--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - imdb metrics: - accuracy model-index: - name: distilbert_imdb_padding60model results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.9334 --- # distilbert_imdb_padding60model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.7595 - Accuracy: 0.9334 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2373 | 1.0 | 1563 | 0.2252 | 0.9165 | | 0.1765 | 2.0 | 3126 | 0.2079 | 0.9274 | | 0.1139 | 3.0 | 4689 | 0.2956 | 0.9302 | | 0.0677 | 4.0 | 6252 | 0.3145 | 0.9261 | | 0.0337 | 5.0 | 7815 | 0.4048 | 0.9280 | | 0.0359 | 6.0 | 9378 | 0.4836 | 0.9296 | | 0.0229 | 7.0 | 10941 | 0.5211 | 0.9228 | | 0.0203 | 8.0 | 12504 | 0.5524 | 0.9280 | | 0.015 | 9.0 | 14067 | 0.5274 | 0.9291 | | 0.0214 | 10.0 | 15630 | 0.5787 | 0.9266 | | 0.0134 | 11.0 | 17193 | 0.5935 | 0.9299 | | 0.0075 | 12.0 | 18756 | 0.6236 | 0.9306 | | 0.0054 | 13.0 | 20319 | 0.6758 | 0.9279 | | 0.0057 | 14.0 | 21882 | 0.6801 | 0.9301 | | 0.0066 | 15.0 | 23445 | 0.7197 | 0.929 | | 0.0021 | 16.0 | 25008 | 0.7070 | 0.9321 | | 0.0014 | 17.0 | 26571 | 0.6949 | 0.9320 | | 0.0001 | 18.0 | 28134 | 0.7482 | 0.9319 | | 0.0014 | 19.0 | 29697 | 0.7587 | 0.9334 | | 0.0004 | 20.0 | 31260 | 0.7595 | 0.9334 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3