File size: 2,836 Bytes
a4a63d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
---
license: mit
base_model: roberta-base
tags:
- generated_from_trainer
datasets:
- imdb
metrics:
- accuracy
model-index:
- name: N_roberta_imdb_padding40model
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: imdb
      type: imdb
      config: plain_text
      split: test
      args: plain_text
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.94952
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# N_roberta_imdb_padding40model

This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4922
- Accuracy: 0.9495

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.2081        | 1.0   | 1563  | 0.2432          | 0.9283   |
| 0.1726        | 2.0   | 3126  | 0.1724          | 0.9493   |
| 0.114         | 3.0   | 4689  | 0.2842          | 0.9384   |
| 0.0767        | 4.0   | 6252  | 0.2583          | 0.9463   |
| 0.0552        | 5.0   | 7815  | 0.3703          | 0.9420   |
| 0.0357        | 6.0   | 9378  | 0.3342          | 0.9386   |
| 0.0318        | 7.0   | 10941 | 0.3284          | 0.9462   |
| 0.0316        | 8.0   | 12504 | 0.4194          | 0.9410   |
| 0.0149        | 9.0   | 14067 | 0.4083          | 0.9483   |
| 0.0175        | 10.0  | 15630 | 0.4237          | 0.9468   |
| 0.0151        | 11.0  | 17193 | 0.4459          | 0.9457   |
| 0.0113        | 12.0  | 18756 | 0.4569          | 0.9478   |
| 0.0061        | 13.0  | 20319 | 0.4325          | 0.9482   |
| 0.0034        | 14.0  | 21882 | 0.5188          | 0.9472   |
| 0.0059        | 15.0  | 23445 | 0.4740          | 0.9484   |
| 0.0078        | 16.0  | 25008 | 0.4421          | 0.9485   |
| 0.0           | 17.0  | 26571 | 0.4819          | 0.9493   |
| 0.0035        | 18.0  | 28134 | 0.4845          | 0.9492   |
| 0.0           | 19.0  | 29697 | 0.5065          | 0.9486   |
| 0.0013        | 20.0  | 31260 | 0.4922          | 0.9495   |


### Framework versions

- Transformers 4.33.2
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.13.3