Reacherx commited on
Commit
cb2899d
·
verified ·
1 Parent(s): bfbcfd4

Training in progress, step 100, checkpoint

Browse files
Files changed (42) hide show
  1. .gitattributes +1 -0
  2. last-checkpoint/added_tokens.json +24 -0
  3. last-checkpoint/chat_template.json +3 -0
  4. last-checkpoint/config.json +50 -0
  5. last-checkpoint/generation_config.json +14 -0
  6. last-checkpoint/global_step100/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt +3 -0
  7. last-checkpoint/global_step100/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt +3 -0
  8. last-checkpoint/global_step100/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt +3 -0
  9. last-checkpoint/global_step100/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt +3 -0
  10. last-checkpoint/global_step100/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt +3 -0
  11. last-checkpoint/global_step100/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt +3 -0
  12. last-checkpoint/global_step100/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt +3 -0
  13. last-checkpoint/global_step100/zero_pp_rank_0_mp_rank_00_model_states.pt +3 -0
  14. last-checkpoint/global_step100/zero_pp_rank_1_mp_rank_00_model_states.pt +3 -0
  15. last-checkpoint/global_step100/zero_pp_rank_2_mp_rank_00_model_states.pt +3 -0
  16. last-checkpoint/global_step100/zero_pp_rank_3_mp_rank_00_model_states.pt +3 -0
  17. last-checkpoint/global_step100/zero_pp_rank_4_mp_rank_00_model_states.pt +3 -0
  18. last-checkpoint/global_step100/zero_pp_rank_5_mp_rank_00_model_states.pt +3 -0
  19. last-checkpoint/global_step100/zero_pp_rank_6_mp_rank_00_model_states.pt +3 -0
  20. last-checkpoint/latest +1 -0
  21. last-checkpoint/merges.txt +0 -0
  22. last-checkpoint/model-00001-of-00004.safetensors +3 -0
  23. last-checkpoint/model-00002-of-00004.safetensors +3 -0
  24. last-checkpoint/model-00003-of-00004.safetensors +3 -0
  25. last-checkpoint/model-00004-of-00004.safetensors +3 -0
  26. last-checkpoint/model.safetensors.index.json +736 -0
  27. last-checkpoint/preprocessor_config.json +29 -0
  28. last-checkpoint/rng_state_0.pth +3 -0
  29. last-checkpoint/rng_state_1.pth +3 -0
  30. last-checkpoint/rng_state_2.pth +3 -0
  31. last-checkpoint/rng_state_3.pth +3 -0
  32. last-checkpoint/rng_state_4.pth +3 -0
  33. last-checkpoint/rng_state_5.pth +3 -0
  34. last-checkpoint/rng_state_6.pth +3 -0
  35. last-checkpoint/scheduler.pt +3 -0
  36. last-checkpoint/special_tokens_map.json +31 -0
  37. last-checkpoint/tokenizer.json +3 -0
  38. last-checkpoint/tokenizer_config.json +209 -0
  39. last-checkpoint/trainer_state.json +1633 -0
  40. last-checkpoint/training_args.bin +3 -0
  41. last-checkpoint/vocab.json +0 -0
  42. last-checkpoint/zero_to_fp32.py +674 -0
.gitattributes CHANGED
@@ -34,3 +34,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  tokenizer.json filter=lfs diff=lfs merge=lfs -text
 
 
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ last-checkpoint/tokenizer.json filter=lfs diff=lfs merge=lfs -text
last-checkpoint/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
last-checkpoint/chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
3
+ }
last-checkpoint/config.json ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "Qwen/Qwen2.5-VL-7B-Instruct",
3
+ "architectures": [
4
+ "Qwen2_5_VLForConditionalGeneration"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 3584,
11
+ "image_token_id": 151655,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 18944,
14
+ "max_position_embeddings": 128000,
15
+ "max_window_layers": 28,
16
+ "model_type": "qwen2_5_vl",
17
+ "num_attention_heads": 28,
18
+ "num_hidden_layers": 28,
19
+ "num_key_value_heads": 4,
20
+ "rms_norm_eps": 1e-06,
21
+ "rope_scaling": {
22
+ "mrope_section": [
23
+ 16,
24
+ 24,
25
+ 24
26
+ ],
27
+ "rope_type": "default",
28
+ "type": "default"
29
+ },
30
+ "rope_theta": 1000000.0,
31
+ "sliding_window": 32768,
32
+ "tie_word_embeddings": false,
33
+ "torch_dtype": "bfloat16",
34
+ "transformers_version": "4.49.0.dev0",
35
+ "use_cache": false,
36
+ "use_sliding_window": false,
37
+ "video_token_id": 151656,
38
+ "vision_config": {
39
+ "hidden_size": 1280,
40
+ "in_chans": 3,
41
+ "model_type": "qwen2_5_vl",
42
+ "spatial_patch_size": 14,
43
+ "tokens_per_second": 2,
44
+ "torch_dtype": "bfloat16"
45
+ },
46
+ "vision_end_token_id": 151653,
47
+ "vision_start_token_id": 151652,
48
+ "vision_token_id": 151654,
49
+ "vocab_size": 152064
50
+ }
last-checkpoint/generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "attn_implementation": "flash_attention_2",
3
+ "bos_token_id": 151643,
4
+ "do_sample": true,
5
+ "eos_token_id": [
6
+ 151645,
7
+ 151643
8
+ ],
9
+ "pad_token_id": 151643,
10
+ "repetition_penalty": 1.05,
11
+ "temperature": 1e-06,
12
+ "transformers_version": "4.49.0.dev0",
13
+ "use_cache": false
14
+ }
last-checkpoint/global_step100/bf16_zero_pp_rank_0_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e9fbb56b33c0e46448344479dafcd7dca811bd16e6a526673a8fd6d56fe3998
3
+ size 14215152126
last-checkpoint/global_step100/bf16_zero_pp_rank_1_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5048fcb70c140e619ca0965cfcd4c9ef22616ab360109209fd0711bec611875
3
+ size 14215152126
last-checkpoint/global_step100/bf16_zero_pp_rank_2_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1d8dcadc4f1496f814cdac3f9e5577ff455d31a3c27859841f60b5c7bdb85436
3
+ size 14215152126
last-checkpoint/global_step100/bf16_zero_pp_rank_3_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f77c8d0418d62db5b74ccdd829dad517d5d99c9acb2b6a9e04e12dd6bc0eaf65
3
+ size 14215152126
last-checkpoint/global_step100/bf16_zero_pp_rank_4_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:458ae437bad08af14a3a6da21f23863ea2d5ac162a09bdb7d0ca5aca1dc3bfb0
3
+ size 14215152126
last-checkpoint/global_step100/bf16_zero_pp_rank_5_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9eef0485fcc6c01fe32bd3cd5c721a0bfe1038f39986ee6cb096fcf34d74cc00
3
+ size 14215152126
last-checkpoint/global_step100/bf16_zero_pp_rank_6_mp_rank_00_optim_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:62aaca59413e85eccdcb83f1c2e826d121da6e7972d92c43c6bc510d19c38010
3
+ size 14215152126
last-checkpoint/global_step100/zero_pp_rank_0_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3ef289a60d9e56e23d1ef010af826201601e88870684662bc0f6e62e0964a52
3
+ size 349379
last-checkpoint/global_step100/zero_pp_rank_1_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16e8528fb83a210e8bbd9a1781ab61e6e2dccf62c195bbffe29b3f5d19f621f3
3
+ size 349379
last-checkpoint/global_step100/zero_pp_rank_2_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7fdccf46cd71e8cd9940d81e40bbead8c4a0682b4ce5eb0adad5b7da517f633
3
+ size 349379
last-checkpoint/global_step100/zero_pp_rank_3_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:96302f8de00f370807a0d10a4b9692ce083f2dc63ba7ff3971b8a7552fd372ff
3
+ size 349379
last-checkpoint/global_step100/zero_pp_rank_4_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:93c566d74345baaaff9ef6bdae4e29805a0c70ce8d73d9f035c9b64b6197eaef
3
+ size 349379
last-checkpoint/global_step100/zero_pp_rank_5_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dd1ee97740ed83770c6aaf4053f6df9be408c00d16f51acaba3c594905b022d9
3
+ size 349379
last-checkpoint/global_step100/zero_pp_rank_6_mp_rank_00_model_states.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98650274726f869a3919c807f40b164a18fb039505e1dcc8bf1af72a4df56cd3
3
+ size 349379
last-checkpoint/latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step100
last-checkpoint/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
last-checkpoint/model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17617993c9ab5ac2116987aaf38c656381aad905c9352a51490240d419ff62c0
3
+ size 4968243304
last-checkpoint/model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74de14f01bda96ffd2500e51d2adf6c03dcfddbbdf2f43d9e6fd5cd0a468cf32
3
+ size 4991495816
last-checkpoint/model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:eccc8801f5f67aca7730d65a3c89c8f32dcd5ce336648141fd90121b49dfa341
3
+ size 4932751040
last-checkpoint/model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a7ea50eb6fd468e2b667401050cbd946dc934f921aba63412c39db07f0c17365
3
+ size 1691924384
last-checkpoint/model.safetensors.index.json ADDED
@@ -0,0 +1,736 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16584333312
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00004-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00004-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00002-of-00004.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00004.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "model.norm.weight": "model-00004-of-00004.safetensors",
345
+ "visual.blocks.0.attn.proj.bias": "model-00001-of-00004.safetensors",
346
+ "visual.blocks.0.attn.proj.weight": "model-00001-of-00004.safetensors",
347
+ "visual.blocks.0.attn.qkv.bias": "model-00001-of-00004.safetensors",
348
+ "visual.blocks.0.attn.qkv.weight": "model-00001-of-00004.safetensors",
349
+ "visual.blocks.0.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
350
+ "visual.blocks.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
351
+ "visual.blocks.0.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
352
+ "visual.blocks.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
353
+ "visual.blocks.0.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
354
+ "visual.blocks.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
355
+ "visual.blocks.0.norm1.weight": "model-00001-of-00004.safetensors",
356
+ "visual.blocks.0.norm2.weight": "model-00001-of-00004.safetensors",
357
+ "visual.blocks.1.attn.proj.bias": "model-00001-of-00004.safetensors",
358
+ "visual.blocks.1.attn.proj.weight": "model-00001-of-00004.safetensors",
359
+ "visual.blocks.1.attn.qkv.bias": "model-00001-of-00004.safetensors",
360
+ "visual.blocks.1.attn.qkv.weight": "model-00001-of-00004.safetensors",
361
+ "visual.blocks.1.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
362
+ "visual.blocks.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
363
+ "visual.blocks.1.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
364
+ "visual.blocks.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
365
+ "visual.blocks.1.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
366
+ "visual.blocks.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
367
+ "visual.blocks.1.norm1.weight": "model-00001-of-00004.safetensors",
368
+ "visual.blocks.1.norm2.weight": "model-00001-of-00004.safetensors",
369
+ "visual.blocks.10.attn.proj.bias": "model-00001-of-00004.safetensors",
370
+ "visual.blocks.10.attn.proj.weight": "model-00001-of-00004.safetensors",
371
+ "visual.blocks.10.attn.qkv.bias": "model-00001-of-00004.safetensors",
372
+ "visual.blocks.10.attn.qkv.weight": "model-00001-of-00004.safetensors",
373
+ "visual.blocks.10.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
374
+ "visual.blocks.10.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
375
+ "visual.blocks.10.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
376
+ "visual.blocks.10.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
377
+ "visual.blocks.10.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
378
+ "visual.blocks.10.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
379
+ "visual.blocks.10.norm1.weight": "model-00001-of-00004.safetensors",
380
+ "visual.blocks.10.norm2.weight": "model-00001-of-00004.safetensors",
381
+ "visual.blocks.11.attn.proj.bias": "model-00001-of-00004.safetensors",
382
+ "visual.blocks.11.attn.proj.weight": "model-00001-of-00004.safetensors",
383
+ "visual.blocks.11.attn.qkv.bias": "model-00001-of-00004.safetensors",
384
+ "visual.blocks.11.attn.qkv.weight": "model-00001-of-00004.safetensors",
385
+ "visual.blocks.11.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
386
+ "visual.blocks.11.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
387
+ "visual.blocks.11.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
388
+ "visual.blocks.11.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
389
+ "visual.blocks.11.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
390
+ "visual.blocks.11.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
391
+ "visual.blocks.11.norm1.weight": "model-00001-of-00004.safetensors",
392
+ "visual.blocks.11.norm2.weight": "model-00001-of-00004.safetensors",
393
+ "visual.blocks.12.attn.proj.bias": "model-00001-of-00004.safetensors",
394
+ "visual.blocks.12.attn.proj.weight": "model-00001-of-00004.safetensors",
395
+ "visual.blocks.12.attn.qkv.bias": "model-00001-of-00004.safetensors",
396
+ "visual.blocks.12.attn.qkv.weight": "model-00001-of-00004.safetensors",
397
+ "visual.blocks.12.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
398
+ "visual.blocks.12.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
399
+ "visual.blocks.12.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
400
+ "visual.blocks.12.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
401
+ "visual.blocks.12.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
402
+ "visual.blocks.12.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
403
+ "visual.blocks.12.norm1.weight": "model-00001-of-00004.safetensors",
404
+ "visual.blocks.12.norm2.weight": "model-00001-of-00004.safetensors",
405
+ "visual.blocks.13.attn.proj.bias": "model-00001-of-00004.safetensors",
406
+ "visual.blocks.13.attn.proj.weight": "model-00001-of-00004.safetensors",
407
+ "visual.blocks.13.attn.qkv.bias": "model-00001-of-00004.safetensors",
408
+ "visual.blocks.13.attn.qkv.weight": "model-00001-of-00004.safetensors",
409
+ "visual.blocks.13.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
410
+ "visual.blocks.13.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
411
+ "visual.blocks.13.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
412
+ "visual.blocks.13.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
413
+ "visual.blocks.13.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
414
+ "visual.blocks.13.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
415
+ "visual.blocks.13.norm1.weight": "model-00001-of-00004.safetensors",
416
+ "visual.blocks.13.norm2.weight": "model-00001-of-00004.safetensors",
417
+ "visual.blocks.14.attn.proj.bias": "model-00001-of-00004.safetensors",
418
+ "visual.blocks.14.attn.proj.weight": "model-00001-of-00004.safetensors",
419
+ "visual.blocks.14.attn.qkv.bias": "model-00001-of-00004.safetensors",
420
+ "visual.blocks.14.attn.qkv.weight": "model-00001-of-00004.safetensors",
421
+ "visual.blocks.14.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
422
+ "visual.blocks.14.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
423
+ "visual.blocks.14.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
424
+ "visual.blocks.14.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
425
+ "visual.blocks.14.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
426
+ "visual.blocks.14.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
427
+ "visual.blocks.14.norm1.weight": "model-00001-of-00004.safetensors",
428
+ "visual.blocks.14.norm2.weight": "model-00001-of-00004.safetensors",
429
+ "visual.blocks.15.attn.proj.bias": "model-00001-of-00004.safetensors",
430
+ "visual.blocks.15.attn.proj.weight": "model-00001-of-00004.safetensors",
431
+ "visual.blocks.15.attn.qkv.bias": "model-00001-of-00004.safetensors",
432
+ "visual.blocks.15.attn.qkv.weight": "model-00001-of-00004.safetensors",
433
+ "visual.blocks.15.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
434
+ "visual.blocks.15.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
435
+ "visual.blocks.15.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
436
+ "visual.blocks.15.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
437
+ "visual.blocks.15.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
438
+ "visual.blocks.15.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
439
+ "visual.blocks.15.norm1.weight": "model-00001-of-00004.safetensors",
440
+ "visual.blocks.15.norm2.weight": "model-00001-of-00004.safetensors",
441
+ "visual.blocks.16.attn.proj.bias": "model-00001-of-00004.safetensors",
442
+ "visual.blocks.16.attn.proj.weight": "model-00001-of-00004.safetensors",
443
+ "visual.blocks.16.attn.qkv.bias": "model-00001-of-00004.safetensors",
444
+ "visual.blocks.16.attn.qkv.weight": "model-00001-of-00004.safetensors",
445
+ "visual.blocks.16.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
446
+ "visual.blocks.16.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
447
+ "visual.blocks.16.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
448
+ "visual.blocks.16.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
449
+ "visual.blocks.16.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
450
+ "visual.blocks.16.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
451
+ "visual.blocks.16.norm1.weight": "model-00001-of-00004.safetensors",
452
+ "visual.blocks.16.norm2.weight": "model-00001-of-00004.safetensors",
453
+ "visual.blocks.17.attn.proj.bias": "model-00001-of-00004.safetensors",
454
+ "visual.blocks.17.attn.proj.weight": "model-00001-of-00004.safetensors",
455
+ "visual.blocks.17.attn.qkv.bias": "model-00001-of-00004.safetensors",
456
+ "visual.blocks.17.attn.qkv.weight": "model-00001-of-00004.safetensors",
457
+ "visual.blocks.17.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
458
+ "visual.blocks.17.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
459
+ "visual.blocks.17.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
460
+ "visual.blocks.17.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
461
+ "visual.blocks.17.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
462
+ "visual.blocks.17.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
463
+ "visual.blocks.17.norm1.weight": "model-00001-of-00004.safetensors",
464
+ "visual.blocks.17.norm2.weight": "model-00001-of-00004.safetensors",
465
+ "visual.blocks.18.attn.proj.bias": "model-00001-of-00004.safetensors",
466
+ "visual.blocks.18.attn.proj.weight": "model-00001-of-00004.safetensors",
467
+ "visual.blocks.18.attn.qkv.bias": "model-00001-of-00004.safetensors",
468
+ "visual.blocks.18.attn.qkv.weight": "model-00001-of-00004.safetensors",
469
+ "visual.blocks.18.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
470
+ "visual.blocks.18.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
471
+ "visual.blocks.18.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
472
+ "visual.blocks.18.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
473
+ "visual.blocks.18.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
474
+ "visual.blocks.18.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
475
+ "visual.blocks.18.norm1.weight": "model-00001-of-00004.safetensors",
476
+ "visual.blocks.18.norm2.weight": "model-00001-of-00004.safetensors",
477
+ "visual.blocks.19.attn.proj.bias": "model-00001-of-00004.safetensors",
478
+ "visual.blocks.19.attn.proj.weight": "model-00001-of-00004.safetensors",
479
+ "visual.blocks.19.attn.qkv.bias": "model-00001-of-00004.safetensors",
480
+ "visual.blocks.19.attn.qkv.weight": "model-00001-of-00004.safetensors",
481
+ "visual.blocks.19.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
482
+ "visual.blocks.19.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
483
+ "visual.blocks.19.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
484
+ "visual.blocks.19.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
485
+ "visual.blocks.19.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
486
+ "visual.blocks.19.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
487
+ "visual.blocks.19.norm1.weight": "model-00001-of-00004.safetensors",
488
+ "visual.blocks.19.norm2.weight": "model-00001-of-00004.safetensors",
489
+ "visual.blocks.2.attn.proj.bias": "model-00001-of-00004.safetensors",
490
+ "visual.blocks.2.attn.proj.weight": "model-00001-of-00004.safetensors",
491
+ "visual.blocks.2.attn.qkv.bias": "model-00001-of-00004.safetensors",
492
+ "visual.blocks.2.attn.qkv.weight": "model-00001-of-00004.safetensors",
493
+ "visual.blocks.2.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
494
+ "visual.blocks.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
495
+ "visual.blocks.2.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
496
+ "visual.blocks.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
497
+ "visual.blocks.2.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
498
+ "visual.blocks.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
499
+ "visual.blocks.2.norm1.weight": "model-00001-of-00004.safetensors",
500
+ "visual.blocks.2.norm2.weight": "model-00001-of-00004.safetensors",
501
+ "visual.blocks.20.attn.proj.bias": "model-00001-of-00004.safetensors",
502
+ "visual.blocks.20.attn.proj.weight": "model-00001-of-00004.safetensors",
503
+ "visual.blocks.20.attn.qkv.bias": "model-00001-of-00004.safetensors",
504
+ "visual.blocks.20.attn.qkv.weight": "model-00001-of-00004.safetensors",
505
+ "visual.blocks.20.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
506
+ "visual.blocks.20.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
507
+ "visual.blocks.20.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
508
+ "visual.blocks.20.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
509
+ "visual.blocks.20.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
510
+ "visual.blocks.20.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
511
+ "visual.blocks.20.norm1.weight": "model-00001-of-00004.safetensors",
512
+ "visual.blocks.20.norm2.weight": "model-00001-of-00004.safetensors",
513
+ "visual.blocks.21.attn.proj.bias": "model-00001-of-00004.safetensors",
514
+ "visual.blocks.21.attn.proj.weight": "model-00001-of-00004.safetensors",
515
+ "visual.blocks.21.attn.qkv.bias": "model-00001-of-00004.safetensors",
516
+ "visual.blocks.21.attn.qkv.weight": "model-00001-of-00004.safetensors",
517
+ "visual.blocks.21.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
518
+ "visual.blocks.21.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
519
+ "visual.blocks.21.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
520
+ "visual.blocks.21.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
521
+ "visual.blocks.21.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
522
+ "visual.blocks.21.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
523
+ "visual.blocks.21.norm1.weight": "model-00001-of-00004.safetensors",
524
+ "visual.blocks.21.norm2.weight": "model-00001-of-00004.safetensors",
525
+ "visual.blocks.22.attn.proj.bias": "model-00001-of-00004.safetensors",
526
+ "visual.blocks.22.attn.proj.weight": "model-00001-of-00004.safetensors",
527
+ "visual.blocks.22.attn.qkv.bias": "model-00001-of-00004.safetensors",
528
+ "visual.blocks.22.attn.qkv.weight": "model-00001-of-00004.safetensors",
529
+ "visual.blocks.22.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
530
+ "visual.blocks.22.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
531
+ "visual.blocks.22.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
532
+ "visual.blocks.22.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
533
+ "visual.blocks.22.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
534
+ "visual.blocks.22.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
535
+ "visual.blocks.22.norm1.weight": "model-00001-of-00004.safetensors",
536
+ "visual.blocks.22.norm2.weight": "model-00001-of-00004.safetensors",
537
+ "visual.blocks.23.attn.proj.bias": "model-00001-of-00004.safetensors",
538
+ "visual.blocks.23.attn.proj.weight": "model-00001-of-00004.safetensors",
539
+ "visual.blocks.23.attn.qkv.bias": "model-00001-of-00004.safetensors",
540
+ "visual.blocks.23.attn.qkv.weight": "model-00001-of-00004.safetensors",
541
+ "visual.blocks.23.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
542
+ "visual.blocks.23.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
543
+ "visual.blocks.23.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
544
+ "visual.blocks.23.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
545
+ "visual.blocks.23.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
546
+ "visual.blocks.23.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
547
+ "visual.blocks.23.norm1.weight": "model-00001-of-00004.safetensors",
548
+ "visual.blocks.23.norm2.weight": "model-00001-of-00004.safetensors",
549
+ "visual.blocks.24.attn.proj.bias": "model-00001-of-00004.safetensors",
550
+ "visual.blocks.24.attn.proj.weight": "model-00001-of-00004.safetensors",
551
+ "visual.blocks.24.attn.qkv.bias": "model-00001-of-00004.safetensors",
552
+ "visual.blocks.24.attn.qkv.weight": "model-00001-of-00004.safetensors",
553
+ "visual.blocks.24.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
554
+ "visual.blocks.24.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
555
+ "visual.blocks.24.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
556
+ "visual.blocks.24.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
557
+ "visual.blocks.24.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
558
+ "visual.blocks.24.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
559
+ "visual.blocks.24.norm1.weight": "model-00001-of-00004.safetensors",
560
+ "visual.blocks.24.norm2.weight": "model-00001-of-00004.safetensors",
561
+ "visual.blocks.25.attn.proj.bias": "model-00001-of-00004.safetensors",
562
+ "visual.blocks.25.attn.proj.weight": "model-00001-of-00004.safetensors",
563
+ "visual.blocks.25.attn.qkv.bias": "model-00001-of-00004.safetensors",
564
+ "visual.blocks.25.attn.qkv.weight": "model-00001-of-00004.safetensors",
565
+ "visual.blocks.25.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
566
+ "visual.blocks.25.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
567
+ "visual.blocks.25.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
568
+ "visual.blocks.25.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
569
+ "visual.blocks.25.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
570
+ "visual.blocks.25.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
571
+ "visual.blocks.25.norm1.weight": "model-00001-of-00004.safetensors",
572
+ "visual.blocks.25.norm2.weight": "model-00001-of-00004.safetensors",
573
+ "visual.blocks.26.attn.proj.bias": "model-00001-of-00004.safetensors",
574
+ "visual.blocks.26.attn.proj.weight": "model-00001-of-00004.safetensors",
575
+ "visual.blocks.26.attn.qkv.bias": "model-00001-of-00004.safetensors",
576
+ "visual.blocks.26.attn.qkv.weight": "model-00001-of-00004.safetensors",
577
+ "visual.blocks.26.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
578
+ "visual.blocks.26.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
579
+ "visual.blocks.26.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
580
+ "visual.blocks.26.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
581
+ "visual.blocks.26.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
582
+ "visual.blocks.26.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
583
+ "visual.blocks.26.norm1.weight": "model-00001-of-00004.safetensors",
584
+ "visual.blocks.26.norm2.weight": "model-00001-of-00004.safetensors",
585
+ "visual.blocks.27.attn.proj.bias": "model-00001-of-00004.safetensors",
586
+ "visual.blocks.27.attn.proj.weight": "model-00001-of-00004.safetensors",
587
+ "visual.blocks.27.attn.qkv.bias": "model-00001-of-00004.safetensors",
588
+ "visual.blocks.27.attn.qkv.weight": "model-00001-of-00004.safetensors",
589
+ "visual.blocks.27.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
590
+ "visual.blocks.27.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
591
+ "visual.blocks.27.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
592
+ "visual.blocks.27.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
593
+ "visual.blocks.27.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
594
+ "visual.blocks.27.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
595
+ "visual.blocks.27.norm1.weight": "model-00001-of-00004.safetensors",
596
+ "visual.blocks.27.norm2.weight": "model-00001-of-00004.safetensors",
597
+ "visual.blocks.28.attn.proj.bias": "model-00001-of-00004.safetensors",
598
+ "visual.blocks.28.attn.proj.weight": "model-00001-of-00004.safetensors",
599
+ "visual.blocks.28.attn.qkv.bias": "model-00001-of-00004.safetensors",
600
+ "visual.blocks.28.attn.qkv.weight": "model-00001-of-00004.safetensors",
601
+ "visual.blocks.28.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
602
+ "visual.blocks.28.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
603
+ "visual.blocks.28.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
604
+ "visual.blocks.28.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
605
+ "visual.blocks.28.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
606
+ "visual.blocks.28.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
607
+ "visual.blocks.28.norm1.weight": "model-00001-of-00004.safetensors",
608
+ "visual.blocks.28.norm2.weight": "model-00001-of-00004.safetensors",
609
+ "visual.blocks.29.attn.proj.bias": "model-00001-of-00004.safetensors",
610
+ "visual.blocks.29.attn.proj.weight": "model-00001-of-00004.safetensors",
611
+ "visual.blocks.29.attn.qkv.bias": "model-00001-of-00004.safetensors",
612
+ "visual.blocks.29.attn.qkv.weight": "model-00001-of-00004.safetensors",
613
+ "visual.blocks.29.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
614
+ "visual.blocks.29.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
615
+ "visual.blocks.29.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
616
+ "visual.blocks.29.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
617
+ "visual.blocks.29.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
618
+ "visual.blocks.29.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
619
+ "visual.blocks.29.norm1.weight": "model-00001-of-00004.safetensors",
620
+ "visual.blocks.29.norm2.weight": "model-00001-of-00004.safetensors",
621
+ "visual.blocks.3.attn.proj.bias": "model-00001-of-00004.safetensors",
622
+ "visual.blocks.3.attn.proj.weight": "model-00001-of-00004.safetensors",
623
+ "visual.blocks.3.attn.qkv.bias": "model-00001-of-00004.safetensors",
624
+ "visual.blocks.3.attn.qkv.weight": "model-00001-of-00004.safetensors",
625
+ "visual.blocks.3.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
626
+ "visual.blocks.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
627
+ "visual.blocks.3.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
628
+ "visual.blocks.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
629
+ "visual.blocks.3.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
630
+ "visual.blocks.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
631
+ "visual.blocks.3.norm1.weight": "model-00001-of-00004.safetensors",
632
+ "visual.blocks.3.norm2.weight": "model-00001-of-00004.safetensors",
633
+ "visual.blocks.30.attn.proj.bias": "model-00001-of-00004.safetensors",
634
+ "visual.blocks.30.attn.proj.weight": "model-00001-of-00004.safetensors",
635
+ "visual.blocks.30.attn.qkv.bias": "model-00001-of-00004.safetensors",
636
+ "visual.blocks.30.attn.qkv.weight": "model-00001-of-00004.safetensors",
637
+ "visual.blocks.30.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
638
+ "visual.blocks.30.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
639
+ "visual.blocks.30.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
640
+ "visual.blocks.30.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
641
+ "visual.blocks.30.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
642
+ "visual.blocks.30.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
643
+ "visual.blocks.30.norm1.weight": "model-00001-of-00004.safetensors",
644
+ "visual.blocks.30.norm2.weight": "model-00001-of-00004.safetensors",
645
+ "visual.blocks.31.attn.proj.bias": "model-00001-of-00004.safetensors",
646
+ "visual.blocks.31.attn.proj.weight": "model-00001-of-00004.safetensors",
647
+ "visual.blocks.31.attn.qkv.bias": "model-00001-of-00004.safetensors",
648
+ "visual.blocks.31.attn.qkv.weight": "model-00001-of-00004.safetensors",
649
+ "visual.blocks.31.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
650
+ "visual.blocks.31.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
651
+ "visual.blocks.31.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
652
+ "visual.blocks.31.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
653
+ "visual.blocks.31.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
654
+ "visual.blocks.31.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
655
+ "visual.blocks.31.norm1.weight": "model-00001-of-00004.safetensors",
656
+ "visual.blocks.31.norm2.weight": "model-00001-of-00004.safetensors",
657
+ "visual.blocks.4.attn.proj.bias": "model-00001-of-00004.safetensors",
658
+ "visual.blocks.4.attn.proj.weight": "model-00001-of-00004.safetensors",
659
+ "visual.blocks.4.attn.qkv.bias": "model-00001-of-00004.safetensors",
660
+ "visual.blocks.4.attn.qkv.weight": "model-00001-of-00004.safetensors",
661
+ "visual.blocks.4.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
662
+ "visual.blocks.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
663
+ "visual.blocks.4.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
664
+ "visual.blocks.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
665
+ "visual.blocks.4.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
666
+ "visual.blocks.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
667
+ "visual.blocks.4.norm1.weight": "model-00001-of-00004.safetensors",
668
+ "visual.blocks.4.norm2.weight": "model-00001-of-00004.safetensors",
669
+ "visual.blocks.5.attn.proj.bias": "model-00001-of-00004.safetensors",
670
+ "visual.blocks.5.attn.proj.weight": "model-00001-of-00004.safetensors",
671
+ "visual.blocks.5.attn.qkv.bias": "model-00001-of-00004.safetensors",
672
+ "visual.blocks.5.attn.qkv.weight": "model-00001-of-00004.safetensors",
673
+ "visual.blocks.5.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
674
+ "visual.blocks.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
675
+ "visual.blocks.5.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
676
+ "visual.blocks.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
677
+ "visual.blocks.5.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
678
+ "visual.blocks.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
679
+ "visual.blocks.5.norm1.weight": "model-00001-of-00004.safetensors",
680
+ "visual.blocks.5.norm2.weight": "model-00001-of-00004.safetensors",
681
+ "visual.blocks.6.attn.proj.bias": "model-00001-of-00004.safetensors",
682
+ "visual.blocks.6.attn.proj.weight": "model-00001-of-00004.safetensors",
683
+ "visual.blocks.6.attn.qkv.bias": "model-00001-of-00004.safetensors",
684
+ "visual.blocks.6.attn.qkv.weight": "model-00001-of-00004.safetensors",
685
+ "visual.blocks.6.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
686
+ "visual.blocks.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
687
+ "visual.blocks.6.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
688
+ "visual.blocks.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
689
+ "visual.blocks.6.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
690
+ "visual.blocks.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
691
+ "visual.blocks.6.norm1.weight": "model-00001-of-00004.safetensors",
692
+ "visual.blocks.6.norm2.weight": "model-00001-of-00004.safetensors",
693
+ "visual.blocks.7.attn.proj.bias": "model-00001-of-00004.safetensors",
694
+ "visual.blocks.7.attn.proj.weight": "model-00001-of-00004.safetensors",
695
+ "visual.blocks.7.attn.qkv.bias": "model-00001-of-00004.safetensors",
696
+ "visual.blocks.7.attn.qkv.weight": "model-00001-of-00004.safetensors",
697
+ "visual.blocks.7.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
698
+ "visual.blocks.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
699
+ "visual.blocks.7.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
700
+ "visual.blocks.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
701
+ "visual.blocks.7.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
702
+ "visual.blocks.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
703
+ "visual.blocks.7.norm1.weight": "model-00001-of-00004.safetensors",
704
+ "visual.blocks.7.norm2.weight": "model-00001-of-00004.safetensors",
705
+ "visual.blocks.8.attn.proj.bias": "model-00001-of-00004.safetensors",
706
+ "visual.blocks.8.attn.proj.weight": "model-00001-of-00004.safetensors",
707
+ "visual.blocks.8.attn.qkv.bias": "model-00001-of-00004.safetensors",
708
+ "visual.blocks.8.attn.qkv.weight": "model-00001-of-00004.safetensors",
709
+ "visual.blocks.8.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
710
+ "visual.blocks.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
711
+ "visual.blocks.8.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
712
+ "visual.blocks.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
713
+ "visual.blocks.8.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
714
+ "visual.blocks.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
715
+ "visual.blocks.8.norm1.weight": "model-00001-of-00004.safetensors",
716
+ "visual.blocks.8.norm2.weight": "model-00001-of-00004.safetensors",
717
+ "visual.blocks.9.attn.proj.bias": "model-00001-of-00004.safetensors",
718
+ "visual.blocks.9.attn.proj.weight": "model-00001-of-00004.safetensors",
719
+ "visual.blocks.9.attn.qkv.bias": "model-00001-of-00004.safetensors",
720
+ "visual.blocks.9.attn.qkv.weight": "model-00001-of-00004.safetensors",
721
+ "visual.blocks.9.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
722
+ "visual.blocks.9.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
723
+ "visual.blocks.9.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
724
+ "visual.blocks.9.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
725
+ "visual.blocks.9.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
726
+ "visual.blocks.9.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
727
+ "visual.blocks.9.norm1.weight": "model-00001-of-00004.safetensors",
728
+ "visual.blocks.9.norm2.weight": "model-00001-of-00004.safetensors",
729
+ "visual.merger.ln_q.weight": "model-00001-of-00004.safetensors",
730
+ "visual.merger.mlp.0.bias": "model-00001-of-00004.safetensors",
731
+ "visual.merger.mlp.0.weight": "model-00001-of-00004.safetensors",
732
+ "visual.merger.mlp.2.bias": "model-00001-of-00004.safetensors",
733
+ "visual.merger.mlp.2.weight": "model-00001-of-00004.safetensors",
734
+ "visual.patch_embed.proj.weight": "model-00001-of-00004.safetensors"
735
+ }
736
+ }
last-checkpoint/preprocessor_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": true,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.48145466,
8
+ 0.4578275,
9
+ 0.40821073
10
+ ],
11
+ "image_processor_type": "Qwen2_5_VLImageProcessor",
12
+ "image_std": [
13
+ 0.26862954,
14
+ 0.26130258,
15
+ 0.27577711
16
+ ],
17
+ "max_pixels": 501760,
18
+ "merge_size": 2,
19
+ "min_pixels": 3136,
20
+ "patch_size": 14,
21
+ "processor_class": "Qwen2_5_VLProcessor",
22
+ "resample": 3,
23
+ "rescale_factor": 0.00392156862745098,
24
+ "size": {
25
+ "longest_edge": 12845056,
26
+ "shortest_edge": 3136
27
+ },
28
+ "temporal_patch_size": 2
29
+ }
last-checkpoint/rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:763d5c131591370f1d52b0aa6539f70eb8a0c4954a5e78506f6bc04c58290268
3
+ size 15920
last-checkpoint/rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:41e4943e97c73bf1f3efd422e4751fcc4d0280de08a84f1d7632c069262b2ea2
3
+ size 15984
last-checkpoint/rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:263f74fcd6ec7d3f1e5860961b69bd7aff70b57a1501e93d7925d34fb10771c2
3
+ size 15984
last-checkpoint/rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08fc622393e6882dbb12ed2672791bf0ded63c3839d552c9757b2b0666df2605
3
+ size 15984
last-checkpoint/rng_state_4.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb60e8fee28ece71f42072f2bb5e97094fd154ff3765f3cfc657681677009c9b
3
+ size 15984
last-checkpoint/rng_state_5.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c7952a23b43e2483b709361dc6b1ab6ea926ab56c77ee8647a336b76cfd19453
3
+ size 15984
last-checkpoint/rng_state_6.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6a4bd7ddb0e4a9ffc86f475a180bc7c78d74e0443fc583113c88e42041fc1de1
3
+ size 15984
last-checkpoint/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb5f68596479240ce42efa6cf5449fb202686261075cf439a50da4f70f32fda5
3
+ size 1064
last-checkpoint/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
last-checkpoint/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5eee858c5123a4279c3e1f7b81247343f356ac767940b2692a928ad929543214
3
+ size 11422063
last-checkpoint/tokenizer_config.json ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "processor_class": "Qwen2_5_VLProcessor",
206
+ "split_special_tokens": false,
207
+ "tokenizer_class": "Qwen2Tokenizer",
208
+ "unk_token": null
209
+ }
last-checkpoint/trainer_state.json ADDED
@@ -0,0 +1,1633 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.003852228514195462,
5
+ "eval_steps": 500,
6
+ "global_step": 100,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "all_correct": 0.0,
13
+ "all_wrong": 0.2857142857142857,
14
+ "completion_length": 194.5178680419922,
15
+ "epoch": 3.852228514195462e-05,
16
+ "grad_norm": 4.569568275684066,
17
+ "kl": 0.0,
18
+ "learning_rate": 9.999999963384595e-07,
19
+ "loss": -0.0,
20
+ "reward": 0.9388507008552551,
21
+ "reward_std": 0.5055427551269531,
22
+ "rewards/accuracy_reward": 0.36027929186820984,
23
+ "rewards/format_reward": 0.5,
24
+ "step": 1,
25
+ "temporal_rewards": 0.6428571343421936
26
+ },
27
+ {
28
+ "all_correct": 0.0,
29
+ "all_wrong": 0.14285714285714285,
30
+ "completion_length": 201.85714721679688,
31
+ "epoch": 7.704457028390924e-05,
32
+ "grad_norm": 7.3425194668816305,
33
+ "kl": 0.001190185546875,
34
+ "learning_rate": 9.99999985353838e-07,
35
+ "loss": 0.0,
36
+ "reward": 1.155859351158142,
37
+ "reward_std": 0.6079983711242676,
38
+ "rewards/accuracy_reward": 0.5290736556053162,
39
+ "rewards/format_reward": 0.5714285969734192,
40
+ "step": 2,
41
+ "temporal_rewards": 0.5
42
+ },
43
+ {
44
+ "all_correct": 0.0,
45
+ "all_wrong": 0.2857142857142857,
46
+ "completion_length": 229.5357208251953,
47
+ "epoch": 0.00011556685542586386,
48
+ "grad_norm": 10.46166634557011,
49
+ "kl": 0.00148773193359375,
50
+ "learning_rate": 9.999999670461361e-07,
51
+ "loss": 0.0001,
52
+ "reward": 1.0399483442306519,
53
+ "reward_std": 0.527042806148529,
54
+ "rewards/accuracy_reward": 0.3810196816921234,
55
+ "rewards/format_reward": 0.5535714626312256,
56
+ "step": 3,
57
+ "temporal_rewards": 0.5
58
+ },
59
+ {
60
+ "all_correct": 0.0,
61
+ "all_wrong": 0.42857142857142855,
62
+ "completion_length": 243.50001525878906,
63
+ "epoch": 0.00015408914056781847,
64
+ "grad_norm": 2.4261998522622483,
65
+ "kl": 0.0020599365234375,
66
+ "learning_rate": 9.999999414153537e-07,
67
+ "loss": 0.0001,
68
+ "reward": 0.8851699829101562,
69
+ "reward_std": 0.5343522429466248,
70
+ "rewards/accuracy_reward": 0.27624136209487915,
71
+ "rewards/format_reward": 0.5892857313156128,
72
+ "step": 4,
73
+ "temporal_rewards": 0.5714285373687744
74
+ },
75
+ {
76
+ "all_correct": 0.0,
77
+ "all_wrong": 0.14285714285714285,
78
+ "completion_length": 298.8214416503906,
79
+ "epoch": 0.0001926114257097731,
80
+ "grad_norm": 2.6156215584160614,
81
+ "kl": 0.005035400390625,
82
+ "learning_rate": 9.999999084614913e-07,
83
+ "loss": 0.0002,
84
+ "reward": 1.374528408050537,
85
+ "reward_std": 0.558069109916687,
86
+ "rewards/accuracy_reward": 0.5459570288658142,
87
+ "rewards/format_reward": 0.6785714626312256,
88
+ "step": 5,
89
+ "temporal_rewards": 0.714285671710968
90
+ },
91
+ {
92
+ "all_correct": 0.2857142857142857,
93
+ "all_wrong": 0.14285714285714285,
94
+ "completion_length": 246.3035888671875,
95
+ "epoch": 0.00023113371085172773,
96
+ "grad_norm": 3.003642956951274,
97
+ "kl": 0.003936767578125,
98
+ "learning_rate": 9.999998681845493e-07,
99
+ "loss": 0.0002,
100
+ "reward": 1.5285981893539429,
101
+ "reward_std": 0.3147147297859192,
102
+ "rewards/accuracy_reward": 0.5000267028808594,
103
+ "rewards/format_reward": 0.8750000596046448,
104
+ "step": 6,
105
+ "temporal_rewards": 0.714285671710968
106
+ },
107
+ {
108
+ "all_correct": 0.14285714285714285,
109
+ "all_wrong": 0.2857142857142857,
110
+ "completion_length": 172.80357360839844,
111
+ "epoch": 0.0002696559959936823,
112
+ "grad_norm": 2.2475007240283,
113
+ "kl": 0.00531005859375,
114
+ "learning_rate": 9.999998205845283e-07,
115
+ "loss": 0.0002,
116
+ "reward": 1.4922091960906982,
117
+ "reward_std": 0.26347360014915466,
118
+ "rewards/accuracy_reward": 0.46542346477508545,
119
+ "rewards/format_reward": 0.9285714626312256,
120
+ "step": 7,
121
+ "temporal_rewards": 0.5714285373687744
122
+ },
123
+ {
124
+ "all_correct": 0.0,
125
+ "all_wrong": 0.0,
126
+ "completion_length": 264.125,
127
+ "epoch": 0.00030817828113563695,
128
+ "grad_norm": 13.215726344682453,
129
+ "kl": 0.004608154296875,
130
+ "learning_rate": 9.99999765661429e-07,
131
+ "loss": 0.0002,
132
+ "reward": 1.4859822988510132,
133
+ "reward_std": 0.39378076791763306,
134
+ "rewards/accuracy_reward": 0.38955357670783997,
135
+ "rewards/format_reward": 0.9464285969734192,
136
+ "step": 8,
137
+ "temporal_rewards": 0.714285671710968
138
+ },
139
+ {
140
+ "all_correct": 0.14285714285714285,
141
+ "all_wrong": 0.14285714285714285,
142
+ "completion_length": 233.75001525878906,
143
+ "epoch": 0.0003467005662775916,
144
+ "grad_norm": 1.8754887680204013,
145
+ "kl": 0.0047607421875,
146
+ "learning_rate": 9.999997034152522e-07,
147
+ "loss": 0.0002,
148
+ "reward": 1.5294489860534668,
149
+ "reward_std": 0.35142022371292114,
150
+ "rewards/accuracy_reward": 0.5062346458435059,
151
+ "rewards/format_reward": 0.9285714626312256,
152
+ "step": 9,
153
+ "temporal_rewards": 0.6428571343421936
154
+ },
155
+ {
156
+ "all_correct": 0.0,
157
+ "all_wrong": 0.42857142857142855,
158
+ "completion_length": 184.6428680419922,
159
+ "epoch": 0.0003852228514195462,
160
+ "grad_norm": 6.068013472130498,
161
+ "kl": 0.0108642578125,
162
+ "learning_rate": 9.99999633845999e-07,
163
+ "loss": 0.0004,
164
+ "reward": 1.1100354194641113,
165
+ "reward_std": 0.11215802282094955,
166
+ "rewards/accuracy_reward": 0.11717834323644638,
167
+ "rewards/format_reward": 0.9821429252624512,
168
+ "step": 10,
169
+ "temporal_rewards": 0.357142835855484
170
+ },
171
+ {
172
+ "all_correct": 0.2857142857142857,
173
+ "all_wrong": 0.14285714285714285,
174
+ "completion_length": 130.80357360839844,
175
+ "epoch": 0.0004237451365615008,
176
+ "grad_norm": 2.7706073106467994,
177
+ "kl": 0.00799560546875,
178
+ "learning_rate": 9.9999955695367e-07,
179
+ "loss": 0.0003,
180
+ "reward": 1.6379828453063965,
181
+ "reward_std": 0.15209504961967468,
182
+ "rewards/accuracy_reward": 0.5522685050964355,
183
+ "rewards/format_reward": 1.0,
184
+ "step": 11,
185
+ "temporal_rewards": 0.5714285373687744
186
+ },
187
+ {
188
+ "all_correct": 0.42857142857142855,
189
+ "all_wrong": 0.0,
190
+ "completion_length": 231.0535888671875,
191
+ "epoch": 0.00046226742170345545,
192
+ "grad_norm": 4.077451010264333,
193
+ "kl": 0.0135498046875,
194
+ "learning_rate": 9.999994727382667e-07,
195
+ "loss": 0.0005,
196
+ "reward": 1.757586121559143,
197
+ "reward_std": 0.1790602058172226,
198
+ "rewards/accuracy_reward": 0.6308003664016724,
199
+ "rewards/format_reward": 0.9642857313156128,
200
+ "step": 12,
201
+ "temporal_rewards": 0.714285671710968
202
+ },
203
+ {
204
+ "all_correct": 0.2857142857142857,
205
+ "all_wrong": 0.14285714285714285,
206
+ "completion_length": 182.85714721679688,
207
+ "epoch": 0.0005007897068454101,
208
+ "grad_norm": 3.171637082851311,
209
+ "kl": 0.01470947265625,
210
+ "learning_rate": 9.999993811997902e-07,
211
+ "loss": 0.0006,
212
+ "reward": 1.5119588375091553,
213
+ "reward_std": 0.0800565853714943,
214
+ "rewards/accuracy_reward": 0.374458909034729,
215
+ "rewards/format_reward": 1.0,
216
+ "step": 13,
217
+ "temporal_rewards": 0.714285671710968
218
+ },
219
+ {
220
+ "all_correct": 0.0,
221
+ "all_wrong": 0.14285714285714285,
222
+ "completion_length": 369.9821472167969,
223
+ "epoch": 0.0005393119919873646,
224
+ "grad_norm": 3.0114431906272743,
225
+ "kl": 0.009033203125,
226
+ "learning_rate": 9.99999282338242e-07,
227
+ "loss": 0.0004,
228
+ "reward": 1.1452234983444214,
229
+ "reward_std": 0.30584630370140076,
230
+ "rewards/accuracy_reward": 0.2773663103580475,
231
+ "rewards/format_reward": 0.8392857313156128,
232
+ "step": 14,
233
+ "temporal_rewards": 0.5
234
+ },
235
+ {
236
+ "all_correct": 0.14285714285714285,
237
+ "all_wrong": 0.5714285714285714,
238
+ "completion_length": 272.3214416503906,
239
+ "epoch": 0.0005778342771293193,
240
+ "grad_norm": 1.762681908155442,
241
+ "kl": 0.0123291015625,
242
+ "learning_rate": 9.999991761536231e-07,
243
+ "loss": 0.0005,
244
+ "reward": 1.3017858266830444,
245
+ "reward_std": 0.21957917511463165,
246
+ "rewards/accuracy_reward": 0.2857142984867096,
247
+ "rewards/format_reward": 0.9642857313156128,
248
+ "step": 15,
249
+ "temporal_rewards": 0.6428571343421936
250
+ },
251
+ {
252
+ "all_correct": 0.14285714285714285,
253
+ "all_wrong": 0.14285714285714285,
254
+ "completion_length": 167.7857208251953,
255
+ "epoch": 0.0006163565622712739,
256
+ "grad_norm": 2.3136273405544956,
257
+ "kl": 0.01318359375,
258
+ "learning_rate": 9.999990626459356e-07,
259
+ "loss": 0.0005,
260
+ "reward": 1.4714285135269165,
261
+ "reward_std": 0.27723559737205505,
262
+ "rewards/accuracy_reward": 0.42500004172325134,
263
+ "rewards/format_reward": 1.0,
264
+ "step": 16,
265
+ "temporal_rewards": 0.5714285373687744
266
+ },
267
+ {
268
+ "all_correct": 0.42857142857142855,
269
+ "all_wrong": 0.14285714285714285,
270
+ "completion_length": 145.1428680419922,
271
+ "epoch": 0.0006548788474132286,
272
+ "grad_norm": 2.6755799727485496,
273
+ "kl": 0.0140380859375,
274
+ "learning_rate": 9.99998941815181e-07,
275
+ "loss": 0.0006,
276
+ "reward": 1.779188632965088,
277
+ "reward_std": 0.21795018017292023,
278
+ "rewards/accuracy_reward": 0.7077600359916687,
279
+ "rewards/format_reward": 0.9821429252624512,
280
+ "step": 17,
281
+ "temporal_rewards": 0.6428571343421936
282
+ },
283
+ {
284
+ "all_correct": 0.14285714285714285,
285
+ "all_wrong": 0.14285714285714285,
286
+ "completion_length": 220.1607208251953,
287
+ "epoch": 0.0006934011325551831,
288
+ "grad_norm": 2.051492241832231,
289
+ "kl": 0.0130615234375,
290
+ "learning_rate": 9.999988136613608e-07,
291
+ "loss": 0.0005,
292
+ "reward": 1.5756233930587769,
293
+ "reward_std": 0.2738674283027649,
294
+ "rewards/accuracy_reward": 0.4952661097049713,
295
+ "rewards/format_reward": 0.9642857313156128,
296
+ "step": 18,
297
+ "temporal_rewards": 0.6428571343421936
298
+ },
299
+ {
300
+ "all_correct": 0.14285714285714285,
301
+ "all_wrong": 0.14285714285714285,
302
+ "completion_length": 159.71429443359375,
303
+ "epoch": 0.0007319234176971378,
304
+ "grad_norm": 7.813403350492354,
305
+ "kl": 0.0228271484375,
306
+ "learning_rate": 9.999986781844772e-07,
307
+ "loss": 0.0009,
308
+ "reward": 1.368477463722229,
309
+ "reward_std": 0.17073635756969452,
310
+ "rewards/accuracy_reward": 0.320263147354126,
311
+ "rewards/format_reward": 1.0,
312
+ "step": 19,
313
+ "temporal_rewards": 0.6428571343421936
314
+ },
315
+ {
316
+ "all_correct": 0.14285714285714285,
317
+ "all_wrong": 0.0,
318
+ "completion_length": 245.96429443359375,
319
+ "epoch": 0.0007704457028390924,
320
+ "grad_norm": 3.1470469127291536,
321
+ "kl": 0.01239013671875,
322
+ "learning_rate": 9.99998535384532e-07,
323
+ "loss": 0.0005,
324
+ "reward": 1.4473823308944702,
325
+ "reward_std": 0.17675410211086273,
326
+ "rewards/accuracy_reward": 0.34738224744796753,
327
+ "rewards/format_reward": 1.0,
328
+ "step": 20,
329
+ "temporal_rewards": 0.5714285373687744
330
+ },
331
+ {
332
+ "all_correct": 0.2857142857142857,
333
+ "all_wrong": 0.0,
334
+ "completion_length": 196.67857360839844,
335
+ "epoch": 0.0008089679879810471,
336
+ "grad_norm": 1.985055486033898,
337
+ "kl": 0.0172119140625,
338
+ "learning_rate": 9.999983852615273e-07,
339
+ "loss": 0.0007,
340
+ "reward": 1.5379002094268799,
341
+ "reward_std": 0.10025887936353683,
342
+ "rewards/accuracy_reward": 0.4736144542694092,
343
+ "rewards/format_reward": 1.0,
344
+ "step": 21,
345
+ "temporal_rewards": 0.5714285373687744
346
+ },
347
+ {
348
+ "all_correct": 0.14285714285714285,
349
+ "all_wrong": 0.42857142857142855,
350
+ "completion_length": 235.75001525878906,
351
+ "epoch": 0.0008474902731230017,
352
+ "grad_norm": 2.3022387425335356,
353
+ "kl": 0.010009765625,
354
+ "learning_rate": 9.999982278154653e-07,
355
+ "loss": 0.0004,
356
+ "reward": 1.3792414665222168,
357
+ "reward_std": 0.16881819069385529,
358
+ "rewards/accuracy_reward": 0.3149556815624237,
359
+ "rewards/format_reward": 1.0,
360
+ "step": 22,
361
+ "temporal_rewards": 0.6428571343421936
362
+ },
363
+ {
364
+ "all_correct": 0.2857142857142857,
365
+ "all_wrong": 0.14285714285714285,
366
+ "completion_length": 195.75001525878906,
367
+ "epoch": 0.0008860125582649563,
368
+ "grad_norm": 2.5960019564354115,
369
+ "kl": 0.01373291015625,
370
+ "learning_rate": 9.999980630463484e-07,
371
+ "loss": 0.0006,
372
+ "reward": 1.483102560043335,
373
+ "reward_std": 0.2669390141963959,
374
+ "rewards/accuracy_reward": 0.43310248851776123,
375
+ "rewards/format_reward": 0.9821429252624512,
376
+ "step": 23,
377
+ "temporal_rewards": 0.5
378
+ },
379
+ {
380
+ "all_correct": 0.2857142857142857,
381
+ "all_wrong": 0.2857142857142857,
382
+ "completion_length": 233.58929443359375,
383
+ "epoch": 0.0009245348434069109,
384
+ "grad_norm": 16.12922501556988,
385
+ "kl": 0.0169677734375,
386
+ "learning_rate": 9.99997890954179e-07,
387
+ "loss": 0.0007,
388
+ "reward": 1.253800868988037,
389
+ "reward_std": 0.2512234151363373,
390
+ "rewards/accuracy_reward": 0.4055865705013275,
391
+ "rewards/format_reward": 0.8392857313156128,
392
+ "step": 24,
393
+ "temporal_rewards": 0.5714285373687744
394
+ },
395
+ {
396
+ "all_correct": 0.42857142857142855,
397
+ "all_wrong": 0.0,
398
+ "completion_length": 198.7857208251953,
399
+ "epoch": 0.0009630571285488655,
400
+ "grad_norm": 3.9868394906657,
401
+ "kl": 0.0263671875,
402
+ "learning_rate": 9.999977115389595e-07,
403
+ "loss": 0.0011,
404
+ "reward": 1.821338176727295,
405
+ "reward_std": 0.2050185352563858,
406
+ "rewards/accuracy_reward": 0.6606237888336182,
407
+ "rewards/format_reward": 0.9821429252624512,
408
+ "step": 25,
409
+ "temporal_rewards": 0.7857142686843872
410
+ },
411
+ {
412
+ "all_correct": 0.14285714285714285,
413
+ "all_wrong": 0.0,
414
+ "completion_length": 194.73214721679688,
415
+ "epoch": 0.0010015794136908202,
416
+ "grad_norm": 3.0965250094321854,
417
+ "kl": 0.015869140625,
418
+ "learning_rate": 9.999975248006927e-07,
419
+ "loss": 0.0006,
420
+ "reward": 1.5368238687515259,
421
+ "reward_std": 0.29229164123535156,
422
+ "rewards/accuracy_reward": 0.49039536714553833,
423
+ "rewards/format_reward": 0.9821429252624512,
424
+ "step": 26,
425
+ "temporal_rewards": 0.6428571343421936
426
+ },
427
+ {
428
+ "all_correct": 0.42857142857142855,
429
+ "all_wrong": 0.14285714285714285,
430
+ "completion_length": 144.58929443359375,
431
+ "epoch": 0.0010401016988327747,
432
+ "grad_norm": 3.463559757421393,
433
+ "kl": 0.0194091796875,
434
+ "learning_rate": 9.999973307393812e-07,
435
+ "loss": 0.0008,
436
+ "reward": 1.9461054801940918,
437
+ "reward_std": 0.14775770902633667,
438
+ "rewards/accuracy_reward": 0.7211053371429443,
439
+ "rewards/format_reward": 1.0,
440
+ "step": 27,
441
+ "temporal_rewards": 0.8571428656578064
442
+ },
443
+ {
444
+ "all_correct": 0.14285714285714285,
445
+ "all_wrong": 0.42857142857142855,
446
+ "completion_length": 149.5178680419922,
447
+ "epoch": 0.0010786239839747293,
448
+ "grad_norm": 4.208967606472135,
449
+ "kl": 0.0166015625,
450
+ "learning_rate": 9.99997129355028e-07,
451
+ "loss": 0.0007,
452
+ "reward": 1.4785715341567993,
453
+ "reward_std": 0.23233509063720703,
454
+ "rewards/accuracy_reward": 0.4107142984867096,
455
+ "rewards/format_reward": 0.9821429252624512,
456
+ "step": 28,
457
+ "temporal_rewards": 0.714285671710968
458
+ },
459
+ {
460
+ "all_correct": 0.14285714285714285,
461
+ "all_wrong": 0.14285714285714285,
462
+ "completion_length": 190.07144165039062,
463
+ "epoch": 0.001117146269116684,
464
+ "grad_norm": 3.1320237643372493,
465
+ "kl": 0.019287109375,
466
+ "learning_rate": 9.999969206476357e-07,
467
+ "loss": 0.0008,
468
+ "reward": 1.6795918941497803,
469
+ "reward_std": 0.2941642701625824,
470
+ "rewards/accuracy_reward": 0.59566330909729,
471
+ "rewards/format_reward": 1.0,
472
+ "step": 29,
473
+ "temporal_rewards": 0.6428571343421936
474
+ },
475
+ {
476
+ "all_correct": 0.14285714285714285,
477
+ "all_wrong": 0.2857142857142857,
478
+ "completion_length": 140.67857360839844,
479
+ "epoch": 0.0011556685542586387,
480
+ "grad_norm": 2.1228282157999563,
481
+ "kl": 0.0218505859375,
482
+ "learning_rate": 9.999967046172078e-07,
483
+ "loss": 0.0009,
484
+ "reward": 1.5656999349594116,
485
+ "reward_std": 0.23240727186203003,
486
+ "rewards/accuracy_reward": 0.4746284782886505,
487
+ "rewards/format_reward": 1.0,
488
+ "step": 30,
489
+ "temporal_rewards": 0.5
490
+ },
491
+ {
492
+ "all_correct": 0.0,
493
+ "all_wrong": 0.2857142857142857,
494
+ "completion_length": 342.0535888671875,
495
+ "epoch": 0.0011941908394005932,
496
+ "grad_norm": 3.139985295701204,
497
+ "kl": 0.01708984375,
498
+ "learning_rate": 9.999964812637472e-07,
499
+ "loss": 0.0007,
500
+ "reward": 1.1670215129852295,
501
+ "reward_std": 0.2952883243560791,
502
+ "rewards/accuracy_reward": 0.25273576378822327,
503
+ "rewards/format_reward": 0.8750000596046448,
504
+ "step": 31,
505
+ "temporal_rewards": 0.5
506
+ },
507
+ {
508
+ "all_correct": 0.0,
509
+ "all_wrong": 0.5714285714285714,
510
+ "completion_length": 320.375,
511
+ "epoch": 0.0012327131245425478,
512
+ "grad_norm": 2.9321327508284014,
513
+ "kl": 0.015869140625,
514
+ "learning_rate": 9.999962505872572e-07,
515
+ "loss": 0.0006,
516
+ "reward": 1.0767621994018555,
517
+ "reward_std": 0.18118657171726227,
518
+ "rewards/accuracy_reward": 0.18033367395401,
519
+ "rewards/format_reward": 0.8571429252624512,
520
+ "step": 32,
521
+ "temporal_rewards": 0.6428571343421936
522
+ },
523
+ {
524
+ "all_correct": 0.42857142857142855,
525
+ "all_wrong": 0.2857142857142857,
526
+ "completion_length": 182.80357360839844,
527
+ "epoch": 0.0012712354096845026,
528
+ "grad_norm": 1.6393422027112028,
529
+ "kl": 0.029296875,
530
+ "learning_rate": 9.999960125877412e-07,
531
+ "loss": 0.0012,
532
+ "reward": 1.662595272064209,
533
+ "reward_std": 0.0667729526758194,
534
+ "rewards/accuracy_reward": 0.5947380065917969,
535
+ "rewards/format_reward": 0.9821429252624512,
536
+ "step": 33,
537
+ "temporal_rewards": 0.6428571343421936
538
+ },
539
+ {
540
+ "all_correct": 0.14285714285714285,
541
+ "all_wrong": 0.2857142857142857,
542
+ "completion_length": 280.1964416503906,
543
+ "epoch": 0.0013097576948264572,
544
+ "grad_norm": 1.8796443825485132,
545
+ "kl": 0.0194091796875,
546
+ "learning_rate": 9.999957672652028e-07,
547
+ "loss": 0.0008,
548
+ "reward": 1.3545540571212769,
549
+ "reward_std": 0.18943731486797333,
550
+ "rewards/accuracy_reward": 0.3545539975166321,
551
+ "rewards/format_reward": 0.9642857313156128,
552
+ "step": 34,
553
+ "temporal_rewards": 0.5714285373687744
554
+ },
555
+ {
556
+ "all_correct": 0.14285714285714285,
557
+ "all_wrong": 0.0,
558
+ "completion_length": 219.37501525878906,
559
+ "epoch": 0.0013482799799684117,
560
+ "grad_norm": 2.906310484540033,
561
+ "kl": 0.015380859375,
562
+ "learning_rate": 9.999955146196455e-07,
563
+ "loss": 0.0006,
564
+ "reward": 1.3780333995819092,
565
+ "reward_std": 0.23713341355323792,
566
+ "rewards/accuracy_reward": 0.3244618773460388,
567
+ "rewards/format_reward": 1.0,
568
+ "step": 35,
569
+ "temporal_rewards": 0.5
570
+ },
571
+ {
572
+ "all_correct": 0.0,
573
+ "all_wrong": 0.14285714285714285,
574
+ "completion_length": 279.51788330078125,
575
+ "epoch": 0.0013868022651103663,
576
+ "grad_norm": 2.4420138636907334,
577
+ "kl": 0.01116943359375,
578
+ "learning_rate": 9.999952546510728e-07,
579
+ "loss": 0.0004,
580
+ "reward": 1.4657601118087769,
581
+ "reward_std": 0.24927140772342682,
582
+ "rewards/accuracy_reward": 0.3657601475715637,
583
+ "rewards/format_reward": 1.0,
584
+ "step": 36,
585
+ "temporal_rewards": 0.5714285373687744
586
+ },
587
+ {
588
+ "all_correct": 0.2857142857142857,
589
+ "all_wrong": 0.0,
590
+ "completion_length": 188.92857360839844,
591
+ "epoch": 0.0014253245502523209,
592
+ "grad_norm": 6.501680028535296,
593
+ "kl": 0.0191650390625,
594
+ "learning_rate": 9.99994987359489e-07,
595
+ "loss": 0.0008,
596
+ "reward": 1.6103023290634155,
597
+ "reward_std": 0.34319451451301575,
598
+ "rewards/accuracy_reward": 0.519230842590332,
599
+ "rewards/format_reward": 0.9821429252624512,
600
+ "step": 37,
601
+ "temporal_rewards": 0.714285671710968
602
+ },
603
+ {
604
+ "all_correct": 0.2857142857142857,
605
+ "all_wrong": 0.14285714285714285,
606
+ "completion_length": 174.1607208251953,
607
+ "epoch": 0.0014638468353942757,
608
+ "grad_norm": 2.6403997571984985,
609
+ "kl": 0.02001953125,
610
+ "learning_rate": 9.999947127448973e-07,
611
+ "loss": 0.0008,
612
+ "reward": 1.617859959602356,
613
+ "reward_std": 0.2102932333946228,
614
+ "rewards/accuracy_reward": 0.5214312076568604,
615
+ "rewards/format_reward": 1.0,
616
+ "step": 38,
617
+ "temporal_rewards": 0.714285671710968
618
+ },
619
+ {
620
+ "all_correct": 0.42857142857142855,
621
+ "all_wrong": 0.0,
622
+ "completion_length": 157.8928680419922,
623
+ "epoch": 0.0015023691205362302,
624
+ "grad_norm": 2.1234203792687825,
625
+ "kl": 0.015380859375,
626
+ "learning_rate": 9.999944308073023e-07,
627
+ "loss": 0.0006,
628
+ "reward": 1.7400298118591309,
629
+ "reward_std": 0.20839495956897736,
630
+ "rewards/accuracy_reward": 0.6168155074119568,
631
+ "rewards/format_reward": 1.0,
632
+ "step": 39,
633
+ "temporal_rewards": 0.6428571343421936
634
+ },
635
+ {
636
+ "all_correct": 0.0,
637
+ "all_wrong": 0.14285714285714285,
638
+ "completion_length": 243.60714721679688,
639
+ "epoch": 0.0015408914056781848,
640
+ "grad_norm": 5.213110939689996,
641
+ "kl": 0.0146484375,
642
+ "learning_rate": 9.999941415467079e-07,
643
+ "loss": 0.0006,
644
+ "reward": 1.2147839069366455,
645
+ "reward_std": 0.29392552375793457,
646
+ "rewards/accuracy_reward": 0.17014095187187195,
647
+ "rewards/format_reward": 0.9821429252624512,
648
+ "step": 40,
649
+ "temporal_rewards": 0.5714285373687744
650
+ },
651
+ {
652
+ "all_correct": 0.14285714285714285,
653
+ "all_wrong": 0.14285714285714285,
654
+ "completion_length": 218.5357208251953,
655
+ "epoch": 0.0015794136908201394,
656
+ "grad_norm": 2.1683694673772105,
657
+ "kl": 0.0164794921875,
658
+ "learning_rate": 9.999938449631185e-07,
659
+ "loss": 0.0007,
660
+ "reward": 1.5682185888290405,
661
+ "reward_std": 0.3265009820461273,
662
+ "rewards/accuracy_reward": 0.45928990840911865,
663
+ "rewards/format_reward": 1.0,
664
+ "step": 41,
665
+ "temporal_rewards": 0.714285671710968
666
+ },
667
+ {
668
+ "all_correct": 0.14285714285714285,
669
+ "all_wrong": 0.2857142857142857,
670
+ "completion_length": 136.08929443359375,
671
+ "epoch": 0.0016179359759620942,
672
+ "grad_norm": 2.6763843398967846,
673
+ "kl": 0.0224609375,
674
+ "learning_rate": 9.999935410565385e-07,
675
+ "loss": 0.0009,
676
+ "reward": 1.412774920463562,
677
+ "reward_std": 0.15946559607982635,
678
+ "rewards/accuracy_reward": 0.3217034339904785,
679
+ "rewards/format_reward": 1.0,
680
+ "step": 42,
681
+ "temporal_rewards": 0.714285671710968
682
+ },
683
+ {
684
+ "all_correct": 0.42857142857142855,
685
+ "all_wrong": 0.0,
686
+ "completion_length": 134.46429443359375,
687
+ "epoch": 0.0016564582611040487,
688
+ "grad_norm": 2.7136415500998874,
689
+ "kl": 0.01953125,
690
+ "learning_rate": 9.999932298269719e-07,
691
+ "loss": 0.0008,
692
+ "reward": 1.8830357789993286,
693
+ "reward_std": 0.30814799666404724,
694
+ "rewards/accuracy_reward": 0.7330358028411865,
695
+ "rewards/format_reward": 1.0,
696
+ "step": 43,
697
+ "temporal_rewards": 0.7857142686843872
698
+ },
699
+ {
700
+ "all_correct": 0.42857142857142855,
701
+ "all_wrong": 0.14285714285714285,
702
+ "completion_length": 224.19644165039062,
703
+ "epoch": 0.0016949805462460033,
704
+ "grad_norm": 10.61289783068452,
705
+ "kl": 0.017333984375,
706
+ "learning_rate": 9.999929112744236e-07,
707
+ "loss": 0.0007,
708
+ "reward": 1.6218483448028564,
709
+ "reward_std": 0.13741520047187805,
710
+ "rewards/accuracy_reward": 0.5432767868041992,
711
+ "rewards/format_reward": 0.9642857313156128,
712
+ "step": 44,
713
+ "temporal_rewards": 0.714285671710968
714
+ },
715
+ {
716
+ "all_correct": 0.2857142857142857,
717
+ "all_wrong": 0.0,
718
+ "completion_length": 175.7678680419922,
719
+ "epoch": 0.0017335028313879579,
720
+ "grad_norm": 3.0540147056191245,
721
+ "kl": 0.0233154296875,
722
+ "learning_rate": 9.999925853988984e-07,
723
+ "loss": 0.0009,
724
+ "reward": 1.7440528869628906,
725
+ "reward_std": 0.23217743635177612,
726
+ "rewards/accuracy_reward": 0.6190527677536011,
727
+ "rewards/format_reward": 0.9821429252624512,
728
+ "step": 45,
729
+ "temporal_rewards": 0.714285671710968
730
+ },
731
+ {
732
+ "all_correct": 0.7142857142857143,
733
+ "all_wrong": 0.14285714285714285,
734
+ "completion_length": 176.33929443359375,
735
+ "epoch": 0.0017720251165299127,
736
+ "grad_norm": 0.6517269698965342,
737
+ "kl": 0.019287109375,
738
+ "learning_rate": 9.999922522004008e-07,
739
+ "loss": 0.0008,
740
+ "reward": 1.946428656578064,
741
+ "reward_std": 0.05050762742757797,
742
+ "rewards/accuracy_reward": 0.7321428656578064,
743
+ "rewards/format_reward": 1.0,
744
+ "step": 46,
745
+ "temporal_rewards": 0.8571428656578064
746
+ },
747
+ {
748
+ "all_correct": 0.2857142857142857,
749
+ "all_wrong": 0.14285714285714285,
750
+ "completion_length": 295.4464416503906,
751
+ "epoch": 0.0018105474016718672,
752
+ "grad_norm": 1.9801638924884892,
753
+ "kl": 0.0146484375,
754
+ "learning_rate": 9.999919116789358e-07,
755
+ "loss": 0.0006,
756
+ "reward": 1.6217808723449707,
757
+ "reward_std": 0.19541169703006744,
758
+ "rewards/accuracy_reward": 0.5967808961868286,
759
+ "rewards/format_reward": 0.9285714626312256,
760
+ "step": 47,
761
+ "temporal_rewards": 0.6428571343421936
762
+ },
763
+ {
764
+ "all_correct": 0.42857142857142855,
765
+ "all_wrong": 0.14285714285714285,
766
+ "completion_length": 236.21429443359375,
767
+ "epoch": 0.0018490696868138218,
768
+ "grad_norm": 1.1223975598836913,
769
+ "kl": 0.01904296875,
770
+ "learning_rate": 9.999915638345082e-07,
771
+ "loss": 0.0008,
772
+ "reward": 1.653198003768921,
773
+ "reward_std": 0.17088621854782104,
774
+ "rewards/accuracy_reward": 0.6174837350845337,
775
+ "rewards/format_reward": 0.9821429252624512,
776
+ "step": 48,
777
+ "temporal_rewards": 0.6428571343421936
778
+ },
779
+ {
780
+ "all_correct": 0.0,
781
+ "all_wrong": 0.0,
782
+ "completion_length": 254.2857208251953,
783
+ "epoch": 0.0018875919719557764,
784
+ "grad_norm": 3.796030516352467,
785
+ "kl": 0.01556396484375,
786
+ "learning_rate": 9.999912086671234e-07,
787
+ "loss": 0.0006,
788
+ "reward": 1.6027967929840088,
789
+ "reward_std": 0.33174049854278564,
790
+ "rewards/accuracy_reward": 0.4742252230644226,
791
+ "rewards/format_reward": 1.0,
792
+ "step": 49,
793
+ "temporal_rewards": 0.714285671710968
794
+ },
795
+ {
796
+ "all_correct": 0.14285714285714285,
797
+ "all_wrong": 0.14285714285714285,
798
+ "completion_length": 138.58929443359375,
799
+ "epoch": 0.001926114257097731,
800
+ "grad_norm": 11.63273957332234,
801
+ "kl": 0.02490234375,
802
+ "learning_rate": 9.999908461767864e-07,
803
+ "loss": 0.001,
804
+ "reward": 1.532570242881775,
805
+ "reward_std": 0.324184775352478,
806
+ "rewards/accuracy_reward": 0.4379273056983948,
807
+ "rewards/format_reward": 0.9821429252624512,
808
+ "step": 50,
809
+ "temporal_rewards": 0.714285671710968
810
+ },
811
+ {
812
+ "all_correct": 0.0,
813
+ "all_wrong": 0.42857142857142855,
814
+ "completion_length": 303.8214416503906,
815
+ "epoch": 0.0019646365422396855,
816
+ "grad_norm": 1.472520440759773,
817
+ "kl": 0.01611328125,
818
+ "learning_rate": 9.999904763635026e-07,
819
+ "loss": 0.0006,
820
+ "reward": 1.329949975013733,
821
+ "reward_std": 0.2325875461101532,
822
+ "rewards/accuracy_reward": 0.22994986176490784,
823
+ "rewards/format_reward": 0.9821429252624512,
824
+ "step": 51,
825
+ "temporal_rewards": 0.6428571343421936
826
+ },
827
+ {
828
+ "all_correct": 0.0,
829
+ "all_wrong": 0.14285714285714285,
830
+ "completion_length": 233.10714721679688,
831
+ "epoch": 0.0020031588273816403,
832
+ "grad_norm": 6.083305961655314,
833
+ "kl": 0.01806640625,
834
+ "learning_rate": 9.999900992272773e-07,
835
+ "loss": 0.0007,
836
+ "reward": 1.2669223546981812,
837
+ "reward_std": 0.1918085664510727,
838
+ "rewards/accuracy_reward": 0.19906513392925262,
839
+ "rewards/format_reward": 1.0,
840
+ "step": 52,
841
+ "temporal_rewards": 0.5714285373687744
842
+ },
843
+ {
844
+ "all_correct": 0.42857142857142855,
845
+ "all_wrong": 0.0,
846
+ "completion_length": 114.10714721679688,
847
+ "epoch": 0.002041681112523595,
848
+ "grad_norm": 2.7012427152402654,
849
+ "kl": 0.032958984375,
850
+ "learning_rate": 9.999897147681163e-07,
851
+ "loss": 0.0013,
852
+ "reward": 1.7964287996292114,
853
+ "reward_std": 0.2886441946029663,
854
+ "rewards/accuracy_reward": 0.7321428656578064,
855
+ "rewards/format_reward": 1.0,
856
+ "step": 53,
857
+ "temporal_rewards": 0.5
858
+ },
859
+ {
860
+ "all_correct": 0.0,
861
+ "all_wrong": 0.2857142857142857,
862
+ "completion_length": 185.7678680419922,
863
+ "epoch": 0.0020802033976655494,
864
+ "grad_norm": 3.499372150686523,
865
+ "kl": 0.0224609375,
866
+ "learning_rate": 9.999893229860249e-07,
867
+ "loss": 0.0009,
868
+ "reward": 1.4564489126205444,
869
+ "reward_std": 0.25798067450523376,
870
+ "rewards/accuracy_reward": 0.381448894739151,
871
+ "rewards/format_reward": 1.0,
872
+ "step": 54,
873
+ "temporal_rewards": 0.714285671710968
874
+ },
875
+ {
876
+ "all_correct": 0.2857142857142857,
877
+ "all_wrong": 0.2857142857142857,
878
+ "completion_length": 201.33929443359375,
879
+ "epoch": 0.0021187256828075042,
880
+ "grad_norm": 1.8808446859449741,
881
+ "kl": 0.021728515625,
882
+ "learning_rate": 9.999889238810088e-07,
883
+ "loss": 0.0009,
884
+ "reward": 1.5330215692520142,
885
+ "reward_std": 0.21871158480644226,
886
+ "rewards/accuracy_reward": 0.45266443490982056,
887
+ "rewards/format_reward": 1.0,
888
+ "step": 55,
889
+ "temporal_rewards": 0.6428571343421936
890
+ },
891
+ {
892
+ "all_correct": 0.14285714285714285,
893
+ "all_wrong": 0.42857142857142855,
894
+ "completion_length": 193.0178680419922,
895
+ "epoch": 0.0021572479679494586,
896
+ "grad_norm": 3.822445715369176,
897
+ "kl": 0.0242919921875,
898
+ "learning_rate": 9.999885174530742e-07,
899
+ "loss": 0.001,
900
+ "reward": 1.293078899383545,
901
+ "reward_std": 0.10130374878644943,
902
+ "rewards/accuracy_reward": 0.278793066740036,
903
+ "rewards/format_reward": 1.0,
904
+ "step": 56,
905
+ "temporal_rewards": 0.6428571343421936
906
+ },
907
+ {
908
+ "all_correct": 0.14285714285714285,
909
+ "all_wrong": 0.14285714285714285,
910
+ "completion_length": 246.50001525878906,
911
+ "epoch": 0.0021957702530914134,
912
+ "grad_norm": 2.6785361100208043,
913
+ "kl": 0.0218505859375,
914
+ "learning_rate": 9.999881037022268e-07,
915
+ "loss": 0.0009,
916
+ "reward": 1.6220659017562866,
917
+ "reward_std": 0.306893914937973,
918
+ "rewards/accuracy_reward": 0.47028017044067383,
919
+ "rewards/format_reward": 1.0,
920
+ "step": 57,
921
+ "temporal_rewards": 0.7857142686843872
922
+ },
923
+ {
924
+ "all_correct": 0.42857142857142855,
925
+ "all_wrong": 0.2857142857142857,
926
+ "completion_length": 206.55357360839844,
927
+ "epoch": 0.002234292538233368,
928
+ "grad_norm": 2.231409411826765,
929
+ "kl": 0.027099609375,
930
+ "learning_rate": 9.999876826284728e-07,
931
+ "loss": 0.0011,
932
+ "reward": 1.5493416786193848,
933
+ "reward_std": 0.15240609645843506,
934
+ "rewards/accuracy_reward": 0.47434163093566895,
935
+ "rewards/format_reward": 0.9821429252624512,
936
+ "step": 58,
937
+ "temporal_rewards": 0.6428571343421936
938
+ },
939
+ {
940
+ "all_correct": 0.0,
941
+ "all_wrong": 0.42857142857142855,
942
+ "completion_length": 216.94644165039062,
943
+ "epoch": 0.0022728148233753225,
944
+ "grad_norm": 2.6320081221943967,
945
+ "kl": 0.0181884765625,
946
+ "learning_rate": 9.999872542318182e-07,
947
+ "loss": 0.0007,
948
+ "reward": 1.264460802078247,
949
+ "reward_std": 0.1528075784444809,
950
+ "rewards/accuracy_reward": 0.2269606739282608,
951
+ "rewards/format_reward": 1.0,
952
+ "step": 59,
953
+ "temporal_rewards": 0.5714285373687744
954
+ },
955
+ {
956
+ "all_correct": 0.2857142857142857,
957
+ "all_wrong": 0.14285714285714285,
958
+ "completion_length": 153.85714721679688,
959
+ "epoch": 0.0023113371085172773,
960
+ "grad_norm": 2.3218624177616936,
961
+ "kl": 0.0262451171875,
962
+ "learning_rate": 9.999868185122694e-07,
963
+ "loss": 0.0011,
964
+ "reward": 1.5643600225448608,
965
+ "reward_std": 0.17870767414569855,
966
+ "rewards/accuracy_reward": 0.5179314017295837,
967
+ "rewards/format_reward": 1.0,
968
+ "step": 60,
969
+ "temporal_rewards": 0.5
970
+ },
971
+ {
972
+ "all_correct": 0.2857142857142857,
973
+ "all_wrong": 0.0,
974
+ "completion_length": 194.94644165039062,
975
+ "epoch": 0.0023498593936592317,
976
+ "grad_norm": 2.4059506047191412,
977
+ "kl": 0.02783203125,
978
+ "learning_rate": 9.999863754698328e-07,
979
+ "loss": 0.0011,
980
+ "reward": 1.7017457485198975,
981
+ "reward_std": 0.21297064423561096,
982
+ "rewards/accuracy_reward": 0.596388578414917,
983
+ "rewards/format_reward": 1.0,
984
+ "step": 61,
985
+ "temporal_rewards": 0.5714285373687744
986
+ },
987
+ {
988
+ "all_correct": 0.14285714285714285,
989
+ "all_wrong": 0.14285714285714285,
990
+ "completion_length": 263.1964416503906,
991
+ "epoch": 0.0023883816788011865,
992
+ "grad_norm": 7.79968970295138,
993
+ "kl": 0.025146484375,
994
+ "learning_rate": 9.999859251045148e-07,
995
+ "loss": 0.001,
996
+ "reward": 1.3235949277877808,
997
+ "reward_std": 0.3387552797794342,
998
+ "rewards/accuracy_reward": 0.32002341747283936,
999
+ "rewards/format_reward": 0.9285714626312256,
1000
+ "step": 62,
1001
+ "temporal_rewards": 0.714285671710968
1002
+ },
1003
+ {
1004
+ "all_correct": 0.2857142857142857,
1005
+ "all_wrong": 0.14285714285714285,
1006
+ "completion_length": 282.875,
1007
+ "epoch": 0.0024269039639431412,
1008
+ "grad_norm": 11.820097516090824,
1009
+ "kl": 0.0230712890625,
1010
+ "learning_rate": 9.999854674163223e-07,
1011
+ "loss": 0.0009,
1012
+ "reward": 1.4603477716445923,
1013
+ "reward_std": 0.1610259860754013,
1014
+ "rewards/accuracy_reward": 0.3817763030529022,
1015
+ "rewards/format_reward": 1.0,
1016
+ "step": 63,
1017
+ "temporal_rewards": 0.5
1018
+ },
1019
+ {
1020
+ "all_correct": 0.2857142857142857,
1021
+ "all_wrong": 0.42857142857142855,
1022
+ "completion_length": 145.7857208251953,
1023
+ "epoch": 0.0024654262490850956,
1024
+ "grad_norm": 2.198227643716255,
1025
+ "kl": 0.03076171875,
1026
+ "learning_rate": 9.999850024052612e-07,
1027
+ "loss": 0.0012,
1028
+ "reward": 1.623809576034546,
1029
+ "reward_std": 0.15851996839046478,
1030
+ "rewards/accuracy_reward": 0.523809552192688,
1031
+ "rewards/format_reward": 0.9821429252624512,
1032
+ "step": 64,
1033
+ "temporal_rewards": 0.714285671710968
1034
+ },
1035
+ {
1036
+ "all_correct": 0.14285714285714285,
1037
+ "all_wrong": 0.2857142857142857,
1038
+ "completion_length": 227.98214721679688,
1039
+ "epoch": 0.0025039485342270504,
1040
+ "grad_norm": 2.0716605728346225,
1041
+ "kl": 0.021728515625,
1042
+ "learning_rate": 9.999845300713392e-07,
1043
+ "loss": 0.0009,
1044
+ "reward": 1.4685227870941162,
1045
+ "reward_std": 0.23074626922607422,
1046
+ "rewards/accuracy_reward": 0.4185227155685425,
1047
+ "rewards/format_reward": 1.0,
1048
+ "step": 65,
1049
+ "temporal_rewards": 0.5714285373687744
1050
+ },
1051
+ {
1052
+ "all_correct": 0.2857142857142857,
1053
+ "all_wrong": 0.14285714285714285,
1054
+ "completion_length": 223.07144165039062,
1055
+ "epoch": 0.002542470819369005,
1056
+ "grad_norm": 12.068459853286635,
1057
+ "kl": 0.0284423828125,
1058
+ "learning_rate": 9.999840504145628e-07,
1059
+ "loss": 0.0011,
1060
+ "reward": 1.6151973009109497,
1061
+ "reward_std": 0.184441938996315,
1062
+ "rewards/accuracy_reward": 0.516982913017273,
1063
+ "rewards/format_reward": 1.0,
1064
+ "step": 66,
1065
+ "temporal_rewards": 0.5714285373687744
1066
+ },
1067
+ {
1068
+ "all_correct": 0.5714285714285714,
1069
+ "all_wrong": 0.0,
1070
+ "completion_length": 179.3928680419922,
1071
+ "epoch": 0.0025809931045109595,
1072
+ "grad_norm": 1.9797102708238594,
1073
+ "kl": 0.022705078125,
1074
+ "learning_rate": 9.99983563434939e-07,
1075
+ "loss": 0.0009,
1076
+ "reward": 1.8434789180755615,
1077
+ "reward_std": 0.09488734602928162,
1078
+ "rewards/accuracy_reward": 0.657764732837677,
1079
+ "rewards/format_reward": 1.0,
1080
+ "step": 67,
1081
+ "temporal_rewards": 0.714285671710968
1082
+ },
1083
+ {
1084
+ "all_correct": 0.2857142857142857,
1085
+ "all_wrong": 0.2857142857142857,
1086
+ "completion_length": 260.4464416503906,
1087
+ "epoch": 0.0026195153896529143,
1088
+ "grad_norm": 1.3994503258018347,
1089
+ "kl": 0.018798828125,
1090
+ "learning_rate": 9.999830691324754e-07,
1091
+ "loss": 0.0008,
1092
+ "reward": 1.5176632404327393,
1093
+ "reward_std": 0.16758570075035095,
1094
+ "rewards/accuracy_reward": 0.4533773958683014,
1095
+ "rewards/format_reward": 1.0,
1096
+ "step": 68,
1097
+ "temporal_rewards": 0.5714285373687744
1098
+ },
1099
+ {
1100
+ "all_correct": 0.2857142857142857,
1101
+ "all_wrong": 0.0,
1102
+ "completion_length": 154.3928680419922,
1103
+ "epoch": 0.0026580376747948687,
1104
+ "grad_norm": 2.478716497709362,
1105
+ "kl": 0.024169921875,
1106
+ "learning_rate": 9.999825675071785e-07,
1107
+ "loss": 0.001,
1108
+ "reward": 1.7284132242202759,
1109
+ "reward_std": 0.1862778216600418,
1110
+ "rewards/accuracy_reward": 0.5909132361412048,
1111
+ "rewards/format_reward": 1.0,
1112
+ "step": 69,
1113
+ "temporal_rewards": 0.6428571343421936
1114
+ },
1115
+ {
1116
+ "all_correct": 0.2857142857142857,
1117
+ "all_wrong": 0.0,
1118
+ "completion_length": 218.08929443359375,
1119
+ "epoch": 0.0026965599599368235,
1120
+ "grad_norm": 3.2636585667285747,
1121
+ "kl": 0.018798828125,
1122
+ "learning_rate": 9.999820585590562e-07,
1123
+ "loss": 0.0008,
1124
+ "reward": 1.8550920486450195,
1125
+ "reward_std": 0.18145045638084412,
1126
+ "rewards/accuracy_reward": 0.6693777441978455,
1127
+ "rewards/format_reward": 1.0,
1128
+ "step": 70,
1129
+ "temporal_rewards": 0.7857142686843872
1130
+ },
1131
+ {
1132
+ "all_correct": 0.2857142857142857,
1133
+ "all_wrong": 0.2857142857142857,
1134
+ "completion_length": 166.0178680419922,
1135
+ "epoch": 0.0027350822450787782,
1136
+ "grad_norm": 2.44595510707876,
1137
+ "kl": 0.0220947265625,
1138
+ "learning_rate": 9.999815422881156e-07,
1139
+ "loss": 0.0009,
1140
+ "reward": 1.6340795755386353,
1141
+ "reward_std": 0.14490874111652374,
1142
+ "rewards/accuracy_reward": 0.49479392170906067,
1143
+ "rewards/format_reward": 1.0,
1144
+ "step": 71,
1145
+ "temporal_rewards": 0.6428571343421936
1146
+ },
1147
+ {
1148
+ "all_correct": 0.42857142857142855,
1149
+ "all_wrong": 0.0,
1150
+ "completion_length": 228.44644165039062,
1151
+ "epoch": 0.0027736045302207326,
1152
+ "grad_norm": 4.715787174655585,
1153
+ "kl": 0.0189208984375,
1154
+ "learning_rate": 9.999810186943645e-07,
1155
+ "loss": 0.0008,
1156
+ "reward": 1.8304548263549805,
1157
+ "reward_std": 0.26317012310028076,
1158
+ "rewards/accuracy_reward": 0.6572403311729431,
1159
+ "rewards/format_reward": 0.9821429252624512,
1160
+ "step": 72,
1161
+ "temporal_rewards": 0.7857142686843872
1162
+ },
1163
+ {
1164
+ "all_correct": 0.5714285714285714,
1165
+ "all_wrong": 0.0,
1166
+ "completion_length": 281.5,
1167
+ "epoch": 0.0028121268153626874,
1168
+ "grad_norm": 4.5915608298302955,
1169
+ "kl": 0.0186767578125,
1170
+ "learning_rate": 9.999804877778105e-07,
1171
+ "loss": 0.0007,
1172
+ "reward": 1.8425076007843018,
1173
+ "reward_std": 0.19430917501449585,
1174
+ "rewards/accuracy_reward": 0.6567932367324829,
1175
+ "rewards/format_reward": 0.9464285969734192,
1176
+ "step": 73,
1177
+ "temporal_rewards": 0.8571428656578064
1178
+ },
1179
+ {
1180
+ "all_correct": 0.2857142857142857,
1181
+ "all_wrong": 0.14285714285714285,
1182
+ "completion_length": 187.0357208251953,
1183
+ "epoch": 0.0028506491005046417,
1184
+ "grad_norm": 2.861793907089711,
1185
+ "kl": 0.01953125,
1186
+ "learning_rate": 9.999799495384613e-07,
1187
+ "loss": 0.0008,
1188
+ "reward": 1.5369635820388794,
1189
+ "reward_std": 0.19547729194164276,
1190
+ "rewards/accuracy_reward": 0.47446346282958984,
1191
+ "rewards/format_reward": 0.9821429252624512,
1192
+ "step": 74,
1193
+ "temporal_rewards": 0.6428571343421936
1194
+ },
1195
+ {
1196
+ "all_correct": 0.0,
1197
+ "all_wrong": 0.14285714285714285,
1198
+ "completion_length": 204.00001525878906,
1199
+ "epoch": 0.0028891713856465965,
1200
+ "grad_norm": 3.6528625470246756,
1201
+ "kl": 0.018798828125,
1202
+ "learning_rate": 9.99979403976325e-07,
1203
+ "loss": 0.0008,
1204
+ "reward": 1.3830876350402832,
1205
+ "reward_std": 0.1895177811384201,
1206
+ "rewards/accuracy_reward": 0.3688018023967743,
1207
+ "rewards/format_reward": 1.0,
1208
+ "step": 75,
1209
+ "temporal_rewards": 0.5
1210
+ },
1211
+ {
1212
+ "all_correct": 0.42857142857142855,
1213
+ "all_wrong": 0.0,
1214
+ "completion_length": 158.30357360839844,
1215
+ "epoch": 0.0029276936707885513,
1216
+ "grad_norm": 5.083277470007981,
1217
+ "kl": 0.0220947265625,
1218
+ "learning_rate": 9.999788510914095e-07,
1219
+ "loss": 0.0009,
1220
+ "reward": 1.834609031677246,
1221
+ "reward_std": 0.19010314345359802,
1222
+ "rewards/accuracy_reward": 0.7542517185211182,
1223
+ "rewards/format_reward": 1.0,
1224
+ "step": 76,
1225
+ "temporal_rewards": 0.5714285373687744
1226
+ },
1227
+ {
1228
+ "all_correct": 0.0,
1229
+ "all_wrong": 0.14285714285714285,
1230
+ "completion_length": 283.46429443359375,
1231
+ "epoch": 0.0029662159559305057,
1232
+ "grad_norm": 2.6220465157846515,
1233
+ "kl": 0.0159912109375,
1234
+ "learning_rate": 9.999782908837226e-07,
1235
+ "loss": 0.0006,
1236
+ "reward": 1.2294546365737915,
1237
+ "reward_std": 0.20362988114356995,
1238
+ "rewards/accuracy_reward": 0.2901688516139984,
1239
+ "rewards/format_reward": 0.910714328289032,
1240
+ "step": 77,
1241
+ "temporal_rewards": 0.5714285373687744
1242
+ },
1243
+ {
1244
+ "all_correct": 0.14285714285714285,
1245
+ "all_wrong": 0.14285714285714285,
1246
+ "completion_length": 269.4464416503906,
1247
+ "epoch": 0.0030047382410724605,
1248
+ "grad_norm": 3.6931368985139565,
1249
+ "kl": 0.01953125,
1250
+ "learning_rate": 9.999777233532728e-07,
1251
+ "loss": 0.0008,
1252
+ "reward": 1.3699510097503662,
1253
+ "reward_std": 0.2626003324985504,
1254
+ "rewards/accuracy_reward": 0.2985224425792694,
1255
+ "rewards/format_reward": 0.9464285969734192,
1256
+ "step": 78,
1257
+ "temporal_rewards": 0.714285671710968
1258
+ },
1259
+ {
1260
+ "all_correct": 0.14285714285714285,
1261
+ "all_wrong": 0.14285714285714285,
1262
+ "completion_length": 253.58929443359375,
1263
+ "epoch": 0.0030432605262144152,
1264
+ "grad_norm": 2.4812016013725247,
1265
+ "kl": 0.0166015625,
1266
+ "learning_rate": 9.999771485000686e-07,
1267
+ "loss": 0.0007,
1268
+ "reward": 1.6232998371124268,
1269
+ "reward_std": 0.3576071560382843,
1270
+ "rewards/accuracy_reward": 0.4857998788356781,
1271
+ "rewards/format_reward": 1.0,
1272
+ "step": 79,
1273
+ "temporal_rewards": 0.7857142686843872
1274
+ },
1275
+ {
1276
+ "all_correct": 0.2857142857142857,
1277
+ "all_wrong": 0.0,
1278
+ "completion_length": 233.0178680419922,
1279
+ "epoch": 0.0030817828113563696,
1280
+ "grad_norm": 2.5348454122960544,
1281
+ "kl": 0.0162353515625,
1282
+ "learning_rate": 9.99976566324118e-07,
1283
+ "loss": 0.0007,
1284
+ "reward": 1.5126162767410278,
1285
+ "reward_std": 0.3677576184272766,
1286
+ "rewards/accuracy_reward": 0.5126160979270935,
1287
+ "rewards/format_reward": 0.9464285969734192,
1288
+ "step": 80,
1289
+ "temporal_rewards": 0.357142835855484
1290
+ },
1291
+ {
1292
+ "all_correct": 0.0,
1293
+ "all_wrong": 0.0,
1294
+ "completion_length": 340.2857360839844,
1295
+ "epoch": 0.0031203050964983244,
1296
+ "grad_norm": 2.1615647344294318,
1297
+ "kl": 0.01361083984375,
1298
+ "learning_rate": 9.999759768254296e-07,
1299
+ "loss": 0.0005,
1300
+ "reward": 1.640975832939148,
1301
+ "reward_std": 0.23601117730140686,
1302
+ "rewards/accuracy_reward": 0.5302614569664001,
1303
+ "rewards/format_reward": 0.9821429252624512,
1304
+ "step": 81,
1305
+ "temporal_rewards": 0.6428571343421936
1306
+ },
1307
+ {
1308
+ "all_correct": 0.2857142857142857,
1309
+ "all_wrong": 0.14285714285714285,
1310
+ "completion_length": 141.125,
1311
+ "epoch": 0.0031588273816402787,
1312
+ "grad_norm": 2.7836789740348973,
1313
+ "kl": 0.0240478515625,
1314
+ "learning_rate": 9.999753800040124e-07,
1315
+ "loss": 0.001,
1316
+ "reward": 1.6339308023452759,
1317
+ "reward_std": 0.19026820361614227,
1318
+ "rewards/accuracy_reward": 0.5446450710296631,
1319
+ "rewards/format_reward": 1.0,
1320
+ "step": 82,
1321
+ "temporal_rewards": 0.5714285373687744
1322
+ },
1323
+ {
1324
+ "all_correct": 0.2857142857142857,
1325
+ "all_wrong": 0.14285714285714285,
1326
+ "completion_length": 267.9107360839844,
1327
+ "epoch": 0.0031973496667822335,
1328
+ "grad_norm": 1.8591300511545363,
1329
+ "kl": 0.0150146484375,
1330
+ "learning_rate": 9.999747758598746e-07,
1331
+ "loss": 0.0006,
1332
+ "reward": 1.6651928424835205,
1333
+ "reward_std": 0.23238950967788696,
1334
+ "rewards/accuracy_reward": 0.6901927590370178,
1335
+ "rewards/format_reward": 0.8750000596046448,
1336
+ "step": 83,
1337
+ "temporal_rewards": 0.5714285373687744
1338
+ },
1339
+ {
1340
+ "all_correct": 0.2857142857142857,
1341
+ "all_wrong": 0.0,
1342
+ "completion_length": 170.98214721679688,
1343
+ "epoch": 0.0032358719519241883,
1344
+ "grad_norm": 3.460207937592012,
1345
+ "kl": 0.0201416015625,
1346
+ "learning_rate": 9.999741643930254e-07,
1347
+ "loss": 0.0008,
1348
+ "reward": 1.797253966331482,
1349
+ "reward_std": 0.2454862743616104,
1350
+ "rewards/accuracy_reward": 0.6508253216743469,
1351
+ "rewards/format_reward": 1.0,
1352
+ "step": 84,
1353
+ "temporal_rewards": 0.5714285373687744
1354
+ },
1355
+ {
1356
+ "all_correct": 0.42857142857142855,
1357
+ "all_wrong": 0.14285714285714285,
1358
+ "completion_length": 176.48214721679688,
1359
+ "epoch": 0.0032743942370661427,
1360
+ "grad_norm": 3.8333441326978015,
1361
+ "kl": 0.01556396484375,
1362
+ "learning_rate": 9.99973545603474e-07,
1363
+ "loss": 0.0006,
1364
+ "reward": 1.8520835638046265,
1365
+ "reward_std": 0.13618475198745728,
1366
+ "rewards/accuracy_reward": 0.7485119104385376,
1367
+ "rewards/format_reward": 1.0,
1368
+ "step": 85,
1369
+ "temporal_rewards": 0.714285671710968
1370
+ },
1371
+ {
1372
+ "all_correct": 0.2857142857142857,
1373
+ "all_wrong": 0.14285714285714285,
1374
+ "completion_length": 142.21429443359375,
1375
+ "epoch": 0.0033129165222080975,
1376
+ "grad_norm": 5.546406170903967,
1377
+ "kl": 0.018798828125,
1378
+ "learning_rate": 9.999729194912288e-07,
1379
+ "loss": 0.0007,
1380
+ "reward": 1.512488603591919,
1381
+ "reward_std": 0.15216389298439026,
1382
+ "rewards/accuracy_reward": 0.4374885559082031,
1383
+ "rewards/format_reward": 1.0,
1384
+ "step": 86,
1385
+ "temporal_rewards": 0.6428571343421936
1386
+ },
1387
+ {
1388
+ "all_correct": 0.2857142857142857,
1389
+ "all_wrong": 0.0,
1390
+ "completion_length": 135.8928680419922,
1391
+ "epoch": 0.003351438807350052,
1392
+ "grad_norm": 2.1938712459273173,
1393
+ "kl": 0.0224609375,
1394
+ "learning_rate": 9.999722860562995e-07,
1395
+ "loss": 0.0009,
1396
+ "reward": 1.9083168506622314,
1397
+ "reward_std": 0.24992303550243378,
1398
+ "rewards/accuracy_reward": 0.7904595136642456,
1399
+ "rewards/format_reward": 1.0,
1400
+ "step": 87,
1401
+ "temporal_rewards": 0.714285671710968
1402
+ },
1403
+ {
1404
+ "all_correct": 0.0,
1405
+ "all_wrong": 0.14285714285714285,
1406
+ "completion_length": 250.19644165039062,
1407
+ "epoch": 0.0033899610924920066,
1408
+ "grad_norm": 8.226109585653399,
1409
+ "kl": 0.018310546875,
1410
+ "learning_rate": 9.99971645298695e-07,
1411
+ "loss": 0.0007,
1412
+ "reward": 1.3736493587493896,
1413
+ "reward_std": 0.31250062584877014,
1414
+ "rewards/accuracy_reward": 0.42364928126335144,
1415
+ "rewards/format_reward": 0.9464285969734192,
1416
+ "step": 88,
1417
+ "temporal_rewards": 0.357142835855484
1418
+ },
1419
+ {
1420
+ "all_correct": 0.42857142857142855,
1421
+ "all_wrong": 0.14285714285714285,
1422
+ "completion_length": 220.37501525878906,
1423
+ "epoch": 0.0034284833776339614,
1424
+ "grad_norm": 1.0793537459382088,
1425
+ "kl": 0.0166015625,
1426
+ "learning_rate": 9.999709972184251e-07,
1427
+ "loss": 0.0007,
1428
+ "reward": 1.6861910820007324,
1429
+ "reward_std": 0.17002300918102264,
1430
+ "rewards/accuracy_reward": 0.571905255317688,
1431
+ "rewards/format_reward": 1.0,
1432
+ "step": 89,
1433
+ "temporal_rewards": 0.714285671710968
1434
+ },
1435
+ {
1436
+ "all_correct": 0.14285714285714285,
1437
+ "all_wrong": 0.14285714285714285,
1438
+ "completion_length": 306.4464416503906,
1439
+ "epoch": 0.0034670056627759157,
1440
+ "grad_norm": 2.014793457696805,
1441
+ "kl": 0.0150146484375,
1442
+ "learning_rate": 9.99970341815499e-07,
1443
+ "loss": 0.0006,
1444
+ "reward": 1.4933110475540161,
1445
+ "reward_std": 0.17901629209518433,
1446
+ "rewards/accuracy_reward": 0.3933109641075134,
1447
+ "rewards/format_reward": 1.0,
1448
+ "step": 90,
1449
+ "temporal_rewards": 0.5714285373687744
1450
+ },
1451
+ {
1452
+ "all_correct": 0.42857142857142855,
1453
+ "all_wrong": 0.14285714285714285,
1454
+ "completion_length": 221.33929443359375,
1455
+ "epoch": 0.0035055279479178705,
1456
+ "grad_norm": 0.821835435471291,
1457
+ "kl": 0.0206298828125,
1458
+ "learning_rate": 9.999696790899263e-07,
1459
+ "loss": 0.0008,
1460
+ "reward": 1.6780954599380493,
1461
+ "reward_std": 0.18597880005836487,
1462
+ "rewards/accuracy_reward": 0.5959525108337402,
1463
+ "rewards/format_reward": 0.9464285969734192,
1464
+ "step": 91,
1465
+ "temporal_rewards": 0.6428571343421936
1466
+ },
1467
+ {
1468
+ "all_correct": 0.5714285714285714,
1469
+ "all_wrong": 0.14285714285714285,
1470
+ "completion_length": 133.69644165039062,
1471
+ "epoch": 0.0035440502330598253,
1472
+ "grad_norm": 1.9159036924753614,
1473
+ "kl": 0.0185546875,
1474
+ "learning_rate": 9.999690090417167e-07,
1475
+ "loss": 0.0007,
1476
+ "reward": 1.908928632736206,
1477
+ "reward_std": 0.15162892639636993,
1478
+ "rewards/accuracy_reward": 0.7321428656578064,
1479
+ "rewards/format_reward": 1.0,
1480
+ "step": 92,
1481
+ "temporal_rewards": 0.8571428656578064
1482
+ },
1483
+ {
1484
+ "all_correct": 0.0,
1485
+ "all_wrong": 0.0,
1486
+ "completion_length": 272.51788330078125,
1487
+ "epoch": 0.0035825725182017797,
1488
+ "grad_norm": 2.5112506689696623,
1489
+ "kl": 0.0167236328125,
1490
+ "learning_rate": 9.999683316708803e-07,
1491
+ "loss": 0.0007,
1492
+ "reward": 1.4424163103103638,
1493
+ "reward_std": 0.35725003480911255,
1494
+ "rewards/accuracy_reward": 0.33705905079841614,
1495
+ "rewards/format_reward": 1.0,
1496
+ "step": 93,
1497
+ "temporal_rewards": 0.6428571343421936
1498
+ },
1499
+ {
1500
+ "all_correct": 0.42857142857142855,
1501
+ "all_wrong": 0.0,
1502
+ "completion_length": 162.42857360839844,
1503
+ "epoch": 0.0036210948033437345,
1504
+ "grad_norm": 2.9519370343427767,
1505
+ "kl": 0.0257568359375,
1506
+ "learning_rate": 9.999676469774268e-07,
1507
+ "loss": 0.001,
1508
+ "reward": 1.7114182710647583,
1509
+ "reward_std": 0.11487601697444916,
1510
+ "rewards/accuracy_reward": 0.6310611963272095,
1511
+ "rewards/format_reward": 1.0,
1512
+ "step": 94,
1513
+ "temporal_rewards": 0.5714285373687744
1514
+ },
1515
+ {
1516
+ "all_correct": 0.14285714285714285,
1517
+ "all_wrong": 0.14285714285714285,
1518
+ "completion_length": 233.0357208251953,
1519
+ "epoch": 0.003659617088485689,
1520
+ "grad_norm": 2.4129406349857567,
1521
+ "kl": 0.0164794921875,
1522
+ "learning_rate": 9.999669549613662e-07,
1523
+ "loss": 0.0007,
1524
+ "reward": 1.651080846786499,
1525
+ "reward_std": 0.29609203338623047,
1526
+ "rewards/accuracy_reward": 0.5421521663665771,
1527
+ "rewards/format_reward": 0.9821429252624512,
1528
+ "step": 95,
1529
+ "temporal_rewards": 0.714285671710968
1530
+ },
1531
+ {
1532
+ "all_correct": 0.14285714285714285,
1533
+ "all_wrong": 0.14285714285714285,
1534
+ "completion_length": 176.33929443359375,
1535
+ "epoch": 0.0036981393736276436,
1536
+ "grad_norm": 2.4779580084833346,
1537
+ "kl": 0.0201416015625,
1538
+ "learning_rate": 9.999662556227086e-07,
1539
+ "loss": 0.0008,
1540
+ "reward": 1.4675571918487549,
1541
+ "reward_std": 0.14850883185863495,
1542
+ "rewards/accuracy_reward": 0.4675571322441101,
1543
+ "rewards/format_reward": 1.0,
1544
+ "step": 96,
1545
+ "temporal_rewards": 0.4285714328289032
1546
+ },
1547
+ {
1548
+ "all_correct": 0.2857142857142857,
1549
+ "all_wrong": 0.14285714285714285,
1550
+ "completion_length": 161.6428680419922,
1551
+ "epoch": 0.0037366616587695984,
1552
+ "grad_norm": 1.9659404766308382,
1553
+ "kl": 0.0196533203125,
1554
+ "learning_rate": 9.999655489614645e-07,
1555
+ "loss": 0.0008,
1556
+ "reward": 1.7886890172958374,
1557
+ "reward_std": 0.09862305968999863,
1558
+ "rewards/accuracy_reward": 0.6619032025337219,
1559
+ "rewards/format_reward": 1.0,
1560
+ "step": 97,
1561
+ "temporal_rewards": 0.714285671710968
1562
+ },
1563
+ {
1564
+ "all_correct": 0.5714285714285714,
1565
+ "all_wrong": 0.14285714285714285,
1566
+ "completion_length": 179.19644165039062,
1567
+ "epoch": 0.0037751839439115528,
1568
+ "grad_norm": 2.05557437418435,
1569
+ "kl": 0.016357421875,
1570
+ "learning_rate": 9.999648349776438e-07,
1571
+ "loss": 0.0007,
1572
+ "reward": 1.7678003311157227,
1573
+ "reward_std": 0.06355559825897217,
1574
+ "rewards/accuracy_reward": 0.6570857763290405,
1575
+ "rewards/format_reward": 1.0,
1576
+ "step": 98,
1577
+ "temporal_rewards": 0.6428571343421936
1578
+ },
1579
+ {
1580
+ "all_correct": 0.5714285714285714,
1581
+ "all_wrong": 0.0,
1582
+ "completion_length": 225.5535888671875,
1583
+ "epoch": 0.0038137062290535075,
1584
+ "grad_norm": 1.9682189342389496,
1585
+ "kl": 0.0174560546875,
1586
+ "learning_rate": 9.999641136712574e-07,
1587
+ "loss": 0.0007,
1588
+ "reward": 1.8416882753372192,
1589
+ "reward_std": 0.17344672977924347,
1590
+ "rewards/accuracy_reward": 0.6881167888641357,
1591
+ "rewards/format_reward": 1.0,
1592
+ "step": 99,
1593
+ "temporal_rewards": 0.7857142686843872
1594
+ },
1595
+ {
1596
+ "all_correct": 0.42857142857142855,
1597
+ "all_wrong": 0.14285714285714285,
1598
+ "completion_length": 214.48214721679688,
1599
+ "epoch": 0.003852228514195462,
1600
+ "grad_norm": 1.387767917535426,
1601
+ "kl": 0.01708984375,
1602
+ "learning_rate": 9.999633850423157e-07,
1603
+ "loss": 0.0007,
1604
+ "reward": 1.7011778354644775,
1605
+ "reward_std": 0.10359158366918564,
1606
+ "rewards/accuracy_reward": 0.5368921160697937,
1607
+ "rewards/format_reward": 1.0,
1608
+ "step": 100,
1609
+ "temporal_rewards": 0.714285671710968
1610
+ }
1611
+ ],
1612
+ "logging_steps": 1.0,
1613
+ "max_steps": 25959,
1614
+ "num_input_tokens_seen": 0,
1615
+ "num_train_epochs": 1,
1616
+ "save_steps": 100,
1617
+ "stateful_callbacks": {
1618
+ "TrainerControl": {
1619
+ "args": {
1620
+ "should_epoch_stop": false,
1621
+ "should_evaluate": false,
1622
+ "should_log": false,
1623
+ "should_save": true,
1624
+ "should_training_stop": false
1625
+ },
1626
+ "attributes": {}
1627
+ }
1628
+ },
1629
+ "total_flos": 0.0,
1630
+ "train_batch_size": 1,
1631
+ "trial_name": null,
1632
+ "trial_params": null
1633
+ }
last-checkpoint/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a7f8000e91d6e70d9c196be607065507c15e6558dae5f04550099f60e829a29a
3
+ size 8504
last-checkpoint/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
last-checkpoint/zero_to_fp32.py ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import json
25
+ from tqdm import tqdm
26
+ from collections import OrderedDict
27
+ from dataclasses import dataclass
28
+
29
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
30
+ # DeepSpeed data structures it has to be available in the current python environment.
31
+ from deepspeed.utils import logger
32
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
33
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
34
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
35
+
36
+
37
+ @dataclass
38
+ class zero_model_state:
39
+ buffers: dict()
40
+ param_shapes: dict()
41
+ shared_params: list
42
+ ds_version: int
43
+ frozen_param_shapes: dict()
44
+ frozen_param_fragments: dict()
45
+
46
+
47
+ debug = 0
48
+
49
+ # load to cpu
50
+ device = torch.device('cpu')
51
+
52
+
53
+ def atoi(text):
54
+ return int(text) if text.isdigit() else text
55
+
56
+
57
+ def natural_keys(text):
58
+ '''
59
+ alist.sort(key=natural_keys) sorts in human order
60
+ http://nedbatchelder.com/blog/200712/human_sorting.html
61
+ (See Toothy's implementation in the comments)
62
+ '''
63
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
64
+
65
+
66
+ def get_model_state_file(checkpoint_dir, zero_stage):
67
+ if not os.path.isdir(checkpoint_dir):
68
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
69
+
70
+ # there should be only one file
71
+ if zero_stage <= 2:
72
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
73
+ elif zero_stage == 3:
74
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
75
+
76
+ if not os.path.exists(file):
77
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
78
+
79
+ return file
80
+
81
+
82
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
83
+ # XXX: need to test that this simple glob rule works for multi-node setup too
84
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
85
+
86
+ if len(ckpt_files) == 0:
87
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
88
+
89
+ return ckpt_files
90
+
91
+
92
+ def get_optim_files(checkpoint_dir):
93
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
94
+
95
+
96
+ def get_model_state_files(checkpoint_dir):
97
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
98
+
99
+
100
+ def parse_model_states(files):
101
+ zero_model_states = []
102
+ for file in files:
103
+ state_dict = torch.load(file, map_location=device)
104
+
105
+ if BUFFER_NAMES not in state_dict:
106
+ raise ValueError(f"{file} is not a model state checkpoint")
107
+ buffer_names = state_dict[BUFFER_NAMES]
108
+ if debug:
109
+ print("Found buffers:", buffer_names)
110
+
111
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
112
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
113
+ param_shapes = state_dict[PARAM_SHAPES]
114
+
115
+ # collect parameters that are included in param_shapes
116
+ param_names = []
117
+ for s in param_shapes:
118
+ for name in s.keys():
119
+ param_names.append(name)
120
+
121
+ # update with frozen parameters
122
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
123
+ if frozen_param_shapes is not None:
124
+ if debug:
125
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
126
+ param_names += list(frozen_param_shapes.keys())
127
+
128
+ # handle shared params
129
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
130
+
131
+ ds_version = state_dict.get(DS_VERSION, None)
132
+
133
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
134
+
135
+ z_model_state = zero_model_state(buffers=buffers,
136
+ param_shapes=param_shapes,
137
+ shared_params=shared_params,
138
+ ds_version=ds_version,
139
+ frozen_param_shapes=frozen_param_shapes,
140
+ frozen_param_fragments=frozen_param_fragments)
141
+ zero_model_states.append(z_model_state)
142
+
143
+ return zero_model_states
144
+
145
+
146
+ def parse_optim_states(files, ds_checkpoint_dir):
147
+ total_files = len(files)
148
+ state_dicts = []
149
+ for f in files:
150
+ state_dict = torch.load(f, map_location=device)
151
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
152
+ # and also handle the case where it was already removed by another helper script
153
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
154
+ state_dicts.append(state_dict)
155
+
156
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
157
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
158
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
159
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
160
+
161
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
162
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
163
+ # use the max of the partition_count to get the dp world_size.
164
+
165
+ if type(world_size) is list:
166
+ world_size = max(world_size)
167
+
168
+ if world_size != total_files:
169
+ raise ValueError(
170
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
171
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
172
+ )
173
+
174
+ # the groups are named differently in each stage
175
+ if zero_stage <= 2:
176
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
177
+ elif zero_stage == 3:
178
+ fp32_groups_key = FP32_FLAT_GROUPS
179
+ else:
180
+ raise ValueError(f"unknown zero stage {zero_stage}")
181
+
182
+ if zero_stage <= 2:
183
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
184
+ elif zero_stage == 3:
185
+ # if there is more than one param group, there will be multiple flattened tensors - one
186
+ # flattened tensor per group - for simplicity merge them into a single tensor
187
+ #
188
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
189
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
190
+
191
+ fp32_flat_groups = [
192
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
193
+ ]
194
+
195
+ return zero_stage, world_size, fp32_flat_groups
196
+
197
+
198
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
199
+ """
200
+ Returns fp32 state_dict reconstructed from ds checkpoint
201
+
202
+ Args:
203
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
204
+
205
+ """
206
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
207
+
208
+ optim_files = get_optim_files(ds_checkpoint_dir)
209
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
210
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
211
+
212
+ model_files = get_model_state_files(ds_checkpoint_dir)
213
+
214
+ zero_model_states = parse_model_states(model_files)
215
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
216
+
217
+ if zero_stage <= 2:
218
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
219
+ exclude_frozen_parameters)
220
+ elif zero_stage == 3:
221
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
222
+ exclude_frozen_parameters)
223
+
224
+
225
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
226
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
227
+ return
228
+
229
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
230
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
231
+
232
+ if debug:
233
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
234
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
235
+
236
+ wanted_params = len(frozen_param_shapes)
237
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
238
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
239
+ print(f'Frozen params: Have {avail_numel} numels to process.')
240
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
241
+
242
+ total_params = 0
243
+ total_numel = 0
244
+ for name, shape in frozen_param_shapes.items():
245
+ total_params += 1
246
+ unpartitioned_numel = shape.numel()
247
+ total_numel += unpartitioned_numel
248
+
249
+ state_dict[name] = frozen_param_fragments[name]
250
+
251
+ if debug:
252
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
253
+
254
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
255
+
256
+
257
+ def _has_callable(obj, fn):
258
+ attr = getattr(obj, fn, None)
259
+ return callable(attr)
260
+
261
+
262
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
263
+ param_shapes = zero_model_states[0].param_shapes
264
+
265
+ # Reconstruction protocol:
266
+ #
267
+ # XXX: document this
268
+
269
+ if debug:
270
+ for i in range(world_size):
271
+ for j in range(len(fp32_flat_groups[0])):
272
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
273
+
274
+ # XXX: memory usage doubles here (zero2)
275
+ num_param_groups = len(fp32_flat_groups[0])
276
+ merged_single_partition_of_fp32_groups = []
277
+ for i in range(num_param_groups):
278
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
279
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
280
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
281
+ avail_numel = sum(
282
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
283
+
284
+ if debug:
285
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
286
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
287
+ # not asserting if there is a mismatch due to possible padding
288
+ print(f"Have {avail_numel} numels to process.")
289
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
290
+
291
+ # params
292
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
293
+ # out-of-core computing solution
294
+ total_numel = 0
295
+ total_params = 0
296
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
297
+ offset = 0
298
+ avail_numel = full_single_fp32_vector.numel()
299
+ for name, shape in shapes.items():
300
+
301
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
302
+ total_numel += unpartitioned_numel
303
+ total_params += 1
304
+
305
+ if debug:
306
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
307
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
308
+ offset += unpartitioned_numel
309
+
310
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
311
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
312
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
313
+ # live optimizer object, so we are checking that the numbers are within the right range
314
+ align_to = 2 * world_size
315
+
316
+ def zero2_align(x):
317
+ return align_to * math.ceil(x / align_to)
318
+
319
+ if debug:
320
+ print(f"original offset={offset}, avail_numel={avail_numel}")
321
+
322
+ offset = zero2_align(offset)
323
+ avail_numel = zero2_align(avail_numel)
324
+
325
+ if debug:
326
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
327
+
328
+ # Sanity check
329
+ if offset != avail_numel:
330
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
331
+
332
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
333
+
334
+
335
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
336
+ exclude_frozen_parameters):
337
+ state_dict = OrderedDict()
338
+
339
+ # buffers
340
+ buffers = zero_model_states[0].buffers
341
+ state_dict.update(buffers)
342
+ if debug:
343
+ print(f"added {len(buffers)} buffers")
344
+
345
+ if not exclude_frozen_parameters:
346
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
347
+
348
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
349
+
350
+ # recover shared parameters
351
+ for pair in zero_model_states[0].shared_params:
352
+ if pair[1] in state_dict:
353
+ state_dict[pair[0]] = state_dict[pair[1]]
354
+
355
+ return state_dict
356
+
357
+
358
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
359
+ remainder = unpartitioned_numel % world_size
360
+ padding_numel = (world_size - remainder) if remainder else 0
361
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
362
+ return partitioned_numel, padding_numel
363
+
364
+
365
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
366
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
367
+ return
368
+
369
+ if debug:
370
+ for i in range(world_size):
371
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
372
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
373
+
374
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
375
+ wanted_params = len(frozen_param_shapes)
376
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
377
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
378
+ print(f'Frozen params: Have {avail_numel} numels to process.')
379
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
380
+
381
+ total_params = 0
382
+ total_numel = 0
383
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
384
+ total_params += 1
385
+ unpartitioned_numel = shape.numel()
386
+ total_numel += unpartitioned_numel
387
+
388
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
389
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
390
+
391
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
392
+
393
+ if debug:
394
+ print(
395
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
396
+ )
397
+
398
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
399
+
400
+
401
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
402
+ param_shapes = zero_model_states[0].param_shapes
403
+ avail_numel = fp32_flat_groups[0].numel() * world_size
404
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
405
+ # param, re-consolidating each param, while dealing with padding if any
406
+
407
+ # merge list of dicts, preserving order
408
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
409
+
410
+ if debug:
411
+ for i in range(world_size):
412
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
413
+
414
+ wanted_params = len(param_shapes)
415
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
416
+ # not asserting if there is a mismatch due to possible padding
417
+ avail_numel = fp32_flat_groups[0].numel() * world_size
418
+ print(f"Trainable params: Have {avail_numel} numels to process.")
419
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
420
+
421
+ # params
422
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
423
+ # out-of-core computing solution
424
+ offset = 0
425
+ total_numel = 0
426
+ total_params = 0
427
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering Sharded Weights'):
428
+ unpartitioned_numel = shape.numel()
429
+ total_numel += unpartitioned_numel
430
+ total_params += 1
431
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
432
+
433
+ if debug:
434
+ print(
435
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
436
+ )
437
+
438
+ # XXX: memory usage doubles here
439
+ state_dict[name] = torch.cat(
440
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
441
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
442
+ offset += partitioned_numel
443
+
444
+ offset *= world_size
445
+
446
+ # Sanity check
447
+ if offset != avail_numel:
448
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
449
+
450
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
451
+
452
+
453
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
454
+ exclude_frozen_parameters):
455
+ state_dict = OrderedDict()
456
+
457
+ # buffers
458
+ buffers = zero_model_states[0].buffers
459
+ state_dict.update(buffers)
460
+ if debug:
461
+ print(f"added {len(buffers)} buffers")
462
+
463
+ if not exclude_frozen_parameters:
464
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
465
+
466
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
467
+
468
+ # recover shared parameters
469
+ for pair in zero_model_states[0].shared_params:
470
+ if pair[1] in state_dict:
471
+ state_dict[pair[0]] = state_dict[pair[1]]
472
+
473
+ return state_dict
474
+
475
+
476
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
477
+ """
478
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
479
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
480
+ via a model hub.
481
+
482
+ Args:
483
+ - ``checkpoint_dir``: path to the desired checkpoint folder
484
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
485
+ - ``exclude_frozen_parameters``: exclude frozen parameters
486
+
487
+ Returns:
488
+ - pytorch ``state_dict``
489
+
490
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
491
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
492
+ the checkpoint.
493
+
494
+ A typical usage might be ::
495
+
496
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
497
+ # do the training and checkpoint saving
498
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
499
+ model = model.cpu() # move to cpu
500
+ model.load_state_dict(state_dict)
501
+ # submit to model hub or save the model to share with others
502
+
503
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
504
+ application. i.e. you will need to re-initialize the deepspeed engine, since
505
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
506
+
507
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
508
+
509
+ """
510
+ if tag is None:
511
+ latest_path = os.path.join(checkpoint_dir, 'latest')
512
+ if os.path.isfile(latest_path):
513
+ with open(latest_path, 'r') as fd:
514
+ tag = fd.read().strip()
515
+ else:
516
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
517
+
518
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
519
+
520
+ if not os.path.isdir(ds_checkpoint_dir):
521
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
522
+
523
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
524
+
525
+
526
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
527
+ output_dir,
528
+ max_shard_size="5GB",
529
+ safe_serialization=False,
530
+ tag=None,
531
+ exclude_frozen_parameters=False):
532
+ """
533
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
534
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
535
+
536
+ Args:
537
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
538
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
539
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
540
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
541
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
542
+ - ``exclude_frozen_parameters``: exclude frozen parameters
543
+ """
544
+ # Dependency pre-check
545
+ if safe_serialization:
546
+ try:
547
+ from safetensors.torch import save_file
548
+ except ImportError:
549
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
550
+ raise
551
+ if max_shard_size is not None:
552
+ try:
553
+ from huggingface_hub import split_torch_state_dict_into_shards
554
+ except ImportError:
555
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
556
+ raise
557
+
558
+ # Convert zero checkpoint to state_dict
559
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
560
+
561
+ # Shard the model if it is too big.
562
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
563
+ if max_shard_size is not None:
564
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
565
+ state_dict_split = split_torch_state_dict_into_shards(state_dict,
566
+ filename_pattern=filename_pattern,
567
+ max_shard_size=max_shard_size)
568
+ else:
569
+ from collections import namedtuple
570
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
571
+ state_dict_split = StateDictSplit(is_sharded=False,
572
+ filename_to_tensors={weights_name: list(state_dict.keys())})
573
+
574
+ # Save the model
575
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
576
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
577
+ shard = {tensor: state_dict[tensor].contiguous() for tensor in tensors}
578
+ output_path = os.path.join(output_dir, shard_file)
579
+ if safe_serialization:
580
+ save_file(shard, output_path, metadata={"format": "pt"})
581
+ else:
582
+ torch.save(shard, output_path)
583
+
584
+ # Save index if sharded
585
+ if state_dict_split.is_sharded:
586
+ index = {
587
+ "metadata": state_dict_split.metadata,
588
+ "weight_map": state_dict_split.tensor_to_filename,
589
+ }
590
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
591
+ save_index_file = os.path.join(output_dir, save_index_file)
592
+ with open(save_index_file, "w", encoding="utf-8") as f:
593
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
594
+ f.write(content)
595
+
596
+
597
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
598
+ """
599
+ 1. Put the provided model to cpu
600
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
601
+ 3. Load it into the provided model
602
+
603
+ Args:
604
+ - ``model``: the model object to update
605
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
606
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
607
+
608
+ Returns:
609
+ - ``model`: modified model
610
+
611
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
612
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
613
+ conveniently placed for you in the checkpoint folder.
614
+
615
+ A typical usage might be ::
616
+
617
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
618
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
619
+ # submit to model hub or save the model to share with others
620
+
621
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
622
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
623
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
624
+
625
+ """
626
+ logger.info(f"Extracting fp32 weights")
627
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
628
+
629
+ logger.info(f"Overwriting model with fp32 weights")
630
+ model = model.cpu()
631
+ model.load_state_dict(state_dict, strict=False)
632
+
633
+ return model
634
+
635
+
636
+ if __name__ == "__main__":
637
+ parser = argparse.ArgumentParser()
638
+ parser.add_argument("checkpoint_dir",
639
+ type=str,
640
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
641
+ parser.add_argument("output_dir",
642
+ type=str,
643
+ help="directory to the pytorch fp32 state_dict output files"
644
+ "(e.g. path/checkpoint-12-output/)")
645
+ parser.add_argument(
646
+ "--max_shard_size",
647
+ type=str,
648
+ default="5GB",
649
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
650
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
651
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
652
+ "without CPU OOM issues.")
653
+ parser.add_argument(
654
+ "--safe_serialization",
655
+ default=False,
656
+ action='store_true',
657
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
658
+ parser.add_argument("-t",
659
+ "--tag",
660
+ type=str,
661
+ default=None,
662
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
663
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
664
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
665
+ args = parser.parse_args()
666
+
667
+ debug = args.debug
668
+
669
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
670
+ args.output_dir,
671
+ max_shard_size=args.max_shard_size,
672
+ safe_serialization=args.safe_serialization,
673
+ tag=args.tag,
674
+ exclude_frozen_parameters=args.exclude_frozen_parameters)