File size: 2,875 Bytes
6ae2573 54085c8 6ae2573 54085c8 6ae2573 54085c8 6ae2573 54085c8 6ae2573 54085c8 6ae2573 54085c8 4a69d67 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
datasets:
- imdb
metrics:
- accuracy
model-index:
- name: distilbert_imdb_padding0model
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: imdb
type: imdb
config: plain_text
split: test
args: plain_text
metrics:
- name: Accuracy
type: accuracy
value: 0.9328
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert_imdb_padding0model
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7541
- Accuracy: 0.9328
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.2321 | 1.0 | 1563 | 0.2211 | 0.9195 |
| 0.1748 | 2.0 | 3126 | 0.2320 | 0.9289 |
| 0.1084 | 3.0 | 4689 | 0.3254 | 0.9251 |
| 0.0715 | 4.0 | 6252 | 0.3303 | 0.9267 |
| 0.0433 | 5.0 | 7815 | 0.4353 | 0.9276 |
| 0.0335 | 6.0 | 9378 | 0.4458 | 0.9302 |
| 0.033 | 7.0 | 10941 | 0.4704 | 0.9282 |
| 0.0171 | 8.0 | 12504 | 0.5326 | 0.9281 |
| 0.0147 | 9.0 | 14067 | 0.5456 | 0.9292 |
| 0.0099 | 10.0 | 15630 | 0.6037 | 0.9274 |
| 0.0166 | 11.0 | 17193 | 0.5636 | 0.9286 |
| 0.0101 | 12.0 | 18756 | 0.6355 | 0.9276 |
| 0.0086 | 13.0 | 20319 | 0.6102 | 0.9288 |
| 0.0068 | 14.0 | 21882 | 0.6305 | 0.9331 |
| 0.005 | 15.0 | 23445 | 0.6391 | 0.9293 |
| 0.0009 | 16.0 | 25008 | 0.7000 | 0.9339 |
| 0.0035 | 17.0 | 26571 | 0.7205 | 0.9325 |
| 0.0017 | 18.0 | 28134 | 0.7649 | 0.9294 |
| 0.0007 | 19.0 | 29697 | 0.7745 | 0.9329 |
| 0.0023 | 20.0 | 31260 | 0.7541 | 0.9328 |
### Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.13.3
|