--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - imdb metrics: - accuracy model-index: - name: N_distilbert_imdb_padding40model results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.93052 --- # N_distilbert_imdb_padding40model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.7640 - Accuracy: 0.9305 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2367 | 1.0 | 1563 | 0.3081 | 0.8873 | | 0.18 | 2.0 | 3126 | 0.2079 | 0.9299 | | 0.1146 | 3.0 | 4689 | 0.3326 | 0.9227 | | 0.0688 | 4.0 | 6252 | 0.3477 | 0.9238 | | 0.0389 | 5.0 | 7815 | 0.4432 | 0.9256 | | 0.0338 | 6.0 | 9378 | 0.4389 | 0.9252 | | 0.0269 | 7.0 | 10941 | 0.4876 | 0.9254 | | 0.0146 | 8.0 | 12504 | 0.5673 | 0.9272 | | 0.0178 | 9.0 | 14067 | 0.5712 | 0.9249 | | 0.0108 | 10.0 | 15630 | 0.5723 | 0.9303 | | 0.0137 | 11.0 | 17193 | 0.5582 | 0.9289 | | 0.0104 | 12.0 | 18756 | 0.6285 | 0.9303 | | 0.0071 | 13.0 | 20319 | 0.6775 | 0.9296 | | 0.0057 | 14.0 | 21882 | 0.7206 | 0.9262 | | 0.0067 | 15.0 | 23445 | 0.7085 | 0.929 | | 0.0055 | 16.0 | 25008 | 0.7183 | 0.9296 | | 0.0027 | 17.0 | 26571 | 0.7296 | 0.9299 | | 0.0005 | 18.0 | 28134 | 0.7465 | 0.9313 | | 0.0004 | 19.0 | 29697 | 0.7610 | 0.9309 | | 0.0 | 20.0 | 31260 | 0.7640 | 0.9305 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3