File size: 2,849 Bytes
78b1d94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
---
license: apache-2.0
base_model: bert-base-uncased
tags:
- generated_from_trainer
datasets:
- imdb
metrics:
- accuracy
model-index:
- name: N_bert_imdb_padding40model
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: imdb
      type: imdb
      config: plain_text
      split: test
      args: plain_text
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.939
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# N_bert_imdb_padding40model

This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6742
- Accuracy: 0.939

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.2234        | 1.0   | 1563  | 0.2483          | 0.9251   |
| 0.1543        | 2.0   | 3126  | 0.2148          | 0.9323   |
| 0.0957        | 3.0   | 4689  | 0.2969          | 0.9329   |
| 0.0674        | 4.0   | 6252  | 0.3085          | 0.9369   |
| 0.035         | 5.0   | 7815  | 0.3765          | 0.9367   |
| 0.0398        | 6.0   | 9378  | 0.4149          | 0.9368   |
| 0.0215        | 7.0   | 10941 | 0.4424          | 0.9376   |
| 0.0162        | 8.0   | 12504 | 0.4885          | 0.9352   |
| 0.0113        | 9.0   | 14067 | 0.4668          | 0.935    |
| 0.0168        | 10.0  | 15630 | 0.5267          | 0.9367   |
| 0.0077        | 11.0  | 17193 | 0.5049          | 0.9378   |
| 0.0082        | 12.0  | 18756 | 0.5595          | 0.9374   |
| 0.0055        | 13.0  | 20319 | 0.5650          | 0.9341   |
| 0.0035        | 14.0  | 21882 | 0.6518          | 0.9356   |
| 0.0017        | 15.0  | 23445 | 0.6662          | 0.9385   |
| 0.0036        | 16.0  | 25008 | 0.6536          | 0.9369   |
| 0.0           | 17.0  | 26571 | 0.7483          | 0.9354   |
| 0.0003        | 18.0  | 28134 | 0.7027          | 0.9368   |
| 0.0034        | 19.0  | 29697 | 0.6818          | 0.9384   |
| 0.0008        | 20.0  | 31260 | 0.6742          | 0.939    |


### Framework versions

- Transformers 4.33.2
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.13.3