--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - imdb metrics: - accuracy model-index: - name: N_distilbert_imdb_padding10model results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.93352 --- # N_distilbert_imdb_padding10model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.7558 - Accuracy: 0.9335 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2364 | 1.0 | 1563 | 0.2100 | 0.9252 | | 0.1754 | 2.0 | 3126 | 0.2253 | 0.928 | | 0.1006 | 3.0 | 4689 | 0.2885 | 0.9287 | | 0.0627 | 4.0 | 6252 | 0.3760 | 0.9271 | | 0.0436 | 5.0 | 7815 | 0.4199 | 0.9281 | | 0.0353 | 6.0 | 9378 | 0.4874 | 0.9294 | | 0.0176 | 7.0 | 10941 | 0.6403 | 0.919 | | 0.0172 | 8.0 | 12504 | 0.5783 | 0.9264 | | 0.0206 | 9.0 | 14067 | 0.5343 | 0.9298 | | 0.0125 | 10.0 | 15630 | 0.6186 | 0.927 | | 0.012 | 11.0 | 17193 | 0.5948 | 0.9309 | | 0.0094 | 12.0 | 18756 | 0.6524 | 0.9293 | | 0.0095 | 13.0 | 20319 | 0.6730 | 0.9262 | | 0.0053 | 14.0 | 21882 | 0.6670 | 0.9316 | | 0.0024 | 15.0 | 23445 | 0.6873 | 0.9322 | | 0.0028 | 16.0 | 25008 | 0.6858 | 0.9328 | | 0.0007 | 17.0 | 26571 | 0.7114 | 0.9326 | | 0.0014 | 18.0 | 28134 | 0.7477 | 0.9331 | | 0.0 | 19.0 | 29697 | 0.7567 | 0.9335 | | 0.0 | 20.0 | 31260 | 0.7558 | 0.9335 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3