.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 664 |
+
"visual.blocks.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 665 |
+
"visual.blocks.4.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 666 |
+
"visual.blocks.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 667 |
+
"visual.blocks.4.norm1.weight": "model-00001-of-00004.safetensors",
|
| 668 |
+
"visual.blocks.4.norm2.weight": "model-00001-of-00004.safetensors",
|
| 669 |
+
"visual.blocks.5.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 670 |
+
"visual.blocks.5.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 671 |
+
"visual.blocks.5.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 672 |
+
"visual.blocks.5.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 673 |
+
"visual.blocks.5.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 674 |
+
"visual.blocks.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 675 |
+
"visual.blocks.5.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 676 |
+
"visual.blocks.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 677 |
+
"visual.blocks.5.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 678 |
+
"visual.blocks.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 679 |
+
"visual.blocks.5.norm1.weight": "model-00001-of-00004.safetensors",
|
| 680 |
+
"visual.blocks.5.norm2.weight": "model-00001-of-00004.safetensors",
|
| 681 |
+
"visual.blocks.6.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 682 |
+
"visual.blocks.6.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 683 |
+
"visual.blocks.6.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 684 |
+
"visual.blocks.6.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 685 |
+
"visual.blocks.6.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 686 |
+
"visual.blocks.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 687 |
+
"visual.blocks.6.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 688 |
+
"visual.blocks.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 689 |
+
"visual.blocks.6.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 690 |
+
"visual.blocks.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 691 |
+
"visual.blocks.6.norm1.weight": "model-00001-of-00004.safetensors",
|
| 692 |
+
"visual.blocks.6.norm2.weight": "model-00001-of-00004.safetensors",
|
| 693 |
+
"visual.blocks.7.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 694 |
+
"visual.blocks.7.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 695 |
+
"visual.blocks.7.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 696 |
+
"visual.blocks.7.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 697 |
+
"visual.blocks.7.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 698 |
+
"visual.blocks.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 699 |
+
"visual.blocks.7.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 700 |
+
"visual.blocks.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 701 |
+
"visual.blocks.7.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 702 |
+
"visual.blocks.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 703 |
+
"visual.blocks.7.norm1.weight": "model-00001-of-00004.safetensors",
|
| 704 |
+
"visual.blocks.7.norm2.weight": "model-00001-of-00004.safetensors",
|
| 705 |
+
"visual.blocks.8.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 706 |
+
"visual.blocks.8.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 707 |
+
"visual.blocks.8.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 708 |
+
"visual.blocks.8.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 709 |
+
"visual.blocks.8.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 710 |
+
"visual.blocks.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 711 |
+
"visual.blocks.8.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 712 |
+
"visual.blocks.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 713 |
+
"visual.blocks.8.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 714 |
+
"visual.blocks.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 715 |
+
"visual.blocks.8.norm1.weight": "model-00001-of-00004.safetensors",
|
| 716 |
+
"visual.blocks.8.norm2.weight": "model-00001-of-00004.safetensors",
|
| 717 |
+
"visual.blocks.9.attn.proj.bias": "model-00001-of-00004.safetensors",
|
| 718 |
+
"visual.blocks.9.attn.proj.weight": "model-00001-of-00004.safetensors",
|
| 719 |
+
"visual.blocks.9.attn.qkv.bias": "model-00001-of-00004.safetensors",
|
| 720 |
+
"visual.blocks.9.attn.qkv.weight": "model-00001-of-00004.safetensors",
|
| 721 |
+
"visual.blocks.9.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
|
| 722 |
+
"visual.blocks.9.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
|
| 723 |
+
"visual.blocks.9.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
|
| 724 |
+
"visual.blocks.9.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
|
| 725 |
+
"visual.blocks.9.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
|
| 726 |
+
"visual.blocks.9.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
|
| 727 |
+
"visual.blocks.9.norm1.weight": "model-00001-of-00004.safetensors",
|
| 728 |
+
"visual.blocks.9.norm2.weight": "model-00001-of-00004.safetensors",
|
| 729 |
+
"visual.merger.ln_q.weight": "model-00001-of-00004.safetensors",
|
| 730 |
+
"visual.merger.mlp.0.bias": "model-00001-of-00004.safetensors",
|
| 731 |
+
"visual.merger.mlp.0.weight": "model-00001-of-00004.safetensors",
|
| 732 |
+
"visual.merger.mlp.2.bias": "model-00001-of-00004.safetensors",
|
| 733 |
+
"visual.merger.mlp.2.weight": "model-00001-of-00004.safetensors",
|
| 734 |
+
"visual.patch_embed.proj.weight": "model-00001-of-00004.safetensors"
|
| 735 |
+
}
|
| 736 |
+
}
|
last-checkpoint/preprocessor_config.json
ADDED
|
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"do_convert_rgb": true,
|
| 3 |
+
"do_normalize": true,
|
| 4 |
+
"do_rescale": true,
|
| 5 |
+
"do_resize": true,
|
| 6 |
+
"image_mean": [
|
| 7 |
+
0.48145466,
|
| 8 |
+
0.4578275,
|
| 9 |
+
0.40821073
|
| 10 |
+
],
|
| 11 |
+
"image_processor_type": "Qwen2_5_VLImageProcessor",
|
| 12 |
+
"image_std": [
|
| 13 |
+
0.26862954,
|
| 14 |
+
0.26130258,
|
| 15 |
+
0.27577711
|
| 16 |
+
],
|
| 17 |
+
"max_pixels": 501760,
|
| 18 |
+
"merge_size": 2,
|
| 19 |
+
"min_pixels": 3136,
|
| 20 |
+
"patch_size": 14,
|
| 21 |
+
"processor_class": "Qwen2_5_VLProcessor",
|
| 22 |
+
"resample": 3,
|
| 23 |
+
"rescale_factor": 0.00392156862745098,
|
| 24 |
+
"size": {
|
| 25 |
+
"longest_edge": 12845056,
|
| 26 |
+
"shortest_edge": 3136
|
| 27 |
+
},
|
| 28 |
+
"temporal_patch_size": 2
|
| 29 |
+
}
|
last-checkpoint/rng_state_0.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:763d5c131591370f1d52b0aa6539f70eb8a0c4954a5e78506f6bc04c58290268
|
| 3 |
+
size 15920
|
last-checkpoint/rng_state_1.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:41e4943e97c73bf1f3efd422e4751fcc4d0280de08a84f1d7632c069262b2ea2
|
| 3 |
+
size 15984
|
last-checkpoint/rng_state_2.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:263f74fcd6ec7d3f1e5860961b69bd7aff70b57a1501e93d7925d34fb10771c2
|
| 3 |
+
size 15984
|
last-checkpoint/rng_state_3.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:08fc622393e6882dbb12ed2672791bf0ded63c3839d552c9757b2b0666df2605
|
| 3 |
+
size 15984
|
last-checkpoint/rng_state_4.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fb60e8fee28ece71f42072f2bb5e97094fd154ff3765f3cfc657681677009c9b
|
| 3 |
+
size 15984
|
last-checkpoint/rng_state_5.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c7952a23b43e2483b709361dc6b1ab6ea926ab56c77ee8647a336b76cfd19453
|
| 3 |
+
size 15984
|
last-checkpoint/rng_state_6.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6a4bd7ddb0e4a9ffc86f475a180bc7c78d74e0443fc583113c88e42041fc1de1
|
| 3 |
+
size 15984
|
last-checkpoint/scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bb5f68596479240ce42efa6cf5449fb202686261075cf439a50da4f70f32fda5
|
| 3 |
+
size 1064
|
last-checkpoint/special_tokens_map.json
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|im_start|>",
|
| 4 |
+
"<|im_end|>",
|
| 5 |
+
"<|object_ref_start|>",
|
| 6 |
+
"<|object_ref_end|>",
|
| 7 |
+
"<|box_start|>",
|
| 8 |
+
"<|box_end|>",
|
| 9 |
+
"<|quad_start|>",
|
| 10 |
+
"<|quad_end|>",
|
| 11 |
+
"<|vision_start|>",
|
| 12 |
+
"<|vision_end|>",
|
| 13 |
+
"<|vision_pad|>",
|
| 14 |
+
"<|image_pad|>",
|
| 15 |
+
"<|video_pad|>"
|
| 16 |
+
],
|
| 17 |
+
"eos_token": {
|
| 18 |
+
"content": "<|im_end|>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
},
|
| 24 |
+
"pad_token": {
|
| 25 |
+
"content": "<|endoftext|>",
|
| 26 |
+
"lstrip": false,
|
| 27 |
+
"normalized": false,
|
| 28 |
+
"rstrip": false,
|
| 29 |
+
"single_word": false
|
| 30 |
+
}
|
| 31 |
+
}
|
last-checkpoint/tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5eee858c5123a4279c3e1f7b81247343f356ac767940b2692a928ad929543214
|
| 3 |
+
size 11422063
|
last-checkpoint/tokenizer_config.json
ADDED
|
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"151643": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"151644": {
|
| 14 |
+
"content": "<|im_start|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"151645": {
|
| 22 |
+
"content": "<|im_end|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"151646": {
|
| 30 |
+
"content": "<|object_ref_start|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"151647": {
|
| 38 |
+
"content": "<|object_ref_end|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"151648": {
|
| 46 |
+
"content": "<|box_start|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"151649": {
|
| 54 |
+
"content": "<|box_end|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"151650": {
|
| 62 |
+
"content": "<|quad_start|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"151651": {
|
| 70 |
+
"content": "<|quad_end|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"151652": {
|
| 78 |
+
"content": "<|vision_start|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"151653": {
|
| 86 |
+
"content": "<|vision_end|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"151654": {
|
| 94 |
+
"content": "<|vision_pad|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"151655": {
|
| 102 |
+
"content": "<|image_pad|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"151656": {
|
| 110 |
+
"content": "<|video_pad|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"151657": {
|
| 118 |
+
"content": "<tool_call>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"151658": {
|
| 126 |
+
"content": "</tool_call>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"151659": {
|
| 134 |
+
"content": "<|fim_prefix|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"151660": {
|
| 142 |
+
"content": "<|fim_middle|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"151661": {
|
| 150 |
+
"content": "<|fim_suffix|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"151662": {
|
| 158 |
+
"content": "<|fim_pad|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"151663": {
|
| 166 |
+
"content": "<|repo_name|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"151664": {
|
| 174 |
+
"content": "<|file_sep|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
}
|
| 181 |
+
},
|
| 182 |
+
"additional_special_tokens": [
|
| 183 |
+
"<|im_start|>",
|
| 184 |
+
"<|im_end|>",
|
| 185 |
+
"<|object_ref_start|>",
|
| 186 |
+
"<|object_ref_end|>",
|
| 187 |
+
"<|box_start|>",
|
| 188 |
+
"<|box_end|>",
|
| 189 |
+
"<|quad_start|>",
|
| 190 |
+
"<|quad_end|>",
|
| 191 |
+
"<|vision_start|>",
|
| 192 |
+
"<|vision_end|>",
|
| 193 |
+
"<|vision_pad|>",
|
| 194 |
+
"<|image_pad|>",
|
| 195 |
+
"<|video_pad|>"
|
| 196 |
+
],
|
| 197 |
+
"bos_token": null,
|
| 198 |
+
"chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}",
|
| 199 |
+
"clean_up_tokenization_spaces": false,
|
| 200 |
+
"eos_token": "<|im_end|>",
|
| 201 |
+
"errors": "replace",
|
| 202 |
+
"extra_special_tokens": {},
|
| 203 |
+
"model_max_length": 131072,
|
| 204 |
+
"pad_token": "<|endoftext|>",
|
| 205 |
+
"processor_class": "Qwen2_5_VLProcessor",
|
| 206 |
+
"split_special_tokens": false,
|
| 207 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 208 |
+
"unk_token": null
|
| 209 |
+
}
|
last-checkpoint/trainer_state.json
ADDED
|
@@ -0,0 +1,1633 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 0.003852228514195462,
|
| 5 |
+
"eval_steps": 500,
|
| 6 |
+
"global_step": 100,
|
| 7 |
+
"is_hyper_param_search": false,
|
| 8 |
+
"is_local_process_zero": true,
|
| 9 |
+
"is_world_process_zero": true,
|
| 10 |
+
"log_history": [
|
| 11 |
+
{
|
| 12 |
+
"all_correct": 0.0,
|
| 13 |
+
"all_wrong": 0.2857142857142857,
|
| 14 |
+
"completion_length": 194.5178680419922,
|
| 15 |
+
"epoch": 3.852228514195462e-05,
|
| 16 |
+
"grad_norm": 4.569568275684066,
|
| 17 |
+
"kl": 0.0,
|
| 18 |
+
"learning_rate": 9.999999963384595e-07,
|
| 19 |
+
"loss": -0.0,
|
| 20 |
+
"reward": 0.9388507008552551,
|
| 21 |
+
"reward_std": 0.5055427551269531,
|
| 22 |
+
"rewards/accuracy_reward": 0.36027929186820984,
|
| 23 |
+
"rewards/format_reward": 0.5,
|
| 24 |
+
"step": 1,
|
| 25 |
+
"temporal_rewards": 0.6428571343421936
|
| 26 |
+
},
|
| 27 |
+
{
|
| 28 |
+
"all_correct": 0.0,
|
| 29 |
+
"all_wrong": 0.14285714285714285,
|
| 30 |
+
"completion_length": 201.85714721679688,
|
| 31 |
+
"epoch": 7.704457028390924e-05,
|
| 32 |
+
"grad_norm": 7.3425194668816305,
|
| 33 |
+
"kl": 0.001190185546875,
|
| 34 |
+
"learning_rate": 9.99999985353838e-07,
|
| 35 |
+
"loss": 0.0,
|
| 36 |
+
"reward": 1.155859351158142,
|
| 37 |
+
"reward_std": 0.6079983711242676,
|
| 38 |
+
"rewards/accuracy_reward": 0.5290736556053162,
|
| 39 |
+
"rewards/format_reward": 0.5714285969734192,
|
| 40 |
+
"step": 2,
|
| 41 |
+
"temporal_rewards": 0.5
|
| 42 |
+
},
|
| 43 |
+
{
|
| 44 |
+
"all_correct": 0.0,
|
| 45 |
+
"all_wrong": 0.2857142857142857,
|
| 46 |
+
"completion_length": 229.5357208251953,
|
| 47 |
+
"epoch": 0.00011556685542586386,
|
| 48 |
+
"grad_norm": 10.46166634557011,
|
| 49 |
+
"kl": 0.00148773193359375,
|
| 50 |
+
"learning_rate": 9.999999670461361e-07,
|
| 51 |
+
"loss": 0.0001,
|
| 52 |
+
"reward": 1.0399483442306519,
|
| 53 |
+
"reward_std": 0.527042806148529,
|
| 54 |
+
"rewards/accuracy_reward": 0.3810196816921234,
|
| 55 |
+
"rewards/format_reward": 0.5535714626312256,
|
| 56 |
+
"step": 3,
|
| 57 |
+
"temporal_rewards": 0.5
|
| 58 |
+
},
|
| 59 |
+
{
|
| 60 |
+
"all_correct": 0.0,
|
| 61 |
+
"all_wrong": 0.42857142857142855,
|
| 62 |
+
"completion_length": 243.50001525878906,
|
| 63 |
+
"epoch": 0.00015408914056781847,
|
| 64 |
+
"grad_norm": 2.4261998522622483,
|
| 65 |
+
"kl": 0.0020599365234375,
|
| 66 |
+
"learning_rate": 9.999999414153537e-07,
|
| 67 |
+
"loss": 0.0001,
|
| 68 |
+
"reward": 0.8851699829101562,
|
| 69 |
+
"reward_std": 0.5343522429466248,
|
| 70 |
+
"rewards/accuracy_reward": 0.27624136209487915,
|
| 71 |
+
"rewards/format_reward": 0.5892857313156128,
|
| 72 |
+
"step": 4,
|
| 73 |
+
"temporal_rewards": 0.5714285373687744
|
| 74 |
+
},
|
| 75 |
+
{
|
| 76 |
+
"all_correct": 0.0,
|
| 77 |
+
"all_wrong": 0.14285714285714285,
|
| 78 |
+
"completion_length": 298.8214416503906,
|
| 79 |
+
"epoch": 0.0001926114257097731,
|
| 80 |
+
"grad_norm": 2.6156215584160614,
|
| 81 |
+
"kl": 0.005035400390625,
|
| 82 |
+
"learning_rate": 9.999999084614913e-07,
|
| 83 |
+
"loss": 0.0002,
|
| 84 |
+
"reward": 1.374528408050537,
|
| 85 |
+
"reward_std": 0.558069109916687,
|
| 86 |
+
"rewards/accuracy_reward": 0.5459570288658142,
|
| 87 |
+
"rewards/format_reward": 0.6785714626312256,
|
| 88 |
+
"step": 5,
|
| 89 |
+
"temporal_rewards": 0.714285671710968
|
| 90 |
+
},
|
| 91 |
+
{
|
| 92 |
+
"all_correct": 0.2857142857142857,
|
| 93 |
+
"all_wrong": 0.14285714285714285,
|
| 94 |
+
"completion_length": 246.3035888671875,
|
| 95 |
+
"epoch": 0.00023113371085172773,
|
| 96 |
+
"grad_norm": 3.003642956951274,
|
| 97 |
+
"kl": 0.003936767578125,
|
| 98 |
+
"learning_rate": 9.999998681845493e-07,
|
| 99 |
+
"loss": 0.0002,
|
| 100 |
+
"reward": 1.5285981893539429,
|
| 101 |
+
"reward_std": 0.3147147297859192,
|
| 102 |
+
"rewards/accuracy_reward": 0.5000267028808594,
|
| 103 |
+
"rewards/format_reward": 0.8750000596046448,
|
| 104 |
+
"step": 6,
|
| 105 |
+
"temporal_rewards": 0.714285671710968
|
| 106 |
+
},
|
| 107 |
+
{
|
| 108 |
+
"all_correct": 0.14285714285714285,
|
| 109 |
+
"all_wrong": 0.2857142857142857,
|
| 110 |
+
"completion_length": 172.80357360839844,
|
| 111 |
+
"epoch": 0.0002696559959936823,
|
| 112 |
+
"grad_norm": 2.2475007240283,
|
| 113 |
+
"kl": 0.00531005859375,
|
| 114 |
+
"learning_rate": 9.999998205845283e-07,
|
| 115 |
+
"loss": 0.0002,
|
| 116 |
+
"reward": 1.4922091960906982,
|
| 117 |
+
"reward_std": 0.26347360014915466,
|
| 118 |
+
"rewards/accuracy_reward": 0.46542346477508545,
|
| 119 |
+
"rewards/format_reward": 0.9285714626312256,
|
| 120 |
+
"step": 7,
|
| 121 |
+
"temporal_rewards": 0.5714285373687744
|
| 122 |
+
},
|
| 123 |
+
{
|
| 124 |
+
"all_correct": 0.0,
|
| 125 |
+
"all_wrong": 0.0,
|
| 126 |
+
"completion_length": 264.125,
|
| 127 |
+
"epoch": 0.00030817828113563695,
|
| 128 |
+
"grad_norm": 13.215726344682453,
|
| 129 |
+
"kl": 0.004608154296875,
|
| 130 |
+
"learning_rate": 9.99999765661429e-07,
|
| 131 |
+
"loss": 0.0002,
|
| 132 |
+
"reward": 1.4859822988510132,
|
| 133 |
+
"reward_std": 0.39378076791763306,
|
| 134 |
+
"rewards/accuracy_reward": 0.38955357670783997,
|
| 135 |
+
"rewards/format_reward": 0.9464285969734192,
|
| 136 |
+
"step": 8,
|
| 137 |
+
"temporal_rewards": 0.714285671710968
|
| 138 |
+
},
|
| 139 |
+
{
|
| 140 |
+
"all_correct": 0.14285714285714285,
|
| 141 |
+
"all_wrong": 0.14285714285714285,
|
| 142 |
+
"completion_length": 233.75001525878906,
|
| 143 |
+
"epoch": 0.0003467005662775916,
|
| 144 |
+
"grad_norm": 1.8754887680204013,
|
| 145 |
+
"kl": 0.0047607421875,
|
| 146 |
+
"learning_rate": 9.999997034152522e-07,
|
| 147 |
+
"loss": 0.0002,
|
| 148 |
+
"reward": 1.5294489860534668,
|
| 149 |
+
"reward_std": 0.35142022371292114,
|
| 150 |
+
"rewards/accuracy_reward": 0.5062346458435059,
|
| 151 |
+
"rewards/format_reward": 0.9285714626312256,
|
| 152 |
+
"step": 9,
|
| 153 |
+
"temporal_rewards": 0.6428571343421936
|
| 154 |
+
},
|
| 155 |
+
{
|
| 156 |
+
"all_correct": 0.0,
|
| 157 |
+
"all_wrong": 0.42857142857142855,
|
| 158 |
+
"completion_length": 184.6428680419922,
|
| 159 |
+
"epoch": 0.0003852228514195462,
|
| 160 |
+
"grad_norm": 6.068013472130498,
|
| 161 |
+
"kl": 0.0108642578125,
|
| 162 |
+
"learning_rate": 9.99999633845999e-07,
|
| 163 |
+
"loss": 0.0004,
|
| 164 |
+
"reward": 1.1100354194641113,
|
| 165 |
+
"reward_std": 0.11215802282094955,
|
| 166 |
+
"rewards/accuracy_reward": 0.11717834323644638,
|
| 167 |
+
"rewards/format_reward": 0.9821429252624512,
|
| 168 |
+
"step": 10,
|
| 169 |
+
"temporal_rewards": 0.357142835855484
|
| 170 |
+
},
|
| 171 |
+
{
|
| 172 |
+
"all_correct": 0.2857142857142857,
|
| 173 |
+
"all_wrong": 0.14285714285714285,
|
| 174 |
+
"completion_length": 130.80357360839844,
|
| 175 |
+
"epoch": 0.0004237451365615008,
|
| 176 |
+
"grad_norm": 2.7706073106467994,
|
| 177 |
+
"kl": 0.00799560546875,
|
| 178 |
+
"learning_rate": 9.9999955695367e-07,
|
| 179 |
+
"loss": 0.0003,
|
| 180 |
+
"reward": 1.6379828453063965,
|
| 181 |
+
"reward_std": 0.15209504961967468,
|
| 182 |
+
"rewards/accuracy_reward": 0.5522685050964355,
|
| 183 |
+
"rewards/format_reward": 1.0,
|
| 184 |
+
"step": 11,
|
| 185 |
+
"temporal_rewards": 0.5714285373687744
|
| 186 |
+
},
|
| 187 |
+
{
|
| 188 |
+
"all_correct": 0.42857142857142855,
|
| 189 |
+
"all_wrong": 0.0,
|
| 190 |
+
"completion_length": 231.0535888671875,
|
| 191 |
+
"epoch": 0.00046226742170345545,
|
| 192 |
+
"grad_norm": 4.077451010264333,
|
| 193 |
+
"kl": 0.0135498046875,
|
| 194 |
+
"learning_rate": 9.999994727382667e-07,
|
| 195 |
+
"loss": 0.0005,
|
| 196 |
+
"reward": 1.757586121559143,
|
| 197 |
+
"reward_std": 0.1790602058172226,
|
| 198 |
+
"rewards/accuracy_reward": 0.6308003664016724,
|
| 199 |
+
"rewards/format_reward": 0.9642857313156128,
|
| 200 |
+
"step": 12,
|
| 201 |
+
"temporal_rewards": 0.714285671710968
|
| 202 |
+
},
|
| 203 |
+
{
|
| 204 |
+
"all_correct": 0.2857142857142857,
|
| 205 |
+
"all_wrong": 0.14285714285714285,
|
| 206 |
+
"completion_length": 182.85714721679688,
|
| 207 |
+
"epoch": 0.0005007897068454101,
|
| 208 |
+
"grad_norm": 3.171637082851311,
|
| 209 |
+
"kl": 0.01470947265625,
|
| 210 |
+
"learning_rate": 9.999993811997902e-07,
|
| 211 |
+
"loss": 0.0006,
|
| 212 |
+
"reward": 1.5119588375091553,
|
| 213 |
+
"reward_std": 0.0800565853714943,
|
| 214 |
+
"rewards/accuracy_reward": 0.374458909034729,
|
| 215 |
+
"rewards/format_reward": 1.0,
|
| 216 |
+
"step": 13,
|
| 217 |
+
"temporal_rewards": 0.714285671710968
|
| 218 |
+
},
|
| 219 |
+
{
|
| 220 |
+
"all_correct": 0.0,
|
| 221 |
+
"all_wrong": 0.14285714285714285,
|
| 222 |
+
"completion_length": 369.9821472167969,
|
| 223 |
+
"epoch": 0.0005393119919873646,
|
| 224 |
+
"grad_norm": 3.0114431906272743,
|
| 225 |
+
"kl": 0.009033203125,
|
| 226 |
+
"learning_rate": 9.99999282338242e-07,
|
| 227 |
+
"loss": 0.0004,
|
| 228 |
+
"reward": 1.1452234983444214,
|
| 229 |
+
"reward_std": 0.30584630370140076,
|
| 230 |
+
"rewards/accuracy_reward": 0.2773663103580475,
|
| 231 |
+
"rewards/format_reward": 0.8392857313156128,
|
| 232 |
+
"step": 14,
|
| 233 |
+
"temporal_rewards": 0.5
|
| 234 |
+
},
|
| 235 |
+
{
|
| 236 |
+
"all_correct": 0.14285714285714285,
|
| 237 |
+
"all_wrong": 0.5714285714285714,
|
| 238 |
+
"completion_length": 272.3214416503906,
|
| 239 |
+
"epoch": 0.0005778342771293193,
|
| 240 |
+
"grad_norm": 1.762681908155442,
|
| 241 |
+
"kl": 0.0123291015625,
|
| 242 |
+
"learning_rate": 9.999991761536231e-07,
|
| 243 |
+
"loss": 0.0005,
|
| 244 |
+
"reward": 1.3017858266830444,
|
| 245 |
+
"reward_std": 0.21957917511463165,
|
| 246 |
+
"rewards/accuracy_reward": 0.2857142984867096,
|
| 247 |
+
"rewards/format_reward": 0.9642857313156128,
|
| 248 |
+
"step": 15,
|
| 249 |
+
"temporal_rewards": 0.6428571343421936
|
| 250 |
+
},
|
| 251 |
+
{
|
| 252 |
+
"all_correct": 0.14285714285714285,
|
| 253 |
+
"all_wrong": 0.14285714285714285,
|
| 254 |
+
"completion_length": 167.7857208251953,
|
| 255 |
+
"epoch": 0.0006163565622712739,
|
| 256 |
+
"grad_norm": 2.3136273405544956,
|
| 257 |
+
"kl": 0.01318359375,
|
| 258 |
+
"learning_rate": 9.999990626459356e-07,
|
| 259 |
+
"loss": 0.0005,
|
| 260 |
+
"reward": 1.4714285135269165,
|
| 261 |
+
"reward_std": 0.27723559737205505,
|
| 262 |
+
"rewards/accuracy_reward": 0.42500004172325134,
|
| 263 |
+
"rewards/format_reward": 1.0,
|
| 264 |
+
"step": 16,
|
| 265 |
+
"temporal_rewards": 0.5714285373687744
|
| 266 |
+
},
|
| 267 |
+
{
|
| 268 |
+
"all_correct": 0.42857142857142855,
|
| 269 |
+
"all_wrong": 0.14285714285714285,
|
| 270 |
+
"completion_length": 145.1428680419922,
|
| 271 |
+
"epoch": 0.0006548788474132286,
|
| 272 |
+
"grad_norm": 2.6755799727485496,
|
| 273 |
+
"kl": 0.0140380859375,
|
| 274 |
+
"learning_rate": 9.99998941815181e-07,
|
| 275 |
+
"loss": 0.0006,
|
| 276 |
+
"reward": 1.779188632965088,
|
| 277 |
+
"reward_std": 0.21795018017292023,
|
| 278 |
+
"rewards/accuracy_reward": 0.7077600359916687,
|
| 279 |
+
"rewards/format_reward": 0.9821429252624512,
|
| 280 |
+
"step": 17,
|
| 281 |
+
"temporal_rewards": 0.6428571343421936
|
| 282 |
+
},
|
| 283 |
+
{
|
| 284 |
+
"all_correct": 0.14285714285714285,
|
| 285 |
+
"all_wrong": 0.14285714285714285,
|
| 286 |
+
"completion_length": 220.1607208251953,
|
| 287 |
+
"epoch": 0.0006934011325551831,
|
| 288 |
+
"grad_norm": 2.051492241832231,
|
| 289 |
+
"kl": 0.0130615234375,
|
| 290 |
+
"learning_rate": 9.999988136613608e-07,
|
| 291 |
+
"loss": 0.0005,
|
| 292 |
+
"reward": 1.5756233930587769,
|
| 293 |
+
"reward_std": 0.2738674283027649,
|
| 294 |
+
"rewards/accuracy_reward": 0.4952661097049713,
|
| 295 |
+
"rewards/format_reward": 0.9642857313156128,
|
| 296 |
+
"step": 18,
|
| 297 |
+
"temporal_rewards": 0.6428571343421936
|
| 298 |
+
},
|
| 299 |
+
{
|
| 300 |
+
"all_correct": 0.14285714285714285,
|
| 301 |
+
"all_wrong": 0.14285714285714285,
|
| 302 |
+
"completion_length": 159.71429443359375,
|
| 303 |
+
"epoch": 0.0007319234176971378,
|
| 304 |
+
"grad_norm": 7.813403350492354,
|
| 305 |
+
"kl": 0.0228271484375,
|
| 306 |
+
"learning_rate": 9.999986781844772e-07,
|
| 307 |
+
"loss": 0.0009,
|
| 308 |
+
"reward": 1.368477463722229,
|
| 309 |
+
"reward_std": 0.17073635756969452,
|
| 310 |
+
"rewards/accuracy_reward": 0.320263147354126,
|
| 311 |
+
"rewards/format_reward": 1.0,
|
| 312 |
+
"step": 19,
|
| 313 |
+
"temporal_rewards": 0.6428571343421936
|
| 314 |
+
},
|
| 315 |
+
{
|
| 316 |
+
"all_correct": 0.14285714285714285,
|
| 317 |
+
"all_wrong": 0.0,
|
| 318 |
+
"completion_length": 245.96429443359375,
|
| 319 |
+
"epoch": 0.0007704457028390924,
|
| 320 |
+
"grad_norm": 3.1470469127291536,
|
| 321 |
+
"kl": 0.01239013671875,
|
| 322 |
+
"learning_rate": 9.99998535384532e-07,
|
| 323 |
+
"loss": 0.0005,
|
| 324 |
+
"reward": 1.4473823308944702,
|
| 325 |
+
"reward_std": 0.17675410211086273,
|
| 326 |
+
"rewards/accuracy_reward": 0.34738224744796753,
|
| 327 |
+
"rewards/format_reward": 1.0,
|
| 328 |
+
"step": 20,
|
| 329 |
+
"temporal_rewards": 0.5714285373687744
|
| 330 |
+
},
|
| 331 |
+
{
|
| 332 |
+
"all_correct": 0.2857142857142857,
|
| 333 |
+
"all_wrong": 0.0,
|
| 334 |
+
"completion_length": 196.67857360839844,
|
| 335 |
+
"epoch": 0.0008089679879810471,
|
| 336 |
+
"grad_norm": 1.985055486033898,
|
| 337 |
+
"kl": 0.0172119140625,
|
| 338 |
+
"learning_rate": 9.999983852615273e-07,
|
| 339 |
+
"loss": 0.0007,
|
| 340 |
+
"reward": 1.5379002094268799,
|
| 341 |
+
"reward_std": 0.10025887936353683,
|
| 342 |
+
"rewards/accuracy_reward": 0.4736144542694092,
|
| 343 |
+
"rewards/format_reward": 1.0,
|
| 344 |
+
"step": 21,
|
| 345 |
+
"temporal_rewards": 0.5714285373687744
|
| 346 |
+
},
|
| 347 |
+
{
|
| 348 |
+
"all_correct": 0.14285714285714285,
|
| 349 |
+
"all_wrong": 0.42857142857142855,
|
| 350 |
+
"completion_length": 235.75001525878906,
|
| 351 |
+
"epoch": 0.0008474902731230017,
|
| 352 |
+
"grad_norm": 2.3022387425335356,
|
| 353 |
+
"kl": 0.010009765625,
|
| 354 |
+
"learning_rate": 9.999982278154653e-07,
|
| 355 |
+
"loss": 0.0004,
|
| 356 |
+
"reward": 1.3792414665222168,
|
| 357 |
+
"reward_std": 0.16881819069385529,
|
| 358 |
+
"rewards/accuracy_reward": 0.3149556815624237,
|
| 359 |
+
"rewards/format_reward": 1.0,
|
| 360 |
+
"step": 22,
|
| 361 |
+
"temporal_rewards": 0.6428571343421936
|
| 362 |
+
},
|
| 363 |
+
{
|
| 364 |
+
"all_correct": 0.2857142857142857,
|
| 365 |
+
"all_wrong": 0.14285714285714285,
|
| 366 |
+
"completion_length": 195.75001525878906,
|
| 367 |
+
"epoch": 0.0008860125582649563,
|
| 368 |
+
"grad_norm": 2.5960019564354115,
|
| 369 |
+
"kl": 0.01373291015625,
|
| 370 |
+
"learning_rate": 9.999980630463484e-07,
|
| 371 |
+
"loss": 0.0006,
|
| 372 |
+
"reward": 1.483102560043335,
|
| 373 |
+
"reward_std": 0.2669390141963959,
|
| 374 |
+
"rewards/accuracy_reward": 0.43310248851776123,
|
| 375 |
+
"rewards/format_reward": 0.9821429252624512,
|
| 376 |
+
"step": 23,
|
| 377 |
+
"temporal_rewards": 0.5
|
| 378 |
+
},
|
| 379 |
+
{
|
| 380 |
+
"all_correct": 0.2857142857142857,
|
| 381 |
+
"all_wrong": 0.2857142857142857,
|
| 382 |
+
"completion_length": 233.58929443359375,
|
| 383 |
+
"epoch": 0.0009245348434069109,
|
| 384 |
+
"grad_norm": 16.12922501556988,
|
| 385 |
+
"kl": 0.0169677734375,
|
| 386 |
+
"learning_rate": 9.99997890954179e-07,
|
| 387 |
+
"loss": 0.0007,
|
| 388 |
+
"reward": 1.253800868988037,
|
| 389 |
+
"reward_std": 0.2512234151363373,
|
| 390 |
+
"rewards/accuracy_reward": 0.4055865705013275,
|
| 391 |
+
"rewards/format_reward": 0.8392857313156128,
|
| 392 |
+
"step": 24,
|
| 393 |
+
"temporal_rewards": 0.5714285373687744
|
| 394 |
+
},
|
| 395 |
+
{
|
| 396 |
+
"all_correct": 0.42857142857142855,
|
| 397 |
+
"all_wrong": 0.0,
|
| 398 |
+
"completion_length": 198.7857208251953,
|
| 399 |
+
"epoch": 0.0009630571285488655,
|
| 400 |
+
"grad_norm": 3.9868394906657,
|
| 401 |
+
"kl": 0.0263671875,
|
| 402 |
+
"learning_rate": 9.999977115389595e-07,
|
| 403 |
+
"loss": 0.0011,
|
| 404 |
+
"reward": 1.821338176727295,
|
| 405 |
+
"reward_std": 0.2050185352563858,
|
| 406 |
+
"rewards/accuracy_reward": 0.6606237888336182,
|
| 407 |
+
"rewards/format_reward": 0.9821429252624512,
|
| 408 |
+
"step": 25,
|
| 409 |
+
"temporal_rewards": 0.7857142686843872
|
| 410 |
+
},
|
| 411 |
+
{
|
| 412 |
+
"all_correct": 0.14285714285714285,
|
| 413 |
+
"all_wrong": 0.0,
|
| 414 |
+
"completion_length": 194.73214721679688,
|
| 415 |
+
"epoch": 0.0010015794136908202,
|
| 416 |
+
"grad_norm": 3.0965250094321854,
|
| 417 |
+
"kl": 0.015869140625,
|
| 418 |
+
"learning_rate": 9.999975248006927e-07,
|
| 419 |
+
"loss": 0.0006,
|
| 420 |
+
"reward": 1.5368238687515259,
|
| 421 |
+
"reward_std": 0.29229164123535156,
|
| 422 |
+
"rewards/accuracy_reward": 0.49039536714553833,
|
| 423 |
+
"rewards/format_reward": 0.9821429252624512,
|
| 424 |
+
"step": 26,
|
| 425 |
+
"temporal_rewards": 0.6428571343421936
|
| 426 |
+
},
|
| 427 |
+
{
|
| 428 |
+
"all_correct": 0.42857142857142855,
|
| 429 |
+
"all_wrong": 0.14285714285714285,
|
| 430 |
+
"completion_length": 144.58929443359375,
|
| 431 |
+
"epoch": 0.0010401016988327747,
|
| 432 |
+
"grad_norm": 3.463559757421393,
|
| 433 |
+
"kl": 0.0194091796875,
|
| 434 |
+
"learning_rate": 9.999973307393812e-07,
|
| 435 |
+
"loss": 0.0008,
|
| 436 |
+
"reward": 1.9461054801940918,
|
| 437 |
+
"reward_std": 0.14775770902633667,
|
| 438 |
+
"rewards/accuracy_reward": 0.7211053371429443,
|
| 439 |
+
"rewards/format_reward": 1.0,
|
| 440 |
+
"step": 27,
|
| 441 |
+
"temporal_rewards": 0.8571428656578064
|
| 442 |
+
},
|
| 443 |
+
{
|
| 444 |
+
"all_correct": 0.14285714285714285,
|
| 445 |
+
"all_wrong": 0.42857142857142855,
|
| 446 |
+
"completion_length": 149.5178680419922,
|
| 447 |
+
"epoch": 0.0010786239839747293,
|
| 448 |
+
"grad_norm": 4.208967606472135,
|
| 449 |
+
"kl": 0.0166015625,
|
| 450 |
+
"learning_rate": 9.99997129355028e-07,
|
| 451 |
+
"loss": 0.0007,
|
| 452 |
+
"reward": 1.4785715341567993,
|
| 453 |
+
"reward_std": 0.23233509063720703,
|
| 454 |
+
"rewards/accuracy_reward": 0.4107142984867096,
|
| 455 |
+
"rewards/format_reward": 0.9821429252624512,
|
| 456 |
+
"step": 28,
|
| 457 |
+
"temporal_rewards": 0.714285671710968
|
| 458 |
+
},
|
| 459 |
+
{
|
| 460 |
+
"all_correct": 0.14285714285714285,
|
| 461 |
+
"all_wrong": 0.14285714285714285,
|
| 462 |
+
"completion_length": 190.07144165039062,
|
| 463 |
+
"epoch": 0.001117146269116684,
|
| 464 |
+
"grad_norm": 3.1320237643372493,
|
| 465 |
+
"kl": 0.019287109375,
|
| 466 |
+
"learning_rate": 9.999969206476357e-07,
|
| 467 |
+
"loss": 0.0008,
|
| 468 |
+
"reward": 1.6795918941497803,
|
| 469 |
+
"reward_std": 0.2941642701625824,
|
| 470 |
+
"rewards/accuracy_reward": 0.59566330909729,
|
| 471 |
+
"rewards/format_reward": 1.0,
|
| 472 |
+
"step": 29,
|
| 473 |
+
"temporal_rewards": 0.6428571343421936
|
| 474 |
+
},
|
| 475 |
+
{
|
| 476 |
+
"all_correct": 0.14285714285714285,
|
| 477 |
+
"all_wrong": 0.2857142857142857,
|
| 478 |
+
"completion_length": 140.67857360839844,
|
| 479 |
+
"epoch": 0.0011556685542586387,
|
| 480 |
+
"grad_norm": 2.1228282157999563,
|
| 481 |
+
"kl": 0.0218505859375,
|
| 482 |
+
"learning_rate": 9.999967046172078e-07,
|
| 483 |
+
"loss": 0.0009,
|
| 484 |
+
"reward": 1.5656999349594116,
|
| 485 |
+
"reward_std": 0.23240727186203003,
|
| 486 |
+
"rewards/accuracy_reward": 0.4746284782886505,
|
| 487 |
+
"rewards/format_reward": 1.0,
|
| 488 |
+
"step": 30,
|
| 489 |
+
"temporal_rewards": 0.5
|
| 490 |
+
},
|
| 491 |
+
{
|
| 492 |
+
"all_correct": 0.0,
|
| 493 |
+
"all_wrong": 0.2857142857142857,
|
| 494 |
+
"completion_length": 342.0535888671875,
|
| 495 |
+
"epoch": 0.0011941908394005932,
|
| 496 |
+
"grad_norm": 3.139985295701204,
|
| 497 |
+
"kl": 0.01708984375,
|
| 498 |
+
"learning_rate": 9.999964812637472e-07,
|
| 499 |
+
"loss": 0.0007,
|
| 500 |
+
"reward": 1.1670215129852295,
|
| 501 |
+
"reward_std": 0.2952883243560791,
|
| 502 |
+
"rewards/accuracy_reward": 0.25273576378822327,
|
| 503 |
+
"rewards/format_reward": 0.8750000596046448,
|
| 504 |
+
"step": 31,
|
| 505 |
+
"temporal_rewards": 0.5
|
| 506 |
+
},
|
| 507 |
+
{
|
| 508 |
+
"all_correct": 0.0,
|
| 509 |
+
"all_wrong": 0.5714285714285714,
|
| 510 |
+
"completion_length": 320.375,
|
| 511 |
+
"epoch": 0.0012327131245425478,
|
| 512 |
+
"grad_norm": 2.9321327508284014,
|
| 513 |
+
"kl": 0.015869140625,
|
| 514 |
+
"learning_rate": 9.999962505872572e-07,
|
| 515 |
+
"loss": 0.0006,
|
| 516 |
+
"reward": 1.0767621994018555,
|
| 517 |
+
"reward_std": 0.18118657171726227,
|
| 518 |
+
"rewards/accuracy_reward": 0.18033367395401,
|
| 519 |
+
"rewards/format_reward": 0.8571429252624512,
|
| 520 |
+
"step": 32,
|
| 521 |
+
"temporal_rewards": 0.6428571343421936
|
| 522 |
+
},
|
| 523 |
+
{
|
| 524 |
+
"all_correct": 0.42857142857142855,
|
| 525 |
+
"all_wrong": 0.2857142857142857,
|
| 526 |
+
"completion_length": 182.80357360839844,
|
| 527 |
+
"epoch": 0.0012712354096845026,
|
| 528 |
+
"grad_norm": 1.6393422027112028,
|
| 529 |
+
"kl": 0.029296875,
|
| 530 |
+
"learning_rate": 9.999960125877412e-07,
|
| 531 |
+
"loss": 0.0012,
|
| 532 |
+
"reward": 1.662595272064209,
|
| 533 |
+
"reward_std": 0.0667729526758194,
|
| 534 |
+
"rewards/accuracy_reward": 0.5947380065917969,
|
| 535 |
+
"rewards/format_reward": 0.9821429252624512,
|
| 536 |
+
"step": 33,
|
| 537 |
+
"temporal_rewards": 0.6428571343421936
|
| 538 |
+
},
|
| 539 |
+
{
|
| 540 |
+
"all_correct": 0.14285714285714285,
|
| 541 |
+
"all_wrong": 0.2857142857142857,
|
| 542 |
+
"completion_length": 280.1964416503906,
|
| 543 |
+
"epoch": 0.0013097576948264572,
|
| 544 |
+
"grad_norm": 1.8796443825485132,
|
| 545 |
+
"kl": 0.0194091796875,
|
| 546 |
+
"learning_rate": 9.999957672652028e-07,
|
| 547 |
+
"loss": 0.0008,
|
| 548 |
+
"reward": 1.3545540571212769,
|
| 549 |
+
"reward_std": 0.18943731486797333,
|
| 550 |
+
"rewards/accuracy_reward": 0.3545539975166321,
|
| 551 |
+
"rewards/format_reward": 0.9642857313156128,
|
| 552 |
+
"step": 34,
|
| 553 |
+
"temporal_rewards": 0.5714285373687744
|
| 554 |
+
},
|
| 555 |
+
{
|
| 556 |
+
"all_correct": 0.14285714285714285,
|
| 557 |
+
"all_wrong": 0.0,
|
| 558 |
+
"completion_length": 219.37501525878906,
|
| 559 |
+
"epoch": 0.0013482799799684117,
|
| 560 |
+
"grad_norm": 2.906310484540033,
|
| 561 |
+
"kl": 0.015380859375,
|
| 562 |
+
"learning_rate": 9.999955146196455e-07,
|
| 563 |
+
"loss": 0.0006,
|
| 564 |
+
"reward": 1.3780333995819092,
|
| 565 |
+
"reward_std": 0.23713341355323792,
|
| 566 |
+
"rewards/accuracy_reward": 0.3244618773460388,
|
| 567 |
+
"rewards/format_reward": 1.0,
|
| 568 |
+
"step": 35,
|
| 569 |
+
"temporal_rewards": 0.5
|
| 570 |
+
},
|
| 571 |
+
{
|
| 572 |
+
"all_correct": 0.0,
|
| 573 |
+
"all_wrong": 0.14285714285714285,
|
| 574 |
+
"completion_length": 279.51788330078125,
|
| 575 |
+
"epoch": 0.0013868022651103663,
|
| 576 |
+
"grad_norm": 2.4420138636907334,
|
| 577 |
+
"kl": 0.01116943359375,
|
| 578 |
+
"learning_rate": 9.999952546510728e-07,
|
| 579 |
+
"loss": 0.0004,
|
| 580 |
+
"reward": 1.4657601118087769,
|
| 581 |
+
"reward_std": 0.24927140772342682,
|
| 582 |
+
"rewards/accuracy_reward": 0.3657601475715637,
|
| 583 |
+
"rewards/format_reward": 1.0,
|
| 584 |
+
"step": 36,
|
| 585 |
+
"temporal_rewards": 0.5714285373687744
|
| 586 |
+
},
|
| 587 |
+
{
|
| 588 |
+
"all_correct": 0.2857142857142857,
|
| 589 |
+
"all_wrong": 0.0,
|
| 590 |
+
"completion_length": 188.92857360839844,
|
| 591 |
+
"epoch": 0.0014253245502523209,
|
| 592 |
+
"grad_norm": 6.501680028535296,
|
| 593 |
+
"kl": 0.0191650390625,
|
| 594 |
+
"learning_rate": 9.99994987359489e-07,
|
| 595 |
+
"loss": 0.0008,
|
| 596 |
+
"reward": 1.6103023290634155,
|
| 597 |
+
"reward_std": 0.34319451451301575,
|
| 598 |
+
"rewards/accuracy_reward": 0.519230842590332,
|
| 599 |
+
"rewards/format_reward": 0.9821429252624512,
|
| 600 |
+
"step": 37,
|
| 601 |
+
"temporal_rewards": 0.714285671710968
|
| 602 |
+
},
|
| 603 |
+
{
|
| 604 |
+
"all_correct": 0.2857142857142857,
|
| 605 |
+
"all_wrong": 0.14285714285714285,
|
| 606 |
+
"completion_length": 174.1607208251953,
|
| 607 |
+
"epoch": 0.0014638468353942757,
|
| 608 |
+
"grad_norm": 2.6403997571984985,
|
| 609 |
+
"kl": 0.02001953125,
|
| 610 |
+
"learning_rate": 9.999947127448973e-07,
|
| 611 |
+
"loss": 0.0008,
|
| 612 |
+
"reward": 1.617859959602356,
|
| 613 |
+
"reward_std": 0.2102932333946228,
|
| 614 |
+
"rewards/accuracy_reward": 0.5214312076568604,
|
| 615 |
+
"rewards/format_reward": 1.0,
|
| 616 |
+
"step": 38,
|
| 617 |
+
"temporal_rewards": 0.714285671710968
|
| 618 |
+
},
|
| 619 |
+
{
|
| 620 |
+
"all_correct": 0.42857142857142855,
|
| 621 |
+
"all_wrong": 0.0,
|
| 622 |
+
"completion_length": 157.8928680419922,
|
| 623 |
+
"epoch": 0.0015023691205362302,
|
| 624 |
+
"grad_norm": 2.1234203792687825,
|
| 625 |
+
"kl": 0.015380859375,
|
| 626 |
+
"learning_rate": 9.999944308073023e-07,
|
| 627 |
+
"loss": 0.0006,
|
| 628 |
+
"reward": 1.7400298118591309,
|
| 629 |
+
"reward_std": 0.20839495956897736,
|
| 630 |
+
"rewards/accuracy_reward": 0.6168155074119568,
|
| 631 |
+
"rewards/format_reward": 1.0,
|
| 632 |
+
"step": 39,
|
| 633 |
+
"temporal_rewards": 0.6428571343421936
|
| 634 |
+
},
|
| 635 |
+
{
|
| 636 |
+
"all_correct": 0.0,
|
| 637 |
+
"all_wrong": 0.14285714285714285,
|
| 638 |
+
"completion_length": 243.60714721679688,
|
| 639 |
+
"epoch": 0.0015408914056781848,
|
| 640 |
+
"grad_norm": 5.213110939689996,
|
| 641 |
+
"kl": 0.0146484375,
|
| 642 |
+
"learning_rate": 9.999941415467079e-07,
|
| 643 |
+
"loss": 0.0006,
|
| 644 |
+
"reward": 1.2147839069366455,
|
| 645 |
+
"reward_std": 0.29392552375793457,
|
| 646 |
+
"rewards/accuracy_reward": 0.17014095187187195,
|
| 647 |
+
"rewards/format_reward": 0.9821429252624512,
|
| 648 |
+
"step": 40,
|
| 649 |
+
"temporal_rewards": 0.5714285373687744
|
| 650 |
+
},
|
| 651 |
+
{
|
| 652 |
+
"all_correct": 0.14285714285714285,
|
| 653 |
+
"all_wrong": 0.14285714285714285,
|
| 654 |
+
"completion_length": 218.5357208251953,
|
| 655 |
+
"epoch": 0.0015794136908201394,
|
| 656 |
+
"grad_norm": 2.1683694673772105,
|
| 657 |
+
"kl": 0.0164794921875,
|
| 658 |
+
"learning_rate": 9.999938449631185e-07,
|
| 659 |
+
"loss": 0.0007,
|
| 660 |
+
"reward": 1.5682185888290405,
|
| 661 |
+
"reward_std": 0.3265009820461273,
|
| 662 |
+
"rewards/accuracy_reward": 0.45928990840911865,
|
| 663 |
+
"rewards/format_reward": 1.0,
|
| 664 |
+
"step": 41,
|
| 665 |
+
"temporal_rewards": 0.714285671710968
|
| 666 |
+
},
|
| 667 |
+
{
|
| 668 |
+
"all_correct": 0.14285714285714285,
|
| 669 |
+
"all_wrong": 0.2857142857142857,
|
| 670 |
+
"completion_length": 136.08929443359375,
|
| 671 |
+
"epoch": 0.0016179359759620942,
|
| 672 |
+
"grad_norm": 2.6763843398967846,
|
| 673 |
+
"kl": 0.0224609375,
|
| 674 |
+
"learning_rate": 9.999935410565385e-07,
|
| 675 |
+
"loss": 0.0009,
|
| 676 |
+
"reward": 1.412774920463562,
|
| 677 |
+
"reward_std": 0.15946559607982635,
|
| 678 |
+
"rewards/accuracy_reward": 0.3217034339904785,
|
| 679 |
+
"rewards/format_reward": 1.0,
|
| 680 |
+
"step": 42,
|
| 681 |
+
"temporal_rewards": 0.714285671710968
|
| 682 |
+
},
|
| 683 |
+
{
|
| 684 |
+
"all_correct": 0.42857142857142855,
|
| 685 |
+
"all_wrong": 0.0,
|
| 686 |
+
"completion_length": 134.46429443359375,
|
| 687 |
+
"epoch": 0.0016564582611040487,
|
| 688 |
+
"grad_norm": 2.7136415500998874,
|
| 689 |
+
"kl": 0.01953125,
|
| 690 |
+
"learning_rate": 9.999932298269719e-07,
|
| 691 |
+
"loss": 0.0008,
|
| 692 |
+
"reward": 1.8830357789993286,
|
| 693 |
+
"reward_std": 0.30814799666404724,
|
| 694 |
+
"rewards/accuracy_reward": 0.7330358028411865,
|
| 695 |
+
"rewards/format_reward": 1.0,
|
| 696 |
+
"step": 43,
|
| 697 |
+
"temporal_rewards": 0.7857142686843872
|
| 698 |
+
},
|
| 699 |
+
{
|
| 700 |
+
"all_correct": 0.42857142857142855,
|
| 701 |
+
"all_wrong": 0.14285714285714285,
|
| 702 |
+
"completion_length": 224.19644165039062,
|
| 703 |
+
"epoch": 0.0016949805462460033,
|
| 704 |
+
"grad_norm": 10.61289783068452,
|
| 705 |
+
"kl": 0.017333984375,
|
| 706 |
+
"learning_rate": 9.999929112744236e-07,
|
| 707 |
+
"loss": 0.0007,
|
| 708 |
+
"reward": 1.6218483448028564,
|
| 709 |
+
"reward_std": 0.13741520047187805,
|
| 710 |
+
"rewards/accuracy_reward": 0.5432767868041992,
|
| 711 |
+
"rewards/format_reward": 0.9642857313156128,
|
| 712 |
+
"step": 44,
|
| 713 |
+
"temporal_rewards": 0.714285671710968
|
| 714 |
+
},
|
| 715 |
+
{
|
| 716 |
+
"all_correct": 0.2857142857142857,
|
| 717 |
+
"all_wrong": 0.0,
|
| 718 |
+
"completion_length": 175.7678680419922,
|
| 719 |
+
"epoch": 0.0017335028313879579,
|
| 720 |
+
"grad_norm": 3.0540147056191245,
|
| 721 |
+
"kl": 0.0233154296875,
|
| 722 |
+
"learning_rate": 9.999925853988984e-07,
|
| 723 |
+
"loss": 0.0009,
|
| 724 |
+
"reward": 1.7440528869628906,
|
| 725 |
+
"reward_std": 0.23217743635177612,
|
| 726 |
+
"rewards/accuracy_reward": 0.6190527677536011,
|
| 727 |
+
"rewards/format_reward": 0.9821429252624512,
|
| 728 |
+
"step": 45,
|
| 729 |
+
"temporal_rewards": 0.714285671710968
|
| 730 |
+
},
|
| 731 |
+
{
|
| 732 |
+
"all_correct": 0.7142857142857143,
|
| 733 |
+
"all_wrong": 0.14285714285714285,
|
| 734 |
+
"completion_length": 176.33929443359375,
|
| 735 |
+
"epoch": 0.0017720251165299127,
|
| 736 |
+
"grad_norm": 0.6517269698965342,
|
| 737 |
+
"kl": 0.019287109375,
|
| 738 |
+
"learning_rate": 9.999922522004008e-07,
|
| 739 |
+
"loss": 0.0008,
|
| 740 |
+
"reward": 1.946428656578064,
|
| 741 |
+
"reward_std": 0.05050762742757797,
|
| 742 |
+
"rewards/accuracy_reward": 0.7321428656578064,
|
| 743 |
+
"rewards/format_reward": 1.0,
|
| 744 |
+
"step": 46,
|
| 745 |
+
"temporal_rewards": 0.8571428656578064
|
| 746 |
+
},
|
| 747 |
+
{
|
| 748 |
+
"all_correct": 0.2857142857142857,
|
| 749 |
+
"all_wrong": 0.14285714285714285,
|
| 750 |
+
"completion_length": 295.4464416503906,
|
| 751 |
+
"epoch": 0.0018105474016718672,
|
| 752 |
+
"grad_norm": 1.9801638924884892,
|
| 753 |
+
"kl": 0.0146484375,
|
| 754 |
+
"learning_rate": 9.999919116789358e-07,
|
| 755 |
+
"loss": 0.0006,
|
| 756 |
+
"reward": 1.6217808723449707,
|
| 757 |
+
"reward_std": 0.19541169703006744,
|
| 758 |
+
"rewards/accuracy_reward": 0.5967808961868286,
|
| 759 |
+
"rewards/format_reward": 0.9285714626312256,
|
| 760 |
+
"step": 47,
|
| 761 |
+
"temporal_rewards": 0.6428571343421936
|
| 762 |
+
},
|
| 763 |
+
{
|
| 764 |
+
"all_correct": 0.42857142857142855,
|
| 765 |
+
"all_wrong": 0.14285714285714285,
|
| 766 |
+
"completion_length": 236.21429443359375,
|
| 767 |
+
"epoch": 0.0018490696868138218,
|
| 768 |
+
"grad_norm": 1.1223975598836913,
|
| 769 |
+
"kl": 0.01904296875,
|
| 770 |
+
"learning_rate": 9.999915638345082e-07,
|
| 771 |
+
"loss": 0.0008,
|
| 772 |
+
"reward": 1.653198003768921,
|
| 773 |
+
"reward_std": 0.17088621854782104,
|
| 774 |
+
"rewards/accuracy_reward": 0.6174837350845337,
|
| 775 |
+
"rewards/format_reward": 0.9821429252624512,
|
| 776 |
+
"step": 48,
|
| 777 |
+
"temporal_rewards": 0.6428571343421936
|
| 778 |
+
},
|
| 779 |
+
{
|
| 780 |
+
"all_correct": 0.0,
|
| 781 |
+
"all_wrong": 0.0,
|
| 782 |
+
"completion_length": 254.2857208251953,
|
| 783 |
+
"epoch": 0.0018875919719557764,
|
| 784 |
+
"grad_norm": 3.796030516352467,
|
| 785 |
+
"kl": 0.01556396484375,
|
| 786 |
+
"learning_rate": 9.999912086671234e-07,
|
| 787 |
+
"loss": 0.0006,
|
| 788 |
+
"reward": 1.6027967929840088,
|
| 789 |
+
"reward_std": 0.33174049854278564,
|
| 790 |
+
"rewards/accuracy_reward": 0.4742252230644226,
|
| 791 |
+
"rewards/format_reward": 1.0,
|
| 792 |
+
"step": 49,
|
| 793 |
+
"temporal_rewards": 0.714285671710968
|
| 794 |
+
},
|
| 795 |
+
{
|
| 796 |
+
"all_correct": 0.14285714285714285,
|
| 797 |
+
"all_wrong": 0.14285714285714285,
|
| 798 |
+
"completion_length": 138.58929443359375,
|
| 799 |
+
"epoch": 0.001926114257097731,
|
| 800 |
+
"grad_norm": 11.63273957332234,
|
| 801 |
+
"kl": 0.02490234375,
|
| 802 |
+
"learning_rate": 9.999908461767864e-07,
|
| 803 |
+
"loss": 0.001,
|
| 804 |
+
"reward": 1.532570242881775,
|
| 805 |
+
"reward_std": 0.324184775352478,
|
| 806 |
+
"rewards/accuracy_reward": 0.4379273056983948,
|
| 807 |
+
"rewards/format_reward": 0.9821429252624512,
|
| 808 |
+
"step": 50,
|
| 809 |
+
"temporal_rewards": 0.714285671710968
|
| 810 |
+
},
|
| 811 |
+
{
|
| 812 |
+
"all_correct": 0.0,
|
| 813 |
+
"all_wrong": 0.42857142857142855,
|
| 814 |
+
"completion_length": 303.8214416503906,
|
| 815 |
+
"epoch": 0.0019646365422396855,
|
| 816 |
+
"grad_norm": 1.472520440759773,
|
| 817 |
+
"kl": 0.01611328125,
|
| 818 |
+
"learning_rate": 9.999904763635026e-07,
|
| 819 |
+
"loss": 0.0006,
|
| 820 |
+
"reward": 1.329949975013733,
|
| 821 |
+
"reward_std": 0.2325875461101532,
|
| 822 |
+
"rewards/accuracy_reward": 0.22994986176490784,
|
| 823 |
+
"rewards/format_reward": 0.9821429252624512,
|
| 824 |
+
"step": 51,
|
| 825 |
+
"temporal_rewards": 0.6428571343421936
|
| 826 |
+
},
|
| 827 |
+
{
|
| 828 |
+
"all_correct": 0.0,
|
| 829 |
+
"all_wrong": 0.14285714285714285,
|
| 830 |
+
"completion_length": 233.10714721679688,
|
| 831 |
+
"epoch": 0.0020031588273816403,
|
| 832 |
+
"grad_norm": 6.083305961655314,
|
| 833 |
+
"kl": 0.01806640625,
|
| 834 |
+
"learning_rate": 9.999900992272773e-07,
|
| 835 |
+
"loss": 0.0007,
|
| 836 |
+
"reward": 1.2669223546981812,
|
| 837 |
+
"reward_std": 0.1918085664510727,
|
| 838 |
+
"rewards/accuracy_reward": 0.19906513392925262,
|
| 839 |
+
"rewards/format_reward": 1.0,
|
| 840 |
+
"step": 52,
|
| 841 |
+
"temporal_rewards": 0.5714285373687744
|
| 842 |
+
},
|
| 843 |
+
{
|
| 844 |
+
"all_correct": 0.42857142857142855,
|
| 845 |
+
"all_wrong": 0.0,
|
| 846 |
+
"completion_length": 114.10714721679688,
|
| 847 |
+
"epoch": 0.002041681112523595,
|
| 848 |
+
"grad_norm": 2.7012427152402654,
|
| 849 |
+
"kl": 0.032958984375,
|
| 850 |
+
"learning_rate": 9.999897147681163e-07,
|
| 851 |
+
"loss": 0.0013,
|
| 852 |
+
"reward": 1.7964287996292114,
|
| 853 |
+
"reward_std": 0.2886441946029663,
|
| 854 |
+
"rewards/accuracy_reward": 0.7321428656578064,
|
| 855 |
+
"rewards/format_reward": 1.0,
|
| 856 |
+
"step": 53,
|
| 857 |
+
"temporal_rewards": 0.5
|
| 858 |
+
},
|
| 859 |
+
{
|
| 860 |
+
"all_correct": 0.0,
|
| 861 |
+
"all_wrong": 0.2857142857142857,
|
| 862 |
+
"completion_length": 185.7678680419922,
|
| 863 |
+
"epoch": 0.0020802033976655494,
|
| 864 |
+
"grad_norm": 3.499372150686523,
|
| 865 |
+
"kl": 0.0224609375,
|
| 866 |
+
"learning_rate": 9.999893229860249e-07,
|
| 867 |
+
"loss": 0.0009,
|
| 868 |
+
"reward": 1.4564489126205444,
|
| 869 |
+
"reward_std": 0.25798067450523376,
|
| 870 |
+
"rewards/accuracy_reward": 0.381448894739151,
|
| 871 |
+
"rewards/format_reward": 1.0,
|
| 872 |
+
"step": 54,
|
| 873 |
+
"temporal_rewards": 0.714285671710968
|
| 874 |
+
},
|
| 875 |
+
{
|
| 876 |
+
"all_correct": 0.2857142857142857,
|
| 877 |
+
"all_wrong": 0.2857142857142857,
|
| 878 |
+
"completion_length": 201.33929443359375,
|
| 879 |
+
"epoch": 0.0021187256828075042,
|
| 880 |
+
"grad_norm": 1.8808446859449741,
|
| 881 |
+
"kl": 0.021728515625,
|
| 882 |
+
"learning_rate": 9.999889238810088e-07,
|
| 883 |
+
"loss": 0.0009,
|
| 884 |
+
"reward": 1.5330215692520142,
|
| 885 |
+
"reward_std": 0.21871158480644226,
|
| 886 |
+
"rewards/accuracy_reward": 0.45266443490982056,
|
| 887 |
+
"rewards/format_reward": 1.0,
|
| 888 |
+
"step": 55,
|
| 889 |
+
"temporal_rewards": 0.6428571343421936
|
| 890 |
+
},
|
| 891 |
+
{
|
| 892 |
+
"all_correct": 0.14285714285714285,
|
| 893 |
+
"all_wrong": 0.42857142857142855,
|
| 894 |
+
"completion_length": 193.0178680419922,
|
| 895 |
+
"epoch": 0.0021572479679494586,
|
| 896 |
+
"grad_norm": 3.822445715369176,
|
| 897 |
+
"kl": 0.0242919921875,
|
| 898 |
+
"learning_rate": 9.999885174530742e-07,
|
| 899 |
+
"loss": 0.001,
|
| 900 |
+
"reward": 1.293078899383545,
|
| 901 |
+
"reward_std": 0.10130374878644943,
|
| 902 |
+
"rewards/accuracy_reward": 0.278793066740036,
|
| 903 |
+
"rewards/format_reward": 1.0,
|
| 904 |
+
"step": 56,
|
| 905 |
+
"temporal_rewards": 0.6428571343421936
|
| 906 |
+
},
|
| 907 |
+
{
|
| 908 |
+
"all_correct": 0.14285714285714285,
|
| 909 |
+
"all_wrong": 0.14285714285714285,
|
| 910 |
+
"completion_length": 246.50001525878906,
|
| 911 |
+
"epoch": 0.0021957702530914134,
|
| 912 |
+
"grad_norm": 2.6785361100208043,
|
| 913 |
+
"kl": 0.0218505859375,
|
| 914 |
+
"learning_rate": 9.999881037022268e-07,
|
| 915 |
+
"loss": 0.0009,
|
| 916 |
+
"reward": 1.6220659017562866,
|
| 917 |
+
"reward_std": 0.306893914937973,
|
| 918 |
+
"rewards/accuracy_reward": 0.47028017044067383,
|
| 919 |
+
"rewards/format_reward": 1.0,
|
| 920 |
+
"step": 57,
|
| 921 |
+
"temporal_rewards": 0.7857142686843872
|
| 922 |
+
},
|
| 923 |
+
{
|
| 924 |
+
"all_correct": 0.42857142857142855,
|
| 925 |
+
"all_wrong": 0.2857142857142857,
|
| 926 |
+
"completion_length": 206.55357360839844,
|
| 927 |
+
"epoch": 0.002234292538233368,
|
| 928 |
+
"grad_norm": 2.231409411826765,
|
| 929 |
+
"kl": 0.027099609375,
|
| 930 |
+
"learning_rate": 9.999876826284728e-07,
|
| 931 |
+
"loss": 0.0011,
|
| 932 |
+
"reward": 1.5493416786193848,
|
| 933 |
+
"reward_std": 0.15240609645843506,
|
| 934 |
+
"rewards/accuracy_reward": 0.47434163093566895,
|
| 935 |
+
"rewards/format_reward": 0.9821429252624512,
|
| 936 |
+
"step": 58,
|
| 937 |
+
"temporal_rewards": 0.6428571343421936
|
| 938 |
+
},
|
| 939 |
+
{
|
| 940 |
+
"all_correct": 0.0,
|
| 941 |
+
"all_wrong": 0.42857142857142855,
|
| 942 |
+
"completion_length": 216.94644165039062,
|
| 943 |
+
"epoch": 0.0022728148233753225,
|
| 944 |
+
"grad_norm": 2.6320081221943967,
|
| 945 |
+
"kl": 0.0181884765625,
|
| 946 |
+
"learning_rate": 9.999872542318182e-07,
|
| 947 |
+
"loss": 0.0007,
|
| 948 |
+
"reward": 1.264460802078247,
|
| 949 |
+
"reward_std": 0.1528075784444809,
|
| 950 |
+
"rewards/accuracy_reward": 0.2269606739282608,
|
| 951 |
+
"rewards/format_reward": 1.0,
|
| 952 |
+
"step": 59,
|
| 953 |
+
"temporal_rewards": 0.5714285373687744
|
| 954 |
+
},
|
| 955 |
+
{
|
| 956 |
+
"all_correct": 0.2857142857142857,
|
| 957 |
+
"all_wrong": 0.14285714285714285,
|
| 958 |
+
"completion_length": 153.85714721679688,
|
| 959 |
+
"epoch": 0.0023113371085172773,
|
| 960 |
+
"grad_norm": 2.3218624177616936,
|
| 961 |
+
"kl": 0.0262451171875,
|
| 962 |
+
"learning_rate": 9.999868185122694e-07,
|
| 963 |
+
"loss": 0.0011,
|
| 964 |
+
"reward": 1.5643600225448608,
|
| 965 |
+
"reward_std": 0.17870767414569855,
|
| 966 |
+
"rewards/accuracy_reward": 0.5179314017295837,
|
| 967 |
+
"rewards/format_reward": 1.0,
|
| 968 |
+
"step": 60,
|
| 969 |
+
"temporal_rewards": 0.5
|
| 970 |
+
},
|
| 971 |
+
{
|
| 972 |
+
"all_correct": 0.2857142857142857,
|
| 973 |
+
"all_wrong": 0.0,
|
| 974 |
+
"completion_length": 194.94644165039062,
|
| 975 |
+
"epoch": 0.0023498593936592317,
|
| 976 |
+
"grad_norm": 2.4059506047191412,
|
| 977 |
+
"kl": 0.02783203125,
|
| 978 |
+
"learning_rate": 9.999863754698328e-07,
|
| 979 |
+
"loss": 0.0011,
|
| 980 |
+
"reward": 1.7017457485198975,
|
| 981 |
+
"reward_std": 0.21297064423561096,
|
| 982 |
+
"rewards/accuracy_reward": 0.596388578414917,
|
| 983 |
+
"rewards/format_reward": 1.0,
|
| 984 |
+
"step": 61,
|
| 985 |
+
"temporal_rewards": 0.5714285373687744
|
| 986 |
+
},
|
| 987 |
+
{
|
| 988 |
+
"all_correct": 0.14285714285714285,
|
| 989 |
+
"all_wrong": 0.14285714285714285,
|
| 990 |
+
"completion_length": 263.1964416503906,
|
| 991 |
+
"epoch": 0.0023883816788011865,
|
| 992 |
+
"grad_norm": 7.79968970295138,
|
| 993 |
+
"kl": 0.025146484375,
|
| 994 |
+
"learning_rate": 9.999859251045148e-07,
|
| 995 |
+
"loss": 0.001,
|
| 996 |
+
"reward": 1.3235949277877808,
|
| 997 |
+
"reward_std": 0.3387552797794342,
|
| 998 |
+
"rewards/accuracy_reward": 0.32002341747283936,
|
| 999 |
+
"rewards/format_reward": 0.9285714626312256,
|
| 1000 |
+
"step": 62,
|
| 1001 |
+
"temporal_rewards": 0.714285671710968
|
| 1002 |
+
},
|
| 1003 |
+
{
|
| 1004 |
+
"all_correct": 0.2857142857142857,
|
| 1005 |
+
"all_wrong": 0.14285714285714285,
|
| 1006 |
+
"completion_length": 282.875,
|
| 1007 |
+
"epoch": 0.0024269039639431412,
|
| 1008 |
+
"grad_norm": 11.820097516090824,
|
| 1009 |
+
"kl": 0.0230712890625,
|
| 1010 |
+
"learning_rate": 9.999854674163223e-07,
|
| 1011 |
+
"loss": 0.0009,
|
| 1012 |
+
"reward": 1.4603477716445923,
|
| 1013 |
+
"reward_std": 0.1610259860754013,
|
| 1014 |
+
"rewards/accuracy_reward": 0.3817763030529022,
|
| 1015 |
+
"rewards/format_reward": 1.0,
|
| 1016 |
+
"step": 63,
|
| 1017 |
+
"temporal_rewards": 0.5
|
| 1018 |
+
},
|
| 1019 |
+
{
|
| 1020 |
+
"all_correct": 0.2857142857142857,
|
| 1021 |
+
"all_wrong": 0.42857142857142855,
|
| 1022 |
+
"completion_length": 145.7857208251953,
|
| 1023 |
+
"epoch": 0.0024654262490850956,
|
| 1024 |
+
"grad_norm": 2.198227643716255,
|
| 1025 |
+
"kl": 0.03076171875,
|
| 1026 |
+
"learning_rate": 9.999850024052612e-07,
|
| 1027 |
+
"loss": 0.0012,
|
| 1028 |
+
"reward": 1.623809576034546,
|
| 1029 |
+
"reward_std": 0.15851996839046478,
|
| 1030 |
+
"rewards/accuracy_reward": 0.523809552192688,
|
| 1031 |
+
"rewards/format_reward": 0.9821429252624512,
|
| 1032 |
+
"step": 64,
|
| 1033 |
+
"temporal_rewards": 0.714285671710968
|
| 1034 |
+
},
|
| 1035 |
+
{
|
| 1036 |
+
"all_correct": 0.14285714285714285,
|
| 1037 |
+
"all_wrong": 0.2857142857142857,
|
| 1038 |
+
"completion_length": 227.98214721679688,
|
| 1039 |
+
"epoch": 0.0025039485342270504,
|
| 1040 |
+
"grad_norm": 2.0716605728346225,
|
| 1041 |
+
"kl": 0.021728515625,
|
| 1042 |
+
"learning_rate": 9.999845300713392e-07,
|
| 1043 |
+
"loss": 0.0009,
|
| 1044 |
+
"reward": 1.4685227870941162,
|
| 1045 |
+
"reward_std": 0.23074626922607422,
|
| 1046 |
+
"rewards/accuracy_reward": 0.4185227155685425,
|
| 1047 |
+
"rewards/format_reward": 1.0,
|
| 1048 |
+
"step": 65,
|
| 1049 |
+
"temporal_rewards": 0.5714285373687744
|
| 1050 |
+
},
|
| 1051 |
+
{
|
| 1052 |
+
"all_correct": 0.2857142857142857,
|
| 1053 |
+
"all_wrong": 0.14285714285714285,
|
| 1054 |
+
"completion_length": 223.07144165039062,
|
| 1055 |
+
"epoch": 0.002542470819369005,
|
| 1056 |
+
"grad_norm": 12.068459853286635,
|
| 1057 |
+
"kl": 0.0284423828125,
|
| 1058 |
+
"learning_rate": 9.999840504145628e-07,
|
| 1059 |
+
"loss": 0.0011,
|
| 1060 |
+
"reward": 1.6151973009109497,
|
| 1061 |
+
"reward_std": 0.184441938996315,
|
| 1062 |
+
"rewards/accuracy_reward": 0.516982913017273,
|
| 1063 |
+
"rewards/format_reward": 1.0,
|
| 1064 |
+
"step": 66,
|
| 1065 |
+
"temporal_rewards": 0.5714285373687744
|
| 1066 |
+
},
|
| 1067 |
+
{
|
| 1068 |
+
"all_correct": 0.5714285714285714,
|
| 1069 |
+
"all_wrong": 0.0,
|
| 1070 |
+
"completion_length": 179.3928680419922,
|
| 1071 |
+
"epoch": 0.0025809931045109595,
|
| 1072 |
+
"grad_norm": 1.9797102708238594,
|
| 1073 |
+
"kl": 0.022705078125,
|
| 1074 |
+
"learning_rate": 9.99983563434939e-07,
|
| 1075 |
+
"loss": 0.0009,
|
| 1076 |
+
"reward": 1.8434789180755615,
|
| 1077 |
+
"reward_std": 0.09488734602928162,
|
| 1078 |
+
"rewards/accuracy_reward": 0.657764732837677,
|
| 1079 |
+
"rewards/format_reward": 1.0,
|
| 1080 |
+
"step": 67,
|
| 1081 |
+
"temporal_rewards": 0.714285671710968
|
| 1082 |
+
},
|
| 1083 |
+
{
|
| 1084 |
+
"all_correct": 0.2857142857142857,
|
| 1085 |
+
"all_wrong": 0.2857142857142857,
|
| 1086 |
+
"completion_length": 260.4464416503906,
|
| 1087 |
+
"epoch": 0.0026195153896529143,
|
| 1088 |
+
"grad_norm": 1.3994503258018347,
|
| 1089 |
+
"kl": 0.018798828125,
|
| 1090 |
+
"learning_rate": 9.999830691324754e-07,
|
| 1091 |
+
"loss": 0.0008,
|
| 1092 |
+
"reward": 1.5176632404327393,
|
| 1093 |
+
"reward_std": 0.16758570075035095,
|
| 1094 |
+
"rewards/accuracy_reward": 0.4533773958683014,
|
| 1095 |
+
"rewards/format_reward": 1.0,
|
| 1096 |
+
"step": 68,
|
| 1097 |
+
"temporal_rewards": 0.5714285373687744
|
| 1098 |
+
},
|
| 1099 |
+
{
|
| 1100 |
+
"all_correct": 0.2857142857142857,
|
| 1101 |
+
"all_wrong": 0.0,
|
| 1102 |
+
"completion_length": 154.3928680419922,
|
| 1103 |
+
"epoch": 0.0026580376747948687,
|
| 1104 |
+
"grad_norm": 2.478716497709362,
|
| 1105 |
+
"kl": 0.024169921875,
|
| 1106 |
+
"learning_rate": 9.999825675071785e-07,
|
| 1107 |
+
"loss": 0.001,
|
| 1108 |
+
"reward": 1.7284132242202759,
|
| 1109 |
+
"reward_std": 0.1862778216600418,
|
| 1110 |
+
"rewards/accuracy_reward": 0.5909132361412048,
|
| 1111 |
+
"rewards/format_reward": 1.0,
|
| 1112 |
+
"step": 69,
|
| 1113 |
+
"temporal_rewards": 0.6428571343421936
|
| 1114 |
+
},
|
| 1115 |
+
{
|
| 1116 |
+
"all_correct": 0.2857142857142857,
|
| 1117 |
+
"all_wrong": 0.0,
|
| 1118 |
+
"completion_length": 218.08929443359375,
|
| 1119 |
+
"epoch": 0.0026965599599368235,
|
| 1120 |
+
"grad_norm": 3.2636585667285747,
|
| 1121 |
+
"kl": 0.018798828125,
|
| 1122 |
+
"learning_rate": 9.999820585590562e-07,
|
| 1123 |
+
"loss": 0.0008,
|
| 1124 |
+
"reward": 1.8550920486450195,
|
| 1125 |
+
"reward_std": 0.18145045638084412,
|
| 1126 |
+
"rewards/accuracy_reward": 0.6693777441978455,
|
| 1127 |
+
"rewards/format_reward": 1.0,
|
| 1128 |
+
"step": 70,
|
| 1129 |
+
"temporal_rewards": 0.7857142686843872
|
| 1130 |
+
},
|
| 1131 |
+
{
|
| 1132 |
+
"all_correct": 0.2857142857142857,
|
| 1133 |
+
"all_wrong": 0.2857142857142857,
|
| 1134 |
+
"completion_length": 166.0178680419922,
|
| 1135 |
+
"epoch": 0.0027350822450787782,
|
| 1136 |
+
"grad_norm": 2.44595510707876,
|
| 1137 |
+
"kl": 0.0220947265625,
|
| 1138 |
+
"learning_rate": 9.999815422881156e-07,
|
| 1139 |
+
"loss": 0.0009,
|
| 1140 |
+
"reward": 1.6340795755386353,
|
| 1141 |
+
"reward_std": 0.14490874111652374,
|
| 1142 |
+
"rewards/accuracy_reward": 0.49479392170906067,
|
| 1143 |
+
"rewards/format_reward": 1.0,
|
| 1144 |
+
"step": 71,
|
| 1145 |
+
"temporal_rewards": 0.6428571343421936
|
| 1146 |
+
},
|
| 1147 |
+
{
|
| 1148 |
+
"all_correct": 0.42857142857142855,
|
| 1149 |
+
"all_wrong": 0.0,
|
| 1150 |
+
"completion_length": 228.44644165039062,
|
| 1151 |
+
"epoch": 0.0027736045302207326,
|
| 1152 |
+
"grad_norm": 4.715787174655585,
|
| 1153 |
+
"kl": 0.0189208984375,
|
| 1154 |
+
"learning_rate": 9.999810186943645e-07,
|
| 1155 |
+
"loss": 0.0008,
|
| 1156 |
+
"reward": 1.8304548263549805,
|
| 1157 |
+
"reward_std": 0.26317012310028076,
|
| 1158 |
+
"rewards/accuracy_reward": 0.6572403311729431,
|
| 1159 |
+
"rewards/format_reward": 0.9821429252624512,
|
| 1160 |
+
"step": 72,
|
| 1161 |
+
"temporal_rewards": 0.7857142686843872
|
| 1162 |
+
},
|
| 1163 |
+
{
|
| 1164 |
+
"all_correct": 0.5714285714285714,
|
| 1165 |
+
"all_wrong": 0.0,
|
| 1166 |
+
"completion_length": 281.5,
|
| 1167 |
+
"epoch": 0.0028121268153626874,
|
| 1168 |
+
"grad_norm": 4.5915608298302955,
|
| 1169 |
+
"kl": 0.0186767578125,
|
| 1170 |
+
"learning_rate": 9.999804877778105e-07,
|
| 1171 |
+
"loss": 0.0007,
|
| 1172 |
+
"reward": 1.8425076007843018,
|
| 1173 |
+
"reward_std": 0.19430917501449585,
|
| 1174 |
+
"rewards/accuracy_reward": 0.6567932367324829,
|
| 1175 |
+
"rewards/format_reward": 0.9464285969734192,
|
| 1176 |
+
"step": 73,
|
| 1177 |
+
"temporal_rewards": 0.8571428656578064
|
| 1178 |
+
},
|
| 1179 |
+
{
|
| 1180 |
+
"all_correct": 0.2857142857142857,
|
| 1181 |
+
"all_wrong": 0.14285714285714285,
|
| 1182 |
+
"completion_length": 187.0357208251953,
|
| 1183 |
+
"epoch": 0.0028506491005046417,
|
| 1184 |
+
"grad_norm": 2.861793907089711,
|
| 1185 |
+
"kl": 0.01953125,
|
| 1186 |
+
"learning_rate": 9.999799495384613e-07,
|
| 1187 |
+
"loss": 0.0008,
|
| 1188 |
+
"reward": 1.5369635820388794,
|
| 1189 |
+
"reward_std": 0.19547729194164276,
|
| 1190 |
+
"rewards/accuracy_reward": 0.47446346282958984,
|
| 1191 |
+
"rewards/format_reward": 0.9821429252624512,
|
| 1192 |
+
"step": 74,
|
| 1193 |
+
"temporal_rewards": 0.6428571343421936
|
| 1194 |
+
},
|
| 1195 |
+
{
|
| 1196 |
+
"all_correct": 0.0,
|
| 1197 |
+
"all_wrong": 0.14285714285714285,
|
| 1198 |
+
"completion_length": 204.00001525878906,
|
| 1199 |
+
"epoch": 0.0028891713856465965,
|
| 1200 |
+
"grad_norm": 3.6528625470246756,
|
| 1201 |
+
"kl": 0.018798828125,
|
| 1202 |
+
"learning_rate": 9.99979403976325e-07,
|
| 1203 |
+
"loss": 0.0008,
|
| 1204 |
+
"reward": 1.3830876350402832,
|
| 1205 |
+
"reward_std": 0.1895177811384201,
|
| 1206 |
+
"rewards/accuracy_reward": 0.3688018023967743,
|
| 1207 |
+
"rewards/format_reward": 1.0,
|
| 1208 |
+
"step": 75,
|
| 1209 |
+
"temporal_rewards": 0.5
|
| 1210 |
+
},
|
| 1211 |
+
{
|
| 1212 |
+
"all_correct": 0.42857142857142855,
|
| 1213 |
+
"all_wrong": 0.0,
|
| 1214 |
+
"completion_length": 158.30357360839844,
|
| 1215 |
+
"epoch": 0.0029276936707885513,
|
| 1216 |
+
"grad_norm": 5.083277470007981,
|
| 1217 |
+
"kl": 0.0220947265625,
|
| 1218 |
+
"learning_rate": 9.999788510914095e-07,
|
| 1219 |
+
"loss": 0.0009,
|
| 1220 |
+
"reward": 1.834609031677246,
|
| 1221 |
+
"reward_std": 0.19010314345359802,
|
| 1222 |
+
"rewards/accuracy_reward": 0.7542517185211182,
|
| 1223 |
+
"rewards/format_reward": 1.0,
|
| 1224 |
+
"step": 76,
|
| 1225 |
+
"temporal_rewards": 0.5714285373687744
|
| 1226 |
+
},
|
| 1227 |
+
{
|
| 1228 |
+
"all_correct": 0.0,
|
| 1229 |
+
"all_wrong": 0.14285714285714285,
|
| 1230 |
+
"completion_length": 283.46429443359375,
|
| 1231 |
+
"epoch": 0.0029662159559305057,
|
| 1232 |
+
"grad_norm": 2.6220465157846515,
|
| 1233 |
+
"kl": 0.0159912109375,
|
| 1234 |
+
"learning_rate": 9.999782908837226e-07,
|
| 1235 |
+
"loss": 0.0006,
|
| 1236 |
+
"reward": 1.2294546365737915,
|
| 1237 |
+
"reward_std": 0.20362988114356995,
|
| 1238 |
+
"rewards/accuracy_reward": 0.2901688516139984,
|
| 1239 |
+
"rewards/format_reward": 0.910714328289032,
|
| 1240 |
+
"step": 77,
|
| 1241 |
+
"temporal_rewards": 0.5714285373687744
|
| 1242 |
+
},
|
| 1243 |
+
{
|
| 1244 |
+
"all_correct": 0.14285714285714285,
|
| 1245 |
+
"all_wrong": 0.14285714285714285,
|
| 1246 |
+
"completion_length": 269.4464416503906,
|
| 1247 |
+
"epoch": 0.0030047382410724605,
|
| 1248 |
+
"grad_norm": 3.6931368985139565,
|
| 1249 |
+
"kl": 0.01953125,
|
| 1250 |
+
"learning_rate": 9.999777233532728e-07,
|
| 1251 |
+
"loss": 0.0008,
|
| 1252 |
+
"reward": 1.3699510097503662,
|
| 1253 |
+
"reward_std": 0.2626003324985504,
|
| 1254 |
+
"rewards/accuracy_reward": 0.2985224425792694,
|
| 1255 |
+
"rewards/format_reward": 0.9464285969734192,
|
| 1256 |
+
"step": 78,
|
| 1257 |
+
"temporal_rewards": 0.714285671710968
|
| 1258 |
+
},
|
| 1259 |
+
{
|
| 1260 |
+
"all_correct": 0.14285714285714285,
|
| 1261 |
+
"all_wrong": 0.14285714285714285,
|
| 1262 |
+
"completion_length": 253.58929443359375,
|
| 1263 |
+
"epoch": 0.0030432605262144152,
|
| 1264 |
+
"grad_norm": 2.4812016013725247,
|
| 1265 |
+
"kl": 0.0166015625,
|
| 1266 |
+
"learning_rate": 9.999771485000686e-07,
|
| 1267 |
+
"loss": 0.0007,
|
| 1268 |
+
"reward": 1.6232998371124268,
|
| 1269 |
+
"reward_std": 0.3576071560382843,
|
| 1270 |
+
"rewards/accuracy_reward": 0.4857998788356781,
|
| 1271 |
+
"rewards/format_reward": 1.0,
|
| 1272 |
+
"step": 79,
|
| 1273 |
+
"temporal_rewards": 0.7857142686843872
|
| 1274 |
+
},
|
| 1275 |
+
{
|
| 1276 |
+
"all_correct": 0.2857142857142857,
|
| 1277 |
+
"all_wrong": 0.0,
|
| 1278 |
+
"completion_length": 233.0178680419922,
|
| 1279 |
+
"epoch": 0.0030817828113563696,
|
| 1280 |
+
"grad_norm": 2.5348454122960544,
|
| 1281 |
+
"kl": 0.0162353515625,
|
| 1282 |
+
"learning_rate": 9.99976566324118e-07,
|
| 1283 |
+
"loss": 0.0007,
|
| 1284 |
+
"reward": 1.5126162767410278,
|
| 1285 |
+
"reward_std": 0.3677576184272766,
|
| 1286 |
+
"rewards/accuracy_reward": 0.5126160979270935,
|
| 1287 |
+
"rewards/format_reward": 0.9464285969734192,
|
| 1288 |
+
"step": 80,
|
| 1289 |
+
"temporal_rewards": 0.357142835855484
|
| 1290 |
+
},
|
| 1291 |
+
{
|
| 1292 |
+
"all_correct": 0.0,
|
| 1293 |
+
"all_wrong": 0.0,
|
| 1294 |
+
"completion_length": 340.2857360839844,
|
| 1295 |
+
"epoch": 0.0031203050964983244,
|
| 1296 |
+
"grad_norm": 2.1615647344294318,
|
| 1297 |
+
"kl": 0.01361083984375,
|
| 1298 |
+
"learning_rate": 9.999759768254296e-07,
|
| 1299 |
+
"loss": 0.0005,
|
| 1300 |
+
"reward": 1.640975832939148,
|
| 1301 |
+
"reward_std": 0.23601117730140686,
|
| 1302 |
+
"rewards/accuracy_reward": 0.5302614569664001,
|
| 1303 |
+
"rewards/format_reward": 0.9821429252624512,
|
| 1304 |
+
"step": 81,
|
| 1305 |
+
"temporal_rewards": 0.6428571343421936
|
| 1306 |
+
},
|
| 1307 |
+
{
|
| 1308 |
+
"all_correct": 0.2857142857142857,
|
| 1309 |
+
"all_wrong": 0.14285714285714285,
|
| 1310 |
+
"completion_length": 141.125,
|
| 1311 |
+
"epoch": 0.0031588273816402787,
|
| 1312 |
+
"grad_norm": 2.7836789740348973,
|
| 1313 |
+
"kl": 0.0240478515625,
|
| 1314 |
+
"learning_rate": 9.999753800040124e-07,
|
| 1315 |
+
"loss": 0.001,
|
| 1316 |
+
"reward": 1.6339308023452759,
|
| 1317 |
+
"reward_std": 0.19026820361614227,
|
| 1318 |
+
"rewards/accuracy_reward": 0.5446450710296631,
|
| 1319 |
+
"rewards/format_reward": 1.0,
|
| 1320 |
+
"step": 82,
|
| 1321 |
+
"temporal_rewards": 0.5714285373687744
|
| 1322 |
+
},
|
| 1323 |
+
{
|
| 1324 |
+
"all_correct": 0.2857142857142857,
|
| 1325 |
+
"all_wrong": 0.14285714285714285,
|
| 1326 |
+
"completion_length": 267.9107360839844,
|
| 1327 |
+
"epoch": 0.0031973496667822335,
|
| 1328 |
+
"grad_norm": 1.8591300511545363,
|
| 1329 |
+
"kl": 0.0150146484375,
|
| 1330 |
+
"learning_rate": 9.999747758598746e-07,
|
| 1331 |
+
"loss": 0.0006,
|
| 1332 |
+
"reward": 1.6651928424835205,
|
| 1333 |
+
"reward_std": 0.23238950967788696,
|
| 1334 |
+
"rewards/accuracy_reward": 0.6901927590370178,
|
| 1335 |
+
"rewards/format_reward": 0.8750000596046448,
|
| 1336 |
+
"step": 83,
|
| 1337 |
+
"temporal_rewards": 0.5714285373687744
|
| 1338 |
+
},
|
| 1339 |
+
{
|
| 1340 |
+
"all_correct": 0.2857142857142857,
|
| 1341 |
+
"all_wrong": 0.0,
|
| 1342 |
+
"completion_length": 170.98214721679688,
|
| 1343 |
+
"epoch": 0.0032358719519241883,
|
| 1344 |
+
"grad_norm": 3.460207937592012,
|
| 1345 |
+
"kl": 0.0201416015625,
|
| 1346 |
+
"learning_rate": 9.999741643930254e-07,
|
| 1347 |
+
"loss": 0.0008,
|
| 1348 |
+
"reward": 1.797253966331482,
|
| 1349 |
+
"reward_std": 0.2454862743616104,
|
| 1350 |
+
"rewards/accuracy_reward": 0.6508253216743469,
|
| 1351 |
+
"rewards/format_reward": 1.0,
|
| 1352 |
+
"step": 84,
|
| 1353 |
+
"temporal_rewards": 0.5714285373687744
|
| 1354 |
+
},
|
| 1355 |
+
{
|
| 1356 |
+
"all_correct": 0.42857142857142855,
|
| 1357 |
+
"all_wrong": 0.14285714285714285,
|
| 1358 |
+
"completion_length": 176.48214721679688,
|
| 1359 |
+
"epoch": 0.0032743942370661427,
|
| 1360 |
+
"grad_norm": 3.8333441326978015,
|
| 1361 |
+
"kl": 0.01556396484375,
|
| 1362 |
+
"learning_rate": 9.99973545603474e-07,
|
| 1363 |
+
"loss": 0.0006,
|
| 1364 |
+
"reward": 1.8520835638046265,
|
| 1365 |
+
"reward_std": 0.13618475198745728,
|
| 1366 |
+
"rewards/accuracy_reward": 0.7485119104385376,
|
| 1367 |
+
"rewards/format_reward": 1.0,
|
| 1368 |
+
"step": 85,
|
| 1369 |
+
"temporal_rewards": 0.714285671710968
|
| 1370 |
+
},
|
| 1371 |
+
{
|
| 1372 |
+
"all_correct": 0.2857142857142857,
|
| 1373 |
+
"all_wrong": 0.14285714285714285,
|
| 1374 |
+
"completion_length": 142.21429443359375,
|
| 1375 |
+
"epoch": 0.0033129165222080975,
|
| 1376 |
+
"grad_norm": 5.546406170903967,
|
| 1377 |
+
"kl": 0.018798828125,
|
| 1378 |
+
"learning_rate": 9.999729194912288e-07,
|
| 1379 |
+
"loss": 0.0007,
|
| 1380 |
+
"reward": 1.512488603591919,
|
| 1381 |
+
"reward_std": 0.15216389298439026,
|
| 1382 |
+
"rewards/accuracy_reward": 0.4374885559082031,
|
| 1383 |
+
"rewards/format_reward": 1.0,
|
| 1384 |
+
"step": 86,
|
| 1385 |
+
"temporal_rewards": 0.6428571343421936
|
| 1386 |
+
},
|
| 1387 |
+
{
|
| 1388 |
+
"all_correct": 0.2857142857142857,
|
| 1389 |
+
"all_wrong": 0.0,
|
| 1390 |
+
"completion_length": 135.8928680419922,
|
| 1391 |
+
"epoch": 0.003351438807350052,
|
| 1392 |
+
"grad_norm": 2.1938712459273173,
|
| 1393 |
+
"kl": 0.0224609375,
|
| 1394 |
+
"learning_rate": 9.999722860562995e-07,
|
| 1395 |
+
"loss": 0.0009,
|
| 1396 |
+
"reward": 1.9083168506622314,
|
| 1397 |
+
"reward_std": 0.24992303550243378,
|
| 1398 |
+
"rewards/accuracy_reward": 0.7904595136642456,
|
| 1399 |
+
"rewards/format_reward": 1.0,
|
| 1400 |
+
"step": 87,
|
| 1401 |
+
"temporal_rewards": 0.714285671710968
|
| 1402 |
+
},
|
| 1403 |
+
{
|
| 1404 |
+
"all_correct": 0.0,
|
| 1405 |
+
"all_wrong": 0.14285714285714285,
|
| 1406 |
+
"completion_length": 250.19644165039062,
|
| 1407 |
+
"epoch": 0.0033899610924920066,
|
| 1408 |
+
"grad_norm": 8.226109585653399,
|
| 1409 |
+
"kl": 0.018310546875,
|
| 1410 |
+
"learning_rate": 9.99971645298695e-07,
|
| 1411 |
+
"loss": 0.0007,
|
| 1412 |
+
"reward": 1.3736493587493896,
|
| 1413 |
+
"reward_std": 0.31250062584877014,
|
| 1414 |
+
"rewards/accuracy_reward": 0.42364928126335144,
|
| 1415 |
+
"rewards/format_reward": 0.9464285969734192,
|
| 1416 |
+
"step": 88,
|
| 1417 |
+
"temporal_rewards": 0.357142835855484
|
| 1418 |
+
},
|
| 1419 |
+
{
|
| 1420 |
+
"all_correct": 0.42857142857142855,
|
| 1421 |
+
"all_wrong": 0.14285714285714285,
|
| 1422 |
+
"completion_length": 220.37501525878906,
|
| 1423 |
+
"epoch": 0.0034284833776339614,
|
| 1424 |
+
"grad_norm": 1.0793537459382088,
|
| 1425 |
+
"kl": 0.0166015625,
|
| 1426 |
+
"learning_rate": 9.999709972184251e-07,
|
| 1427 |
+
"loss": 0.0007,
|
| 1428 |
+
"reward": 1.6861910820007324,
|
| 1429 |
+
"reward_std": 0.17002300918102264,
|
| 1430 |
+
"rewards/accuracy_reward": 0.571905255317688,
|
| 1431 |
+
"rewards/format_reward": 1.0,
|
| 1432 |
+
"step": 89,
|
| 1433 |
+
"temporal_rewards": 0.714285671710968
|
| 1434 |
+
},
|
| 1435 |
+
{
|
| 1436 |
+
"all_correct": 0.14285714285714285,
|
| 1437 |
+
"all_wrong": 0.14285714285714285,
|
| 1438 |
+
"completion_length": 306.4464416503906,
|
| 1439 |
+
"epoch": 0.0034670056627759157,
|
| 1440 |
+
"grad_norm": 2.014793457696805,
|
| 1441 |
+
"kl": 0.0150146484375,
|
| 1442 |
+
"learning_rate": 9.99970341815499e-07,
|
| 1443 |
+
"loss": 0.0006,
|
| 1444 |
+
"reward": 1.4933110475540161,
|
| 1445 |
+
"reward_std": 0.17901629209518433,
|
| 1446 |
+
"rewards/accuracy_reward": 0.3933109641075134,
|
| 1447 |
+
"rewards/format_reward": 1.0,
|
| 1448 |
+
"step": 90,
|
| 1449 |
+
"temporal_rewards": 0.5714285373687744
|
| 1450 |
+
},
|
| 1451 |
+
{
|
| 1452 |
+
"all_correct": 0.42857142857142855,
|
| 1453 |
+
"all_wrong": 0.14285714285714285,
|
| 1454 |
+
"completion_length": 221.33929443359375,
|
| 1455 |
+
"epoch": 0.0035055279479178705,
|
| 1456 |
+
"grad_norm": 0.821835435471291,
|
| 1457 |
+
"kl": 0.0206298828125,
|
| 1458 |
+
"learning_rate": 9.999696790899263e-07,
|
| 1459 |
+
"loss": 0.0008,
|
| 1460 |
+
"reward": 1.6780954599380493,
|
| 1461 |
+
"reward_std": 0.18597880005836487,
|
| 1462 |
+
"rewards/accuracy_reward": 0.5959525108337402,
|
| 1463 |
+
"rewards/format_reward": 0.9464285969734192,
|
| 1464 |
+
"step": 91,
|
| 1465 |
+
"temporal_rewards": 0.6428571343421936
|
| 1466 |
+
},
|
| 1467 |
+
{
|
| 1468 |
+
"all_correct": 0.5714285714285714,
|
| 1469 |
+
"all_wrong": 0.14285714285714285,
|
| 1470 |
+
"completion_length": 133.69644165039062,
|
| 1471 |
+
"epoch": 0.0035440502330598253,
|
| 1472 |
+
"grad_norm": 1.9159036924753614,
|
| 1473 |
+
"kl": 0.0185546875,
|
| 1474 |
+
"learning_rate": 9.999690090417167e-07,
|
| 1475 |
+
"loss": 0.0007,
|
| 1476 |
+
"reward": 1.908928632736206,
|
| 1477 |
+
"reward_std": 0.15162892639636993,
|
| 1478 |
+
"rewards/accuracy_reward": 0.7321428656578064,
|
| 1479 |
+
"rewards/format_reward": 1.0,
|
| 1480 |
+
"step": 92,
|
| 1481 |
+
"temporal_rewards": 0.8571428656578064
|
| 1482 |
+
},
|
| 1483 |
+
{
|
| 1484 |
+
"all_correct": 0.0,
|
| 1485 |
+
"all_wrong": 0.0,
|
| 1486 |
+
"completion_length": 272.51788330078125,
|
| 1487 |
+
"epoch": 0.0035825725182017797,
|
| 1488 |
+
"grad_norm": 2.5112506689696623,
|
| 1489 |
+
"kl": 0.0167236328125,
|
| 1490 |
+
"learning_rate": 9.999683316708803e-07,
|
| 1491 |
+
"loss": 0.0007,
|
| 1492 |
+
"reward": 1.4424163103103638,
|
| 1493 |
+
"reward_std": 0.35725003480911255,
|
| 1494 |
+
"rewards/accuracy_reward": 0.33705905079841614,
|
| 1495 |
+
"rewards/format_reward": 1.0,
|
| 1496 |
+
"step": 93,
|
| 1497 |
+
"temporal_rewards": 0.6428571343421936
|
| 1498 |
+
},
|
| 1499 |
+
{
|
| 1500 |
+
"all_correct": 0.42857142857142855,
|
| 1501 |
+
"all_wrong": 0.0,
|
| 1502 |
+
"completion_length": 162.42857360839844,
|
| 1503 |
+
"epoch": 0.0036210948033437345,
|
| 1504 |
+
"grad_norm": 2.9519370343427767,
|
| 1505 |
+
"kl": 0.0257568359375,
|
| 1506 |
+
"learning_rate": 9.999676469774268e-07,
|
| 1507 |
+
"loss": 0.001,
|
| 1508 |
+
"reward": 1.7114182710647583,
|
| 1509 |
+
"reward_std": 0.11487601697444916,
|
| 1510 |
+
"rewards/accuracy_reward": 0.6310611963272095,
|
| 1511 |
+
"rewards/format_reward": 1.0,
|
| 1512 |
+
"step": 94,
|
| 1513 |
+
"temporal_rewards": 0.5714285373687744
|
| 1514 |
+
},
|
| 1515 |
+
{
|
| 1516 |
+
"all_correct": 0.14285714285714285,
|
| 1517 |
+
"all_wrong": 0.14285714285714285,
|
| 1518 |
+
"completion_length": 233.0357208251953,
|
| 1519 |
+
"epoch": 0.003659617088485689,
|
| 1520 |
+
"grad_norm": 2.4129406349857567,
|
| 1521 |
+
"kl": 0.0164794921875,
|
| 1522 |
+
"learning_rate": 9.999669549613662e-07,
|
| 1523 |
+
"loss": 0.0007,
|
| 1524 |
+
"reward": 1.651080846786499,
|
| 1525 |
+
"reward_std": 0.29609203338623047,
|
| 1526 |
+
"rewards/accuracy_reward": 0.5421521663665771,
|
| 1527 |
+
"rewards/format_reward": 0.9821429252624512,
|
| 1528 |
+
"step": 95,
|
| 1529 |
+
"temporal_rewards": 0.714285671710968
|
| 1530 |
+
},
|
| 1531 |
+
{
|
| 1532 |
+
"all_correct": 0.14285714285714285,
|
| 1533 |
+
"all_wrong": 0.14285714285714285,
|
| 1534 |
+
"completion_length": 176.33929443359375,
|
| 1535 |
+
"epoch": 0.0036981393736276436,
|
| 1536 |
+
"grad_norm": 2.4779580084833346,
|
| 1537 |
+
"kl": 0.0201416015625,
|
| 1538 |
+
"learning_rate": 9.999662556227086e-07,
|
| 1539 |
+
"loss": 0.0008,
|
| 1540 |
+
"reward": 1.4675571918487549,
|
| 1541 |
+
"reward_std": 0.14850883185863495,
|
| 1542 |
+
"rewards/accuracy_reward": 0.4675571322441101,
|
| 1543 |
+
"rewards/format_reward": 1.0,
|
| 1544 |
+
"step": 96,
|
| 1545 |
+
"temporal_rewards": 0.4285714328289032
|
| 1546 |
+
},
|
| 1547 |
+
{
|
| 1548 |
+
"all_correct": 0.2857142857142857,
|
| 1549 |
+
"all_wrong": 0.14285714285714285,
|
| 1550 |
+
"completion_length": 161.6428680419922,
|
| 1551 |
+
"epoch": 0.0037366616587695984,
|
| 1552 |
+
"grad_norm": 1.9659404766308382,
|
| 1553 |
+
"kl": 0.0196533203125,
|
| 1554 |
+
"learning_rate": 9.999655489614645e-07,
|
| 1555 |
+
"loss": 0.0008,
|
| 1556 |
+
"reward": 1.7886890172958374,
|
| 1557 |
+
"reward_std": 0.09862305968999863,
|
| 1558 |
+
"rewards/accuracy_reward": 0.6619032025337219,
|
| 1559 |
+
"rewards/format_reward": 1.0,
|
| 1560 |
+
"step": 97,
|
| 1561 |
+
"temporal_rewards": 0.714285671710968
|
| 1562 |
+
},
|
| 1563 |
+
{
|
| 1564 |
+
"all_correct": 0.5714285714285714,
|
| 1565 |
+
"all_wrong": 0.14285714285714285,
|
| 1566 |
+
"completion_length": 179.19644165039062,
|
| 1567 |
+
"epoch": 0.0037751839439115528,
|
| 1568 |
+
"grad_norm": 2.05557437418435,
|
| 1569 |
+
"kl": 0.016357421875,
|
| 1570 |
+
"learning_rate": 9.999648349776438e-07,
|
| 1571 |
+
"loss": 0.0007,
|
| 1572 |
+
"reward": 1.7678003311157227,
|
| 1573 |
+
"reward_std": 0.06355559825897217,
|
| 1574 |
+
"rewards/accuracy_reward": 0.6570857763290405,
|
| 1575 |
+
"rewards/format_reward": 1.0,
|
| 1576 |
+
"step": 98,
|
| 1577 |
+
"temporal_rewards": 0.6428571343421936
|
| 1578 |
+
},
|
| 1579 |
+
{
|
| 1580 |
+
"all_correct": 0.5714285714285714,
|
| 1581 |
+
"all_wrong": 0.0,
|
| 1582 |
+
"completion_length": 225.5535888671875,
|
| 1583 |
+
"epoch": 0.0038137062290535075,
|
| 1584 |
+
"grad_norm": 1.9682189342389496,
|
| 1585 |
+
"kl": 0.0174560546875,
|
| 1586 |
+
"learning_rate": 9.999641136712574e-07,
|
| 1587 |
+
"loss": 0.0007,
|
| 1588 |
+
"reward": 1.8416882753372192,
|
| 1589 |
+
"reward_std": 0.17344672977924347,
|
| 1590 |
+
"rewards/accuracy_reward": 0.6881167888641357,
|
| 1591 |
+
"rewards/format_reward": 1.0,
|
| 1592 |
+
"step": 99,
|
| 1593 |
+
"temporal_rewards": 0.7857142686843872
|
| 1594 |
+
},
|
| 1595 |
+
{
|
| 1596 |
+
"all_correct": 0.42857142857142855,
|
| 1597 |
+
"all_wrong": 0.14285714285714285,
|
| 1598 |
+
"completion_length": 214.48214721679688,
|
| 1599 |
+
"epoch": 0.003852228514195462,
|
| 1600 |
+
"grad_norm": 1.387767917535426,
|
| 1601 |
+
"kl": 0.01708984375,
|
| 1602 |
+
"learning_rate": 9.999633850423157e-07,
|
| 1603 |
+
"loss": 0.0007,
|
| 1604 |
+
"reward": 1.7011778354644775,
|
| 1605 |
+
"reward_std": 0.10359158366918564,
|
| 1606 |
+
"rewards/accuracy_reward": 0.5368921160697937,
|
| 1607 |
+
"rewards/format_reward": 1.0,
|
| 1608 |
+
"step": 100,
|
| 1609 |
+
"temporal_rewards": 0.714285671710968
|
| 1610 |
+
}
|
| 1611 |
+
],
|
| 1612 |
+
"logging_steps": 1.0,
|
| 1613 |
+
"max_steps": 25959,
|
| 1614 |
+
"num_input_tokens_seen": 0,
|
| 1615 |
+
"num_train_epochs": 1,
|
| 1616 |
+
"save_steps": 100,
|
| 1617 |
+
"stateful_callbacks": {
|
| 1618 |
+
"TrainerControl": {
|
| 1619 |
+
"args": {
|
| 1620 |
+
"should_epoch_stop": false,
|
| 1621 |
+
"should_evaluate": false,
|
| 1622 |
+
"should_log": false,
|
| 1623 |
+
"should_save": true,
|
| 1624 |
+
"should_training_stop": false
|
| 1625 |
+
},
|
| 1626 |
+
"attributes": {}
|
| 1627 |
+
}
|
| 1628 |
+
},
|
| 1629 |
+
"total_flos": 0.0,
|
| 1630 |
+
"train_batch_size": 1,
|
| 1631 |
+
"trial_name": null,
|
| 1632 |
+
"trial_params": null
|
| 1633 |
+
}
|
last-checkpoint/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a7f8000e91d6e70d9c196be607065507c15e6558dae5f04550099f60e829a29a
|
| 3 |
+
size 8504
|
last-checkpoint/vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
last-checkpoint/zero_to_fp32.py
ADDED
|
@@ -0,0 +1,674 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example:
|
| 14 |
+
# python zero_to_fp32.py . output_dir/
|
| 15 |
+
# or
|
| 16 |
+
# python zero_to_fp32.py . output_dir/ --safe_serialization
|
| 17 |
+
|
| 18 |
+
import argparse
|
| 19 |
+
import torch
|
| 20 |
+
import glob
|
| 21 |
+
import math
|
| 22 |
+
import os
|
| 23 |
+
import re
|
| 24 |
+
import json
|
| 25 |
+
from tqdm import tqdm
|
| 26 |
+
from collections import OrderedDict
|
| 27 |
+
from dataclasses import dataclass
|
| 28 |
+
|
| 29 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 30 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 31 |
+
from deepspeed.utils import logger
|
| 32 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 33 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 34 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
@dataclass
|
| 38 |
+
class zero_model_state:
|
| 39 |
+
buffers: dict()
|
| 40 |
+
param_shapes: dict()
|
| 41 |
+
shared_params: list
|
| 42 |
+
ds_version: int
|
| 43 |
+
frozen_param_shapes: dict()
|
| 44 |
+
frozen_param_fragments: dict()
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
debug = 0
|
| 48 |
+
|
| 49 |
+
# load to cpu
|
| 50 |
+
device = torch.device('cpu')
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def atoi(text):
|
| 54 |
+
return int(text) if text.isdigit() else text
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def natural_keys(text):
|
| 58 |
+
'''
|
| 59 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 60 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 61 |
+
(See Toothy's implementation in the comments)
|
| 62 |
+
'''
|
| 63 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 67 |
+
if not os.path.isdir(checkpoint_dir):
|
| 68 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 69 |
+
|
| 70 |
+
# there should be only one file
|
| 71 |
+
if zero_stage <= 2:
|
| 72 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 73 |
+
elif zero_stage == 3:
|
| 74 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 75 |
+
|
| 76 |
+
if not os.path.exists(file):
|
| 77 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 78 |
+
|
| 79 |
+
return file
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 83 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 84 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 85 |
+
|
| 86 |
+
if len(ckpt_files) == 0:
|
| 87 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 88 |
+
|
| 89 |
+
return ckpt_files
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def get_optim_files(checkpoint_dir):
|
| 93 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def get_model_state_files(checkpoint_dir):
|
| 97 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def parse_model_states(files):
|
| 101 |
+
zero_model_states = []
|
| 102 |
+
for file in files:
|
| 103 |
+
state_dict = torch.load(file, map_location=device)
|
| 104 |
+
|
| 105 |
+
if BUFFER_NAMES not in state_dict:
|
| 106 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 107 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 108 |
+
if debug:
|
| 109 |
+
print("Found buffers:", buffer_names)
|
| 110 |
+
|
| 111 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 112 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 113 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 114 |
+
|
| 115 |
+
# collect parameters that are included in param_shapes
|
| 116 |
+
param_names = []
|
| 117 |
+
for s in param_shapes:
|
| 118 |
+
for name in s.keys():
|
| 119 |
+
param_names.append(name)
|
| 120 |
+
|
| 121 |
+
# update with frozen parameters
|
| 122 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 123 |
+
if frozen_param_shapes is not None:
|
| 124 |
+
if debug:
|
| 125 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 126 |
+
param_names += list(frozen_param_shapes.keys())
|
| 127 |
+
|
| 128 |
+
# handle shared params
|
| 129 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 130 |
+
|
| 131 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 132 |
+
|
| 133 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 134 |
+
|
| 135 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 136 |
+
param_shapes=param_shapes,
|
| 137 |
+
shared_params=shared_params,
|
| 138 |
+
ds_version=ds_version,
|
| 139 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 140 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 141 |
+
zero_model_states.append(z_model_state)
|
| 142 |
+
|
| 143 |
+
return zero_model_states
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 147 |
+
total_files = len(files)
|
| 148 |
+
state_dicts = []
|
| 149 |
+
for f in files:
|
| 150 |
+
state_dict = torch.load(f, map_location=device)
|
| 151 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 152 |
+
# and also handle the case where it was already removed by another helper script
|
| 153 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 154 |
+
state_dicts.append(state_dict)
|
| 155 |
+
|
| 156 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 157 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 158 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 159 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 160 |
+
|
| 161 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 162 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 163 |
+
# use the max of the partition_count to get the dp world_size.
|
| 164 |
+
|
| 165 |
+
if type(world_size) is list:
|
| 166 |
+
world_size = max(world_size)
|
| 167 |
+
|
| 168 |
+
if world_size != total_files:
|
| 169 |
+
raise ValueError(
|
| 170 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 171 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
# the groups are named differently in each stage
|
| 175 |
+
if zero_stage <= 2:
|
| 176 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 177 |
+
elif zero_stage == 3:
|
| 178 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 179 |
+
else:
|
| 180 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 181 |
+
|
| 182 |
+
if zero_stage <= 2:
|
| 183 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 184 |
+
elif zero_stage == 3:
|
| 185 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
| 186 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
| 187 |
+
#
|
| 188 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
| 189 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
| 190 |
+
|
| 191 |
+
fp32_flat_groups = [
|
| 192 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
| 193 |
+
]
|
| 194 |
+
|
| 195 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 196 |
+
|
| 197 |
+
|
| 198 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
|
| 199 |
+
"""
|
| 200 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 201 |
+
|
| 202 |
+
Args:
|
| 203 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 204 |
+
|
| 205 |
+
"""
|
| 206 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 207 |
+
|
| 208 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 209 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 210 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 211 |
+
|
| 212 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 213 |
+
|
| 214 |
+
zero_model_states = parse_model_states(model_files)
|
| 215 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 216 |
+
|
| 217 |
+
if zero_stage <= 2:
|
| 218 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 219 |
+
exclude_frozen_parameters)
|
| 220 |
+
elif zero_stage == 3:
|
| 221 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 222 |
+
exclude_frozen_parameters)
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 226 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 227 |
+
return
|
| 228 |
+
|
| 229 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 230 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 231 |
+
|
| 232 |
+
if debug:
|
| 233 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 234 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 235 |
+
|
| 236 |
+
wanted_params = len(frozen_param_shapes)
|
| 237 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 238 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 239 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 240 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 241 |
+
|
| 242 |
+
total_params = 0
|
| 243 |
+
total_numel = 0
|
| 244 |
+
for name, shape in frozen_param_shapes.items():
|
| 245 |
+
total_params += 1
|
| 246 |
+
unpartitioned_numel = shape.numel()
|
| 247 |
+
total_numel += unpartitioned_numel
|
| 248 |
+
|
| 249 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 250 |
+
|
| 251 |
+
if debug:
|
| 252 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 253 |
+
|
| 254 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
def _has_callable(obj, fn):
|
| 258 |
+
attr = getattr(obj, fn, None)
|
| 259 |
+
return callable(attr)
|
| 260 |
+
|
| 261 |
+
|
| 262 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 263 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 264 |
+
|
| 265 |
+
# Reconstruction protocol:
|
| 266 |
+
#
|
| 267 |
+
# XXX: document this
|
| 268 |
+
|
| 269 |
+
if debug:
|
| 270 |
+
for i in range(world_size):
|
| 271 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 272 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 273 |
+
|
| 274 |
+
# XXX: memory usage doubles here (zero2)
|
| 275 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 276 |
+
merged_single_partition_of_fp32_groups = []
|
| 277 |
+
for i in range(num_param_groups):
|
| 278 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 279 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 280 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 281 |
+
avail_numel = sum(
|
| 282 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 283 |
+
|
| 284 |
+
if debug:
|
| 285 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 286 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 287 |
+
# not asserting if there is a mismatch due to possible padding
|
| 288 |
+
print(f"Have {avail_numel} numels to process.")
|
| 289 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 290 |
+
|
| 291 |
+
# params
|
| 292 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 293 |
+
# out-of-core computing solution
|
| 294 |
+
total_numel = 0
|
| 295 |
+
total_params = 0
|
| 296 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 297 |
+
offset = 0
|
| 298 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 299 |
+
for name, shape in shapes.items():
|
| 300 |
+
|
| 301 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 302 |
+
total_numel += unpartitioned_numel
|
| 303 |
+
total_params += 1
|
| 304 |
+
|
| 305 |
+
if debug:
|
| 306 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 307 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 308 |
+
offset += unpartitioned_numel
|
| 309 |
+
|
| 310 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 311 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 312 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 313 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 314 |
+
align_to = 2 * world_size
|
| 315 |
+
|
| 316 |
+
def zero2_align(x):
|
| 317 |
+
return align_to * math.ceil(x / align_to)
|
| 318 |
+
|
| 319 |
+
if debug:
|
| 320 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 321 |
+
|
| 322 |
+
offset = zero2_align(offset)
|
| 323 |
+
avail_numel = zero2_align(avail_numel)
|
| 324 |
+
|
| 325 |
+
if debug:
|
| 326 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 327 |
+
|
| 328 |
+
# Sanity check
|
| 329 |
+
if offset != avail_numel:
|
| 330 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 331 |
+
|
| 332 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 333 |
+
|
| 334 |
+
|
| 335 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 336 |
+
exclude_frozen_parameters):
|
| 337 |
+
state_dict = OrderedDict()
|
| 338 |
+
|
| 339 |
+
# buffers
|
| 340 |
+
buffers = zero_model_states[0].buffers
|
| 341 |
+
state_dict.update(buffers)
|
| 342 |
+
if debug:
|
| 343 |
+
print(f"added {len(buffers)} buffers")
|
| 344 |
+
|
| 345 |
+
if not exclude_frozen_parameters:
|
| 346 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 347 |
+
|
| 348 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 349 |
+
|
| 350 |
+
# recover shared parameters
|
| 351 |
+
for pair in zero_model_states[0].shared_params:
|
| 352 |
+
if pair[1] in state_dict:
|
| 353 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 354 |
+
|
| 355 |
+
return state_dict
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 359 |
+
remainder = unpartitioned_numel % world_size
|
| 360 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 361 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 362 |
+
return partitioned_numel, padding_numel
|
| 363 |
+
|
| 364 |
+
|
| 365 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 366 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 367 |
+
return
|
| 368 |
+
|
| 369 |
+
if debug:
|
| 370 |
+
for i in range(world_size):
|
| 371 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 372 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 373 |
+
|
| 374 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 375 |
+
wanted_params = len(frozen_param_shapes)
|
| 376 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 377 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 378 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 379 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 380 |
+
|
| 381 |
+
total_params = 0
|
| 382 |
+
total_numel = 0
|
| 383 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 384 |
+
total_params += 1
|
| 385 |
+
unpartitioned_numel = shape.numel()
|
| 386 |
+
total_numel += unpartitioned_numel
|
| 387 |
+
|
| 388 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 389 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 390 |
+
|
| 391 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 392 |
+
|
| 393 |
+
if debug:
|
| 394 |
+
print(
|
| 395 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 396 |
+
)
|
| 397 |
+
|
| 398 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 399 |
+
|
| 400 |
+
|
| 401 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 402 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 403 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 404 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 405 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 406 |
+
|
| 407 |
+
# merge list of dicts, preserving order
|
| 408 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 409 |
+
|
| 410 |
+
if debug:
|
| 411 |
+
for i in range(world_size):
|
| 412 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 413 |
+
|
| 414 |
+
wanted_params = len(param_shapes)
|
| 415 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 416 |
+
# not asserting if there is a mismatch due to possible padding
|
| 417 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 418 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 419 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 420 |
+
|
| 421 |
+
# params
|
| 422 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 423 |
+
# out-of-core computing solution
|
| 424 |
+
offset = 0
|
| 425 |
+
total_numel = 0
|
| 426 |
+
total_params = 0
|
| 427 |
+
for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
|
| 428 |
+
unpartitioned_numel = shape.numel()
|
| 429 |
+
total_numel += unpartitioned_numel
|
| 430 |
+
total_params += 1
|
| 431 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 432 |
+
|
| 433 |
+
if debug:
|
| 434 |
+
print(
|
| 435 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 436 |
+
)
|
| 437 |
+
|
| 438 |
+
# XXX: memory usage doubles here
|
| 439 |
+
state_dict[name] = torch.cat(
|
| 440 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
| 441 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 442 |
+
offset += partitioned_numel
|
| 443 |
+
|
| 444 |
+
offset *= world_size
|
| 445 |
+
|
| 446 |
+
# Sanity check
|
| 447 |
+
if offset != avail_numel:
|
| 448 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 449 |
+
|
| 450 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 451 |
+
|
| 452 |
+
|
| 453 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
|
| 454 |
+
exclude_frozen_parameters):
|
| 455 |
+
state_dict = OrderedDict()
|
| 456 |
+
|
| 457 |
+
# buffers
|
| 458 |
+
buffers = zero_model_states[0].buffers
|
| 459 |
+
state_dict.update(buffers)
|
| 460 |
+
if debug:
|
| 461 |
+
print(f"added {len(buffers)} buffers")
|
| 462 |
+
|
| 463 |
+
if not exclude_frozen_parameters:
|
| 464 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 465 |
+
|
| 466 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 467 |
+
|
| 468 |
+
# recover shared parameters
|
| 469 |
+
for pair in zero_model_states[0].shared_params:
|
| 470 |
+
if pair[1] in state_dict:
|
| 471 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 472 |
+
|
| 473 |
+
return state_dict
|
| 474 |
+
|
| 475 |
+
|
| 476 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
|
| 477 |
+
"""
|
| 478 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 479 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 480 |
+
via a model hub.
|
| 481 |
+
|
| 482 |
+
Args:
|
| 483 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 484 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 485 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 486 |
+
|
| 487 |
+
Returns:
|
| 488 |
+
- pytorch ``state_dict``
|
| 489 |
+
|
| 490 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
| 491 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 492 |
+
the checkpoint.
|
| 493 |
+
|
| 494 |
+
A typical usage might be ::
|
| 495 |
+
|
| 496 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 497 |
+
# do the training and checkpoint saving
|
| 498 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 499 |
+
model = model.cpu() # move to cpu
|
| 500 |
+
model.load_state_dict(state_dict)
|
| 501 |
+
# submit to model hub or save the model to share with others
|
| 502 |
+
|
| 503 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 504 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 505 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 506 |
+
|
| 507 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 508 |
+
|
| 509 |
+
"""
|
| 510 |
+
if tag is None:
|
| 511 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 512 |
+
if os.path.isfile(latest_path):
|
| 513 |
+
with open(latest_path, 'r') as fd:
|
| 514 |
+
tag = fd.read().strip()
|
| 515 |
+
else:
|
| 516 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 517 |
+
|
| 518 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 519 |
+
|
| 520 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 521 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 522 |
+
|
| 523 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
|
| 524 |
+
|
| 525 |
+
|
| 526 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
|
| 527 |
+
output_dir,
|
| 528 |
+
max_shard_size="5GB",
|
| 529 |
+
safe_serialization=False,
|
| 530 |
+
tag=None,
|
| 531 |
+
exclude_frozen_parameters=False):
|
| 532 |
+
"""
|
| 533 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 534 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 535 |
+
|
| 536 |
+
Args:
|
| 537 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 538 |
+
- ``output_dir``: directory to the pytorch fp32 state_dict output files
|
| 539 |
+
- ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
|
| 540 |
+
- ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
|
| 541 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 542 |
+
- ``exclude_frozen_parameters``: exclude frozen parameters
|
| 543 |
+
"""
|
| 544 |
+
# Dependency pre-check
|
| 545 |
+
if safe_serialization:
|
| 546 |
+
try:
|
| 547 |
+
from safetensors.torch import save_file
|
| 548 |
+
except ImportError:
|
| 549 |
+
print('If you want to use `safe_serialization`, please `pip install safetensors`')
|
| 550 |
+
raise
|
| 551 |
+
if max_shard_size is not None:
|
| 552 |
+
try:
|
| 553 |
+
from huggingface_hub import split_torch_state_dict_into_shards
|
| 554 |
+
except ImportError:
|
| 555 |
+
print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
|
| 556 |
+
raise
|
| 557 |
+
|
| 558 |
+
# Convert zero checkpoint to state_dict
|
| 559 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
|
| 560 |
+
|
| 561 |
+
# Shard the model if it is too big.
|
| 562 |
+
weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
|
| 563 |
+
if max_shard_size is not None:
|
| 564 |
+
filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
|
| 565 |
+
state_dict_split = split_torch_state_dict_into_shards(state_dict,
|
| 566 |
+
filename_pattern=filename_pattern,
|
| 567 |
+
max_shard_size=max_shard_size)
|
| 568 |
+
else:
|
| 569 |
+
from collections import namedtuple
|
| 570 |
+
StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
|
| 571 |
+
state_dict_split = StateDictSplit(is_sharded=False,
|
| 572 |
+
filename_to_tensors={weights_name: list(state_dict.keys())})
|
| 573 |
+
|
| 574 |
+
# Save the model
|
| 575 |
+
filename_to_tensors = state_dict_split.filename_to_tensors.items()
|
| 576 |
+
for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
|
| 577 |
+
shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
|
| 578 |
+
output_path = os.path.join(output_dir, shard_file)
|
| 579 |
+
if safe_serialization:
|
| 580 |
+
save_file(shard, output_path, metadata={"format": "pt"})
|
| 581 |
+
else:
|
| 582 |
+
torch.save(shard, output_path)
|
| 583 |
+
|
| 584 |
+
# Save index if sharded
|
| 585 |
+
if state_dict_split.is_sharded:
|
| 586 |
+
index = {
|
| 587 |
+
"metadata": state_dict_split.metadata,
|
| 588 |
+
"weight_map": state_dict_split.tensor_to_filename,
|
| 589 |
+
}
|
| 590 |
+
save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
|
| 591 |
+
save_index_file = os.path.join(output_dir, save_index_file)
|
| 592 |
+
with open(save_index_file, "w", encoding="utf-8") as f:
|
| 593 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
| 594 |
+
f.write(content)
|
| 595 |
+
|
| 596 |
+
|
| 597 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 598 |
+
"""
|
| 599 |
+
1. Put the provided model to cpu
|
| 600 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 601 |
+
3. Load it into the provided model
|
| 602 |
+
|
| 603 |
+
Args:
|
| 604 |
+
- ``model``: the model object to update
|
| 605 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 606 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 607 |
+
|
| 608 |
+
Returns:
|
| 609 |
+
- ``model`: modified model
|
| 610 |
+
|
| 611 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 612 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 613 |
+
conveniently placed for you in the checkpoint folder.
|
| 614 |
+
|
| 615 |
+
A typical usage might be ::
|
| 616 |
+
|
| 617 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 618 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 619 |
+
# submit to model hub or save the model to share with others
|
| 620 |
+
|
| 621 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 622 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 623 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 624 |
+
|
| 625 |
+
"""
|
| 626 |
+
logger.info(f"Extracting fp32 weights")
|
| 627 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 628 |
+
|
| 629 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 630 |
+
model = model.cpu()
|
| 631 |
+
model.load_state_dict(state_dict, strict=False)
|
| 632 |
+
|
| 633 |
+
return model
|
| 634 |
+
|
| 635 |
+
|
| 636 |
+
if __name__ == "__main__":
|
| 637 |
+
parser = argparse.ArgumentParser()
|
| 638 |
+
parser.add_argument("checkpoint_dir",
|
| 639 |
+
type=str,
|
| 640 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 641 |
+
parser.add_argument("output_dir",
|
| 642 |
+
type=str,
|
| 643 |
+
help="directory to the pytorch fp32 state_dict output files"
|
| 644 |
+
"(e.g. path/checkpoint-12-output/)")
|
| 645 |
+
parser.add_argument(
|
| 646 |
+
"--max_shard_size",
|
| 647 |
+
type=str,
|
| 648 |
+
default="5GB",
|
| 649 |
+
help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
|
| 650 |
+
"lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
|
| 651 |
+
"We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
|
| 652 |
+
"without CPU OOM issues.")
|
| 653 |
+
parser.add_argument(
|
| 654 |
+
"--safe_serialization",
|
| 655 |
+
default=False,
|
| 656 |
+
action='store_true',
|
| 657 |
+
help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
|
| 658 |
+
parser.add_argument("-t",
|
| 659 |
+
"--tag",
|
| 660 |
+
type=str,
|
| 661 |
+
default=None,
|
| 662 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 663 |
+
parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
|
| 664 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 665 |
+
args = parser.parse_args()
|
| 666 |
+
|
| 667 |
+
debug = args.debug
|
| 668 |
+
|
| 669 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
|
| 670 |
+
args.output_dir,
|
| 671 |
+
max_shard_size=args.max_shard_size,
|
| 672 |
+
safe_serialization=args.safe_serialization,
|
| 673 |
+
tag=args.tag,
|
| 674 |
+
exclude_frozen_parameters=args.exclude_frozen_parameters)
|