--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - imdb metrics: - accuracy model-index: - name: distilbert_imdb_padding80model results: - task: name: Text Classification type: text-classification dataset: name: imdb type: imdb config: plain_text split: test args: plain_text metrics: - name: Accuracy type: accuracy value: 0.92892 --- # distilbert_imdb_padding80model This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset. It achieves the following results on the evaluation set: - Loss: 0.7659 - Accuracy: 0.9289 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.2429 | 1.0 | 1563 | 0.2099 | 0.923 | | 0.1777 | 2.0 | 3126 | 0.2439 | 0.9231 | | 0.116 | 3.0 | 4689 | 0.3167 | 0.9248 | | 0.0668 | 4.0 | 6252 | 0.3296 | 0.9229 | | 0.0448 | 5.0 | 7815 | 0.4632 | 0.9216 | | 0.0326 | 6.0 | 9378 | 0.5330 | 0.9122 | | 0.0275 | 7.0 | 10941 | 0.5065 | 0.9242 | | 0.0187 | 8.0 | 12504 | 0.5384 | 0.9238 | | 0.0225 | 9.0 | 14067 | 0.4589 | 0.9260 | | 0.0069 | 10.0 | 15630 | 0.6072 | 0.9269 | | 0.0176 | 11.0 | 17193 | 0.5474 | 0.9269 | | 0.0106 | 12.0 | 18756 | 0.6218 | 0.9272 | | 0.0068 | 13.0 | 20319 | 0.6779 | 0.9263 | | 0.0068 | 14.0 | 21882 | 0.6249 | 0.9263 | | 0.0005 | 15.0 | 23445 | 0.6835 | 0.929 | | 0.0014 | 16.0 | 25008 | 0.7223 | 0.929 | | 0.002 | 17.0 | 26571 | 0.7401 | 0.9281 | | 0.0011 | 18.0 | 28134 | 0.7324 | 0.9293 | | 0.0 | 19.0 | 29697 | 0.7678 | 0.9289 | | 0.0002 | 20.0 | 31260 | 0.7659 | 0.9289 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3