--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer datasets: - ag_news metrics: - accuracy model-index: - name: N_bert_agnews_padding40model results: - task: name: Text Classification type: text-classification dataset: name: ag_news type: ag_news config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.9473684210526315 --- # N_bert_agnews_padding40model This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the ag_news dataset. It achieves the following results on the evaluation set: - Loss: 0.5661 - Accuracy: 0.9474 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 0.1785 | 1.0 | 7500 | 0.1884 | 0.9421 | | 0.1379 | 2.0 | 15000 | 0.1990 | 0.9478 | | 0.1127 | 3.0 | 22500 | 0.2389 | 0.9408 | | 0.0846 | 4.0 | 30000 | 0.2528 | 0.9492 | | 0.0581 | 5.0 | 37500 | 0.3041 | 0.9436 | | 0.0456 | 6.0 | 45000 | 0.3415 | 0.9468 | | 0.0411 | 7.0 | 52500 | 0.4081 | 0.9430 | | 0.0239 | 8.0 | 60000 | 0.4415 | 0.9433 | | 0.0202 | 9.0 | 67500 | 0.4380 | 0.9404 | | 0.0126 | 10.0 | 75000 | 0.4637 | 0.9425 | | 0.0175 | 11.0 | 82500 | 0.4485 | 0.9455 | | 0.0126 | 12.0 | 90000 | 0.4761 | 0.9449 | | 0.0046 | 13.0 | 97500 | 0.5009 | 0.9455 | | 0.0038 | 14.0 | 105000 | 0.4784 | 0.9482 | | 0.0035 | 15.0 | 112500 | 0.5282 | 0.9451 | | 0.0046 | 16.0 | 120000 | 0.5256 | 0.9464 | | 0.0026 | 17.0 | 127500 | 0.5081 | 0.9501 | | 0.0008 | 18.0 | 135000 | 0.5543 | 0.9467 | | 0.0002 | 19.0 | 142500 | 0.5448 | 0.9488 | | 0.0016 | 20.0 | 150000 | 0.5661 | 0.9474 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3