--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - imdb metrics: - accuracy model-index: - name: N_distilbert_imdb_padding80model results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.92964 --- # N_distilbert_imdb_padding80model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.7459 - Accuracy: 0.9296 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2421 | 1.0 | 1563 | 0.2031 | 0.9236 | | 0.1775 | 2.0 | 3126 | 0.2252 | 0.9267 | | 0.1171 | 3.0 | 4689 | 0.2886 | 0.9266 | | 0.0694 | 4.0 | 6252 | 0.3525 | 0.9276 | | 0.0479 | 5.0 | 7815 | 0.4599 | 0.9197 | | 0.0401 | 6.0 | 9378 | 0.5028 | 0.9204 | | 0.0333 | 7.0 | 10941 | 0.5221 | 0.9242 | | 0.028 | 8.0 | 12504 | 0.5112 | 0.9247 | | 0.0219 | 9.0 | 14067 | 0.5318 | 0.9273 | | 0.0176 | 10.0 | 15630 | 0.6407 | 0.9206 | | 0.0145 | 11.0 | 17193 | 0.5774 | 0.9280 | | 0.0107 | 12.0 | 18756 | 0.6352 | 0.9236 | | 0.0087 | 13.0 | 20319 | 0.6393 | 0.9293 | | 0.0093 | 14.0 | 21882 | 0.6113 | 0.9297 | | 0.0039 | 15.0 | 23445 | 0.6722 | 0.9304 | | 0.0045 | 16.0 | 25008 | 0.6754 | 0.9295 | | 0.0001 | 17.0 | 26571 | 0.7190 | 0.9295 | | 0.0003 | 18.0 | 28134 | 0.7310 | 0.9301 | | 0.0011 | 19.0 | 29697 | 0.7402 | 0.9297 | | 0.0017 | 20.0 | 31260 | 0.7459 | 0.9296 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3