File size: 19,264 Bytes
b8783f0 1ef9cf4 b8783f0 ba2c463 b8783f0 c46a231 b8783f0 191e0ca b8783f0 1ef9cf4 b8783f0 191e0ca b8783f0 191e0ca b8783f0 191e0ca b8783f0 191e0ca b8783f0 1ef9cf4 7d61d54 1ef9cf4 191e0ca b8783f0 e43c9f6 b8783f0 e43c9f6 b8783f0 e43c9f6 b8783f0 e43c9f6 b8783f0 e43c9f6 b8783f0 e43c9f6 b8783f0 e43c9f6 b8783f0 e43c9f6 b8783f0 e43c9f6 b8783f0 e43c9f6 b8783f0 e43c9f6 b8783f0 e43c9f6 b8783f0 ff7efd4 b8783f0 e43c9f6 b8783f0 e43c9f6 b8783f0 1d08bf0 b8783f0 441be35 b8783f0 441be35 b8783f0 a6c9d52 b8783f0 a6c9d52 b8783f0 a6c9d52 b8783f0 a6c9d52 b8783f0 a6c9d52 b8783f0 441be35 1d08bf0 b8783f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 |
---
language:
- en
- fr
- de
- es
- pt
- it
- ja
- ko
- ru
- zh
- ar
- fa
- id
- ms
- ne
- pl
- ro
- sr
- sv
- tr
- uk
- vi
- hi
- bn
license: apache-2.0
library_name: vllm
base_model:
- mistralai/Mistral-Small-3.1-24B-Instruct-2503
pipeline_tag: image-text-to-text
tags:
- neuralmagic
- redhat
- llmcompressor
- quantized
- int4
---
<h1 style="display: flex; align-items: center; gap: 10px; margin: 0;">
Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16
<img src="https://www.redhat.com/rhdc/managed-files/Catalog-Validated_model_0.png" alt="Model Icon" width="40" style="margin: 0; padding: 0;" />
</h1>
<a href="https://www.redhat.com/en/products/ai/validated-models" target="_blank" style="margin: 0; padding: 0;">
<img src="https://www.redhat.com/rhdc/managed-files/Validated_badge-Dark.png" alt="Validated Badge" width="250" style="margin: 0; padding: 0;" />
</a>
## Model Overview
- **Model Architecture:** Mistral3ForConditionalGeneration
- **Input:** Text / Image
- **Output:** Text
- **Model Optimizations:**
- **Weight quantization:** INT4
- **Intended Use Cases:** It is ideal for:
- Fast-response conversational agents.
- Low-latency function calling.
- Subject matter experts via fine-tuning.
- Local inference for hobbyists and organizations handling sensitive data.
- Programming and math reasoning.
- Long document understanding.
- Visual understanding.
- **Out-of-scope:** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in languages not officially supported by the model.
- **Release Date:** 04/15/2025
- **Version:** 1.0
- **Model Developers:** Red Hat (Neural Magic)
### Model Optimizations
This model was obtained by quantizing the weights of [Mistral-Small-3.1-24B-Instruct-2503](https://huggingface.co/mistralai/Mistral-Small-3.1-24B-Instruct-2503) to INT4 data type.
This optimization reduces the number of bits per parameter from 16 to 4, reducing the disk size and GPU memory requirements by approximately 75%.
Only the weights of the linear operators within transformers blocks are quantized.
Weights are quantized using a symmetric per-group scheme, with group size 128.
The [GPTQ](https://arxiv.org/abs/2210.17323) algorithm is applied for quantization, as implemented in the [llm-compressor](https://github.com/vllm-project/llm-compressor) library.
## Deployment
This model can be deployed efficiently using the [vLLM](https://docs.vllm.ai/en/latest/) backend, as shown in the example below.
```python
from vllm import LLM, SamplingParams
from transformers import AutoProcessor
model_id = "RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16"
number_gpus = 1
sampling_params = SamplingParams(temperature=0.7, top_p=0.8, max_tokens=256)
processor = AutoProcessor.from_pretrained(model_id)
messages = [{"role": "user", "content": "Give me a short introduction to large language model."}]
prompts = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
llm = LLM(model=model_id, tensor_parallel_size=number_gpus)
outputs = llm.generate(prompts, sampling_params)
generated_text = outputs[0].outputs[0].text
print(generated_text)
```
vLLM also supports OpenAI-compatible serving. See the [documentation](https://docs.vllm.ai/en/latest/) for more details.
<details>
<summary>Deploy on <strong>Red Hat AI Inference Server</strong></summary>
```bash
podman run --rm -it --device nvidia.com/gpu=all -p 8000:8000 \
--ipc=host \
--env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
--env "HF_HUB_OFFLINE=0" -v ~/.cache/vllm:/home/vllm/.cache \
--name=vllm \
registry.access.redhat.com/rhaiis/rh-vllm-cuda \
vllm serve \
--tensor-parallel-size 8 \
--max-model-len 32768 \
--enforce-eager --model RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16
```
See [Red Hat AI Inference Server documentation](https://docs.redhat.com/en/documentation/red_hat_ai_inference_server/) for more details.
</details>
<details>
<summary>Deploy on <strong>Red Hat Enterprise Linux AI</strong></summary>
```bash
# Download model from Red Hat Registry via docker
# Note: This downloads the model to ~/.cache/instructlab/models unless --model-dir is specified.
ilab model download --repository docker://registry.redhat.io/rhelai1/mistral-small-3-1-24b-instruct-2503-quantized-w4a16:1.5
```
```bash
# Serve model via ilab
ilab model serve --model-path ~/.cache/instructlab/models/mistral-small-3-1-24b-instruct-2503-quantized-w4a16
# Chat with model
ilab model chat --model ~/.cache/instructlab/models/mistral-small-3-1-24b-instruct-2503-quantized-w4a16
```
See [Red Hat Enterprise Linux AI documentation](https://docs.redhat.com/en/documentation/red_hat_enterprise_linux_ai/1.4) for more details.
</details>
<details>
<summary>Deploy on <strong>Red Hat Openshift AI</strong></summary>
```python
# Setting up vllm server with ServingRuntime
# Save as: vllm-servingruntime.yaml
apiVersion: serving.kserve.io/v1alpha1
kind: ServingRuntime
metadata:
name: vllm-cuda-runtime # OPTIONAL CHANGE: set a unique name
annotations:
openshift.io/display-name: vLLM NVIDIA GPU ServingRuntime for KServe
opendatahub.io/recommended-accelerators: '["nvidia.com/gpu"]'
labels:
opendatahub.io/dashboard: 'true'
spec:
annotations:
prometheus.io/port: '8080'
prometheus.io/path: '/metrics'
multiModel: false
supportedModelFormats:
- autoSelect: true
name: vLLM
containers:
- name: kserve-container
image: quay.io/modh/vllm:rhoai-2.20-cuda # CHANGE if needed. If AMD: quay.io/modh/vllm:rhoai-2.20-rocm
command:
- python
- -m
- vllm.entrypoints.openai.api_server
args:
- "--port=8080"
- "--model=/mnt/models"
- "--served-model-name={{.Name}}"
env:
- name: HF_HOME
value: /tmp/hf_home
ports:
- containerPort: 8080
protocol: TCP
```
```python
# Attach model to vllm server. This is an NVIDIA template
# Save as: inferenceservice.yaml
apiVersion: serving.kserve.io/v1beta1
kind: InferenceService
metadata:
annotations:
openshift.io/display-name: mistral-small-3-1-24b-instruct-2503-quantized-w4a16 # OPTIONAL CHANGE
serving.kserve.io/deploymentMode: RawDeployment
name: mistral-small-3-1-24b-instruct-2503-quantized-w4a16 # specify model name. This value will be used to invoke the model in the payload
labels:
opendatahub.io/dashboard: 'true'
spec:
predictor:
maxReplicas: 1
minReplicas: 1
model:
modelFormat:
name: vLLM
name: ''
resources:
limits:
cpu: '2' # this is model specific
memory: 8Gi # this is model specific
nvidia.com/gpu: '1' # this is accelerator specific
requests: # same comment for this block
cpu: '1'
memory: 4Gi
nvidia.com/gpu: '1'
runtime: vllm-cuda-runtime # must match the ServingRuntime name above
storageUri: oci://registry.redhat.io/rhelai1/modelcar-mistral-small-3-1-24b-instruct-2503-quantized-w4a16:1.5
tolerations:
- effect: NoSchedule
key: nvidia.com/gpu
operator: Exists
```
```bash
# make sure first to be in the project where you want to deploy the model
# oc project <project-name>
# apply both resources to run model
# Apply the ServingRuntime
oc apply -f vllm-servingruntime.yaml
# Apply the InferenceService
oc apply -f qwen-inferenceservice.yaml
```
```python
# Replace <inference-service-name> and <cluster-ingress-domain> below:
# - Run `oc get inferenceservice` to find your URL if unsure.
# Call the server using curl:
curl https://<inference-service-name>-predictor-default.<domain>/v1/chat/completions
-H "Content-Type: application/json" \
-d '{
"model": "mistral-small-3-1-24b-instruct-2503-quantized-w4a16",
"stream": true,
"stream_options": {
"include_usage": true
},
"max_tokens": 1,
"messages": [
{
"role": "user",
"content": "How can a bee fly when its wings are so small?"
}
]
}'
```
See [Red Hat Openshift AI documentation](https://docs.redhat.com/en/documentation/red_hat_openshift_ai/2025) for more details.
</details>
## Creation
<details>
<summary>Creation details</summary>
This model was created with [llm-compressor](https://github.com/vllm-project/llm-compressor) by running the code snippet below.
```python
from transformers import AutoProcessor
from llmcompressor.modifiers.quantization import GPTQModifier
from llmcompressor.transformers import oneshot
from llmcompressor.transformers.tracing import TraceableMistral3ForConditionalGeneration
from datasets import load_dataset, interleave_datasets
from PIL import Image
import io
# Load model
model_stub = "mistralai/Mistral-Small-3.1-24B-Instruct-2503"
model_name = model_stub.split("/")[-1]
num_text_samples = 1024
num_vision_samples = 1024
max_seq_len = 8192
processor = AutoProcessor.from_pretrained(model_stub)
model = TraceableMistral3ForConditionalGeneration.from_pretrained(
model_stub,
device_map="auto",
torch_dtype="auto",
)
# Text-only data subset
def preprocess_text(example):
input = {
"text": processor.apply_chat_template(
example["messages"],
add_generation_prompt=False,
),
"images": None,
}
tokenized_input = processor(**input, max_length=max_seq_len, truncation=True)
tokenized_input["pixel_values"] = tokenized_input.get("pixel_values", None)
tokenized_input["image_sizes"] = tokenized_input.get("image_sizes", None)
return tokenized_input
dst = load_dataset("neuralmagic/calibration", name="LLM", split="train").select(range(num_text_samples))
dst = dst.map(preprocess_text, remove_columns=dst.column_names)
# Text + vision data subset
def preprocess_vision(example):
messages = []
image = None
for message in example["messages"]:
message_content = []
for content in message["content"]:
if content["type"] == "text":
message_content.append({"type": "text", "text": content["text"]})
else:
message_content.append({"type": "image"})
image = Image.open(io.BytesIO(content["image"]))
messages.append(
{
"role": message["role"],
"content": message_content,
}
)
input = {
"text": processor.apply_chat_template(
messages,
add_generation_prompt=False,
),
"images": image,
}
tokenized_input = processor(**input, max_length=max_seq_len, truncation=True)
tokenized_input["pixel_values"] = tokenized_input.get("pixel_values", None)
tokenized_input["image_sizes"] = tokenized_input.get("image_sizes", None)
return tokenized_input
dsv = load_dataset("neuralmagic/calibration", name="VLM", split="train").select(range(num_vision_samples))
dsv = dsv.map(preprocess_vision, remove_columns=dsv.column_names)
# Interleave subsets
ds = interleave_datasets((dsv, dst))
# Configure the quantization algorithm and scheme
recipe = GPTQModifier(
ignore=["language_model.lm_head", "re:vision_tower.*", "re:multi_modal_projector.*"],
sequential_targets=["MistralDecoderLayer"],
dampening_frac=0.01,
targets="Linear",
scheme="W4A16",
)
# Define data collator
def data_collator(batch):
import torch
assert len(batch) == 1
collated = {}
for k, v in batch[0].items():
if v is None:
continue
if k == "input_ids":
collated[k] = torch.LongTensor(v)
elif k == "pixel_values":
collated[k] = torch.tensor(v, dtype=torch.bfloat16)
else:
collated[k] = torch.tensor(v)
return collated
# Apply quantization
oneshot(
model=model,
dataset=ds,
recipe=recipe,
max_seq_length=max_seq_len,
data_collator=data_collator,
num_calibration_samples=num_text_samples + num_vision_samples,
)
# Save to disk in compressed-tensors format
save_path = model_name + "-quantized.w4a16"
model.save_pretrained(save_path)
processor.save_pretrained(save_path)
print(f"Model and tokenizer saved to: {save_path}")
```
</details>
## Evaluation
The model was evaluated on the OpenLLM leaderboard tasks (version 1), MMLU-pro, GPQA, HumanEval and MBPP.
Non-coding tasks were evaluated with [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness), whereas coding tasks were evaluated with a fork of [evalplus](https://github.com/neuralmagic/evalplus).
[vLLM](https://docs.vllm.ai/en/stable/) is used as the engine in all cases.
<details>
<summary>Evaluation details</summary>
**MMLU**
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
--tasks mmlu \
--num_fewshot 5 \
--apply_chat_template\
--fewshot_as_multiturn \
--batch_size auto
```
**ARC Challenge**
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
--tasks arc_challenge \
--num_fewshot 25 \
--apply_chat_template\
--fewshot_as_multiturn \
--batch_size auto
```
**GSM8k**
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.9,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
--tasks gsm8k \
--num_fewshot 8 \
--apply_chat_template\
--fewshot_as_multiturn \
--batch_size auto
```
**Hellaswag**
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
--tasks hellaswag \
--num_fewshot 10 \
--apply_chat_template\
--fewshot_as_multiturn \
--batch_size auto
```
**Winogrande**
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
--tasks winogrande \
--num_fewshot 5 \
--apply_chat_template\
--fewshot_as_multiturn \
--batch_size auto
```
**TruthfulQA**
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
--tasks truthfulqa \
--num_fewshot 0 \
--apply_chat_template\
--batch_size auto
```
**MMLU-pro**
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.5,max_model_len=8192,enable_chunk_prefill=True,tensor_parallel_size=2 \
--tasks mmlu_pro \
--num_fewshot 5 \
--apply_chat_template\
--fewshot_as_multiturn \
--batch_size auto
```
**MMMU**
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.9,max_images=8,enable_chunk_prefill=True,tensor_parallel_size=2 \
--tasks mmmu_val \
--apply_chat_template\
--batch_size auto
```
**ChartQA**
```
lm_eval \
--model vllm \
--model_args pretrained="RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16",dtype=auto,gpu_memory_utilization=0.9,max_images=8,enable_chunk_prefill=True,tensor_parallel_size=2 \
--tasks chartqa \
--apply_chat_template\
--batch_size auto
```
**Coding**
The commands below can be used for mbpp by simply replacing the dataset name.
*Generation*
```
python3 codegen/generate.py \
--model RedHatAI/Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16 \
--bs 16 \
--temperature 0.2 \
--n_samples 50 \
--root "." \
--dataset humaneval
```
*Sanitization*
```
python3 evalplus/sanitize.py \
humaneval/RedHatAI--Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16_vllm_temp_0.2
```
*Evaluation*
```
evalplus.evaluate \
--dataset humaneval \
--samples humaneval/RedHatAI--Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16_vllm_temp_0.2-sanitized
```
</details>
### Accuracy
<table>
<tr>
<th>Category
</th>
<th>Benchmark
</th>
<th>Mistral-Small-3.1-24B-Instruct-2503
</th>
<th>Mistral-Small-3.1-24B-Instruct-2503-quantized.w4a16<br>(this model)
</th>
<th>Recovery
</th>
</tr>
<tr>
<td rowspan="7" ><strong>OpenLLM v1</strong>
</td>
<td>MMLU (5-shot)
</td>
<td>80.67
</td>
<td>79.74
</td>
<td>98.9%
</td>
</tr>
<tr>
<td>ARC Challenge (25-shot)
</td>
<td>72.78
</td>
<td>72.18
</td>
<td>99.2%
</td>
</tr>
<tr>
<td>GSM-8K (5-shot, strict-match)
</td>
<td>58.68
</td>
<td>59.59
</td>
<td>101.6%
</td>
</tr>
<tr>
<td>Hellaswag (10-shot)
</td>
<td>83.70
</td>
<td>83.25
</td>
<td>99.5%
</td>
</tr>
<tr>
<td>Winogrande (5-shot)
</td>
<td>83.74
</td>
<td>83.43
</td>
<td>99.6%
</td>
</tr>
<tr>
<td>TruthfulQA (0-shot, mc2)
</td>
<td>70.62
</td>
<td>69.56
</td>
<td>98.5%
</td>
</tr>
<tr>
<td><strong>Average</strong>
</td>
<td><strong>75.03</strong>
</td>
<td><strong>74.63</strong>
</td>
<td><strong>99.5%</strong>
</td>
</tr>
<tr>
<td rowspan="3" ><strong></strong>
</td>
<td>MMLU-Pro (5-shot)
</td>
<td>67.25
</td>
<td>66.56
</td>
<td>99.0%
</td>
</tr>
<tr>
<td>GPQA CoT main (5-shot)
</td>
<td>42.63
</td>
<td>47.10
</td>
<td>110.5%
</td>
</tr>
<tr>
<td>GPQA CoT diamond (5-shot)
</td>
<td>45.96
</td>
<td>44.95
</td>
<td>97.80%
</td>
</tr>
<tr>
<td rowspan="4" ><strong>Coding</strong>
</td>
<td>HumanEval pass@1
</td>
<td>84.70
</td>
<td>84.60
</td>
<td>99.9%
</td>
</tr>
<tr>
<td>HumanEval+ pass@1
</td>
<td>79.50
</td>
<td>79.90
</td>
<td>100.5%
</td>
</tr>
<tr>
<td>MBPP pass@1
</td>
<td>71.10
</td>
<td>70.10
</td>
<td>98.6%
</td>
</tr>
<tr>
<td>MBPP+ pass@1
</td>
<td>60.60
</td>
<td>60.70
</td>
<td>100.2%
</td>
</tr>
<tr>
<td rowspan="2" ><strong>Vision</strong>
</td>
<td>MMMU (0-shot)
</td>
<td>52.11
</td>
<td>50.11
</td>
<td>96.2%
</td>
</tr>
<tr>
<td>ChartQA (0-shot)
</td>
<td>81.36
</td>
<td>80.92
</td>
<td>99.5%
</td>
</tr>
<tr>
</table>
|