Upload folder using huggingface_hub
Browse files- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/config.json +30 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/generation_config.json +10 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/latest +1 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/model-00001-of-00006.safetensors +3 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/model-00002-of-00006.safetensors +3 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/model-00003-of-00006.safetensors +3 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/model-00004-of-00006.safetensors +3 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/model-00005-of-00006.safetensors +3 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/model-00006-of-00006.safetensors +3 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/model.safetensors.index.json +370 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/rng_state_0.pth +3 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/rng_state_1.pth +3 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/rng_state_2.pth +3 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/rng_state_3.pth +3 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/rng_state_4.pth +3 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/rng_state_5.pth +3 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/rng_state_6.pth +3 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/rng_state_7.pth +3 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/scheduler.pt +3 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/special_tokens_map.json +24 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/tokenizer.json +0 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/tokenizer.model +3 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/tokenizer_config.json +43 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/trainer_state.json +2224 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/training_args.bin +3 -0
- uccix_v2_instruct_191224_lr1e-4/checkpoint-624/zero_to_fp32.py +592 -0
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/config.json
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "/mnt/data/tungtran/output_model/irish_llama2_data_v3/checkpoint-2200",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"LlamaForCausalLM"
|
| 5 |
+
],
|
| 6 |
+
"attention_bias": false,
|
| 7 |
+
"attention_dropout": 0.0,
|
| 8 |
+
"bos_token_id": 1,
|
| 9 |
+
"eos_token_id": 2,
|
| 10 |
+
"head_dim": 128,
|
| 11 |
+
"hidden_act": "silu",
|
| 12 |
+
"hidden_size": 5120,
|
| 13 |
+
"initializer_range": 0.02,
|
| 14 |
+
"intermediate_size": 13824,
|
| 15 |
+
"max_position_embeddings": 4096,
|
| 16 |
+
"mlp_bias": false,
|
| 17 |
+
"model_type": "llama",
|
| 18 |
+
"num_attention_heads": 40,
|
| 19 |
+
"num_hidden_layers": 40,
|
| 20 |
+
"num_key_value_heads": 40,
|
| 21 |
+
"pretraining_tp": 1,
|
| 22 |
+
"rms_norm_eps": 1e-05,
|
| 23 |
+
"rope_scaling": null,
|
| 24 |
+
"rope_theta": 10000.0,
|
| 25 |
+
"tie_word_embeddings": false,
|
| 26 |
+
"torch_dtype": "bfloat16",
|
| 27 |
+
"transformers_version": "4.46.3",
|
| 28 |
+
"use_cache": true,
|
| 29 |
+
"vocab_size": 35483
|
| 30 |
+
}
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/generation_config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 1,
|
| 3 |
+
"do_sample": true,
|
| 4 |
+
"eos_token_id": 2,
|
| 5 |
+
"max_length": 4096,
|
| 6 |
+
"pad_token_id": 0,
|
| 7 |
+
"temperature": 0.6,
|
| 8 |
+
"top_p": 0.9,
|
| 9 |
+
"transformers_version": "4.46.3"
|
| 10 |
+
}
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/latest
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
global_step624
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/model-00001-of-00006.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1b82608b73af1630f7ec9af236bbbfe1947b0be2c00fbc0954923f672569ce0a
|
| 3 |
+
size 4961502800
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/model-00002-of-00006.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f8a71801cee916a77a0c67ee2372e687e7110fe7340ba71b084e8978d353db54
|
| 3 |
+
size 4970422232
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/model-00003-of-00006.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a6aaa9c6184e45f53efb72aaaa8112127b9772c7af87f98a7e1cd6d9c4ea3c08
|
| 3 |
+
size 4881272584
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/model-00004-of-00006.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:35dfda0dd3e0ae4c7d66d066bd68333dee7b04445da805c5d32ea958c7ee87cb
|
| 3 |
+
size 4933722216
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/model-00005-of-00006.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:025d430bc53976d95aacaa1616ee456009fd541885bd7830cf9051ae8876e4bf
|
| 3 |
+
size 4933722208
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/model-00006-of-00006.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8d11f72a32e119049321b1d8d9ab06c8de75936fdb0d16f1983d792d416ff592
|
| 3 |
+
size 1422460712
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/model.safetensors.index.json
ADDED
|
@@ -0,0 +1,370 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 26103060480
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"lm_head.weight": "model-00006-of-00006.safetensors",
|
| 7 |
+
"model.embed_tokens.weight": "model-00001-of-00006.safetensors",
|
| 8 |
+
"model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 9 |
+
"model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
| 10 |
+
"model.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
| 11 |
+
"model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
| 12 |
+
"model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 13 |
+
"model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
| 14 |
+
"model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
| 15 |
+
"model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
| 16 |
+
"model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
| 17 |
+
"model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 18 |
+
"model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
| 19 |
+
"model.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
| 20 |
+
"model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
| 21 |
+
"model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 22 |
+
"model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
| 23 |
+
"model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
| 24 |
+
"model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
| 25 |
+
"model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
| 26 |
+
"model.layers.10.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 27 |
+
"model.layers.10.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
| 28 |
+
"model.layers.10.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
| 29 |
+
"model.layers.10.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
| 30 |
+
"model.layers.10.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 31 |
+
"model.layers.10.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
| 32 |
+
"model.layers.10.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
| 33 |
+
"model.layers.10.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
| 34 |
+
"model.layers.10.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
| 35 |
+
"model.layers.11.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 36 |
+
"model.layers.11.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
| 37 |
+
"model.layers.11.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
| 38 |
+
"model.layers.11.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
| 39 |
+
"model.layers.11.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 40 |
+
"model.layers.11.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
| 41 |
+
"model.layers.11.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
| 42 |
+
"model.layers.11.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
| 43 |
+
"model.layers.11.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
| 44 |
+
"model.layers.12.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 45 |
+
"model.layers.12.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
| 46 |
+
"model.layers.12.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
| 47 |
+
"model.layers.12.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
| 48 |
+
"model.layers.12.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 49 |
+
"model.layers.12.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
| 50 |
+
"model.layers.12.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
| 51 |
+
"model.layers.12.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
| 52 |
+
"model.layers.12.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
| 53 |
+
"model.layers.13.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 54 |
+
"model.layers.13.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
| 55 |
+
"model.layers.13.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
| 56 |
+
"model.layers.13.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
| 57 |
+
"model.layers.13.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 58 |
+
"model.layers.13.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
| 59 |
+
"model.layers.13.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
| 60 |
+
"model.layers.13.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
| 61 |
+
"model.layers.13.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
| 62 |
+
"model.layers.14.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 63 |
+
"model.layers.14.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
| 64 |
+
"model.layers.14.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
| 65 |
+
"model.layers.14.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
| 66 |
+
"model.layers.14.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 67 |
+
"model.layers.14.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
| 68 |
+
"model.layers.14.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
| 69 |
+
"model.layers.14.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
| 70 |
+
"model.layers.14.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
| 71 |
+
"model.layers.15.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 72 |
+
"model.layers.15.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
| 73 |
+
"model.layers.15.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
| 74 |
+
"model.layers.15.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
| 75 |
+
"model.layers.15.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 76 |
+
"model.layers.15.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
| 77 |
+
"model.layers.15.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
| 78 |
+
"model.layers.15.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
| 79 |
+
"model.layers.15.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
| 80 |
+
"model.layers.16.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 81 |
+
"model.layers.16.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
| 82 |
+
"model.layers.16.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
| 83 |
+
"model.layers.16.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
| 84 |
+
"model.layers.16.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 85 |
+
"model.layers.16.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
| 86 |
+
"model.layers.16.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
| 87 |
+
"model.layers.16.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
| 88 |
+
"model.layers.16.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
| 89 |
+
"model.layers.17.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 90 |
+
"model.layers.17.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
| 91 |
+
"model.layers.17.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
| 92 |
+
"model.layers.17.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
| 93 |
+
"model.layers.17.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 94 |
+
"model.layers.17.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
| 95 |
+
"model.layers.17.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
| 96 |
+
"model.layers.17.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
| 97 |
+
"model.layers.17.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
| 98 |
+
"model.layers.18.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 99 |
+
"model.layers.18.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
| 100 |
+
"model.layers.18.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
| 101 |
+
"model.layers.18.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
| 102 |
+
"model.layers.18.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 103 |
+
"model.layers.18.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
| 104 |
+
"model.layers.18.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
| 105 |
+
"model.layers.18.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
| 106 |
+
"model.layers.18.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
| 107 |
+
"model.layers.19.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 108 |
+
"model.layers.19.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
| 109 |
+
"model.layers.19.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
| 110 |
+
"model.layers.19.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
| 111 |
+
"model.layers.19.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 112 |
+
"model.layers.19.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
| 113 |
+
"model.layers.19.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
| 114 |
+
"model.layers.19.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
| 115 |
+
"model.layers.19.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
| 116 |
+
"model.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 117 |
+
"model.layers.2.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
| 118 |
+
"model.layers.2.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
| 119 |
+
"model.layers.2.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
| 120 |
+
"model.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 121 |
+
"model.layers.2.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
| 122 |
+
"model.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
| 123 |
+
"model.layers.2.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
| 124 |
+
"model.layers.2.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
| 125 |
+
"model.layers.20.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 126 |
+
"model.layers.20.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
| 127 |
+
"model.layers.20.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
| 128 |
+
"model.layers.20.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
| 129 |
+
"model.layers.20.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 130 |
+
"model.layers.20.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
| 131 |
+
"model.layers.20.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
| 132 |
+
"model.layers.20.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
| 133 |
+
"model.layers.20.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
| 134 |
+
"model.layers.21.input_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 135 |
+
"model.layers.21.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
|
| 136 |
+
"model.layers.21.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
| 137 |
+
"model.layers.21.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
| 138 |
+
"model.layers.21.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
|
| 139 |
+
"model.layers.21.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
| 140 |
+
"model.layers.21.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
| 141 |
+
"model.layers.21.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
| 142 |
+
"model.layers.21.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
| 143 |
+
"model.layers.22.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 144 |
+
"model.layers.22.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
| 145 |
+
"model.layers.22.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
|
| 146 |
+
"model.layers.22.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
|
| 147 |
+
"model.layers.22.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 148 |
+
"model.layers.22.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
|
| 149 |
+
"model.layers.22.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
|
| 150 |
+
"model.layers.22.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
|
| 151 |
+
"model.layers.22.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
|
| 152 |
+
"model.layers.23.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 153 |
+
"model.layers.23.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
| 154 |
+
"model.layers.23.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
| 155 |
+
"model.layers.23.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
| 156 |
+
"model.layers.23.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 157 |
+
"model.layers.23.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
| 158 |
+
"model.layers.23.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
| 159 |
+
"model.layers.23.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
| 160 |
+
"model.layers.23.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
| 161 |
+
"model.layers.24.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 162 |
+
"model.layers.24.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
| 163 |
+
"model.layers.24.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
| 164 |
+
"model.layers.24.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
| 165 |
+
"model.layers.24.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 166 |
+
"model.layers.24.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
| 167 |
+
"model.layers.24.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
| 168 |
+
"model.layers.24.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
| 169 |
+
"model.layers.24.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
| 170 |
+
"model.layers.25.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 171 |
+
"model.layers.25.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
| 172 |
+
"model.layers.25.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
| 173 |
+
"model.layers.25.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
| 174 |
+
"model.layers.25.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 175 |
+
"model.layers.25.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
| 176 |
+
"model.layers.25.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
| 177 |
+
"model.layers.25.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
| 178 |
+
"model.layers.25.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
| 179 |
+
"model.layers.26.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 180 |
+
"model.layers.26.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
| 181 |
+
"model.layers.26.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
| 182 |
+
"model.layers.26.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
| 183 |
+
"model.layers.26.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 184 |
+
"model.layers.26.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
| 185 |
+
"model.layers.26.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
| 186 |
+
"model.layers.26.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
| 187 |
+
"model.layers.26.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
| 188 |
+
"model.layers.27.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 189 |
+
"model.layers.27.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
| 190 |
+
"model.layers.27.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
| 191 |
+
"model.layers.27.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
| 192 |
+
"model.layers.27.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 193 |
+
"model.layers.27.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
| 194 |
+
"model.layers.27.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
| 195 |
+
"model.layers.27.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
| 196 |
+
"model.layers.27.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
| 197 |
+
"model.layers.28.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 198 |
+
"model.layers.28.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
| 199 |
+
"model.layers.28.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
| 200 |
+
"model.layers.28.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
| 201 |
+
"model.layers.28.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 202 |
+
"model.layers.28.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
| 203 |
+
"model.layers.28.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
| 204 |
+
"model.layers.28.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
| 205 |
+
"model.layers.28.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
| 206 |
+
"model.layers.29.input_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 207 |
+
"model.layers.29.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
|
| 208 |
+
"model.layers.29.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
| 209 |
+
"model.layers.29.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
|
| 210 |
+
"model.layers.29.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
|
| 211 |
+
"model.layers.29.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
| 212 |
+
"model.layers.29.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
| 213 |
+
"model.layers.29.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
| 214 |
+
"model.layers.29.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
| 215 |
+
"model.layers.3.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 216 |
+
"model.layers.3.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
| 217 |
+
"model.layers.3.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
| 218 |
+
"model.layers.3.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
| 219 |
+
"model.layers.3.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 220 |
+
"model.layers.3.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
| 221 |
+
"model.layers.3.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
| 222 |
+
"model.layers.3.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
| 223 |
+
"model.layers.3.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
| 224 |
+
"model.layers.30.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 225 |
+
"model.layers.30.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
| 226 |
+
"model.layers.30.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
|
| 227 |
+
"model.layers.30.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
| 228 |
+
"model.layers.30.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 229 |
+
"model.layers.30.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
|
| 230 |
+
"model.layers.30.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
|
| 231 |
+
"model.layers.30.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
|
| 232 |
+
"model.layers.30.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
|
| 233 |
+
"model.layers.31.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 234 |
+
"model.layers.31.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
| 235 |
+
"model.layers.31.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
| 236 |
+
"model.layers.31.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
| 237 |
+
"model.layers.31.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 238 |
+
"model.layers.31.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
| 239 |
+
"model.layers.31.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
| 240 |
+
"model.layers.31.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
| 241 |
+
"model.layers.31.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
| 242 |
+
"model.layers.32.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 243 |
+
"model.layers.32.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
| 244 |
+
"model.layers.32.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
| 245 |
+
"model.layers.32.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
| 246 |
+
"model.layers.32.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 247 |
+
"model.layers.32.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
| 248 |
+
"model.layers.32.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
| 249 |
+
"model.layers.32.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
| 250 |
+
"model.layers.32.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
| 251 |
+
"model.layers.33.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 252 |
+
"model.layers.33.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
| 253 |
+
"model.layers.33.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
| 254 |
+
"model.layers.33.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
| 255 |
+
"model.layers.33.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 256 |
+
"model.layers.33.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
| 257 |
+
"model.layers.33.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
| 258 |
+
"model.layers.33.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
| 259 |
+
"model.layers.33.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
| 260 |
+
"model.layers.34.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 261 |
+
"model.layers.34.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
| 262 |
+
"model.layers.34.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
| 263 |
+
"model.layers.34.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
| 264 |
+
"model.layers.34.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 265 |
+
"model.layers.34.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
| 266 |
+
"model.layers.34.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
| 267 |
+
"model.layers.34.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
| 268 |
+
"model.layers.34.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
| 269 |
+
"model.layers.35.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 270 |
+
"model.layers.35.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
| 271 |
+
"model.layers.35.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
| 272 |
+
"model.layers.35.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
| 273 |
+
"model.layers.35.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 274 |
+
"model.layers.35.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
| 275 |
+
"model.layers.35.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
| 276 |
+
"model.layers.35.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
| 277 |
+
"model.layers.35.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
| 278 |
+
"model.layers.36.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 279 |
+
"model.layers.36.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
| 280 |
+
"model.layers.36.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
| 281 |
+
"model.layers.36.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
| 282 |
+
"model.layers.36.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 283 |
+
"model.layers.36.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
| 284 |
+
"model.layers.36.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
| 285 |
+
"model.layers.36.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
| 286 |
+
"model.layers.36.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
| 287 |
+
"model.layers.37.input_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 288 |
+
"model.layers.37.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
|
| 289 |
+
"model.layers.37.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
|
| 290 |
+
"model.layers.37.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
|
| 291 |
+
"model.layers.37.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
|
| 292 |
+
"model.layers.37.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
| 293 |
+
"model.layers.37.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
| 294 |
+
"model.layers.37.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
| 295 |
+
"model.layers.37.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
| 296 |
+
"model.layers.38.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
| 297 |
+
"model.layers.38.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
| 298 |
+
"model.layers.38.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
| 299 |
+
"model.layers.38.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
| 300 |
+
"model.layers.38.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
| 301 |
+
"model.layers.38.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
|
| 302 |
+
"model.layers.38.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
|
| 303 |
+
"model.layers.38.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
|
| 304 |
+
"model.layers.38.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
|
| 305 |
+
"model.layers.39.input_layernorm.weight": "model-00006-of-00006.safetensors",
|
| 306 |
+
"model.layers.39.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
|
| 307 |
+
"model.layers.39.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
|
| 308 |
+
"model.layers.39.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
|
| 309 |
+
"model.layers.39.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
|
| 310 |
+
"model.layers.39.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
|
| 311 |
+
"model.layers.39.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
|
| 312 |
+
"model.layers.39.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
|
| 313 |
+
"model.layers.39.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
|
| 314 |
+
"model.layers.4.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 315 |
+
"model.layers.4.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
| 316 |
+
"model.layers.4.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
| 317 |
+
"model.layers.4.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
| 318 |
+
"model.layers.4.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 319 |
+
"model.layers.4.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
| 320 |
+
"model.layers.4.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
| 321 |
+
"model.layers.4.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
| 322 |
+
"model.layers.4.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
| 323 |
+
"model.layers.5.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 324 |
+
"model.layers.5.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
| 325 |
+
"model.layers.5.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
| 326 |
+
"model.layers.5.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
| 327 |
+
"model.layers.5.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 328 |
+
"model.layers.5.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
| 329 |
+
"model.layers.5.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
| 330 |
+
"model.layers.5.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
| 331 |
+
"model.layers.5.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
| 332 |
+
"model.layers.6.input_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 333 |
+
"model.layers.6.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
|
| 334 |
+
"model.layers.6.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
|
| 335 |
+
"model.layers.6.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
|
| 336 |
+
"model.layers.6.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
|
| 337 |
+
"model.layers.6.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
| 338 |
+
"model.layers.6.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
|
| 339 |
+
"model.layers.6.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
| 340 |
+
"model.layers.6.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
| 341 |
+
"model.layers.7.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 342 |
+
"model.layers.7.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
| 343 |
+
"model.layers.7.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
| 344 |
+
"model.layers.7.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
| 345 |
+
"model.layers.7.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 346 |
+
"model.layers.7.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
|
| 347 |
+
"model.layers.7.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
| 348 |
+
"model.layers.7.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
|
| 349 |
+
"model.layers.7.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
|
| 350 |
+
"model.layers.8.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 351 |
+
"model.layers.8.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
| 352 |
+
"model.layers.8.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
| 353 |
+
"model.layers.8.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
| 354 |
+
"model.layers.8.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 355 |
+
"model.layers.8.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
| 356 |
+
"model.layers.8.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
| 357 |
+
"model.layers.8.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
| 358 |
+
"model.layers.8.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
| 359 |
+
"model.layers.9.input_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 360 |
+
"model.layers.9.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
|
| 361 |
+
"model.layers.9.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
|
| 362 |
+
"model.layers.9.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
|
| 363 |
+
"model.layers.9.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
|
| 364 |
+
"model.layers.9.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
|
| 365 |
+
"model.layers.9.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
|
| 366 |
+
"model.layers.9.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
|
| 367 |
+
"model.layers.9.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
|
| 368 |
+
"model.norm.weight": "model-00006-of-00006.safetensors"
|
| 369 |
+
}
|
| 370 |
+
}
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/rng_state_0.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:994d0a15e56df433a908d139d0b7caea59dbf6eb9e109191d3df763b430de5e7
|
| 3 |
+
size 15984
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/rng_state_1.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:480b1090b0e942f0994b95fcb4e2d0fd8effca2892f351ff441a70d9143b06a1
|
| 3 |
+
size 15984
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/rng_state_2.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f47f7d835b04b9510790640491f19ac37f3c0ee7f9720eea68e19f9a59f001be
|
| 3 |
+
size 15984
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/rng_state_3.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:179ed45c9b836e74595a5ee6959682569c15e17748ff046457798aba5998c99b
|
| 3 |
+
size 15984
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/rng_state_4.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:dc9918d8e550835f34df7f403c41b632703a623c1cce2bc21b2e28df805b1646
|
| 3 |
+
size 15984
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/rng_state_5.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e604fb5f644f8e388e5522212cf891a6f957b1a30b9e4a282a72c84bf68b615f
|
| 3 |
+
size 15984
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/rng_state_6.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5df3cd0dacde7148beb677c7d6a1bfc9b7a20b4c8e6818da432855cfe7ef80ac
|
| 3 |
+
size 15984
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/rng_state_7.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:00a4d1cc819f2b1045d34a95b3504b61b35cfdcc4ee5cba30b1708f4e3cfc599
|
| 3 |
+
size 15984
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/scheduler.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2b1e57508d3ad0384901652c36aeb55b1e17a89f8371cd3bd79dd388951df1b8
|
| 3 |
+
size 1064
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/special_tokens_map.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "</s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": "</s>",
|
| 17 |
+
"unk_token": {
|
| 18 |
+
"content": "<unk>",
|
| 19 |
+
"lstrip": false,
|
| 20 |
+
"normalized": false,
|
| 21 |
+
"rstrip": false,
|
| 22 |
+
"single_word": false
|
| 23 |
+
}
|
| 24 |
+
}
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/tokenizer.model
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3d1f5d0342153f3e3bbb37b2026ba64d0b25583df351345f87cd8b9a5658c2fb
|
| 3 |
+
size 558602
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/tokenizer_config.json
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": true,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"add_prefix_space": true,
|
| 5 |
+
"added_tokens_decoder": {
|
| 6 |
+
"0": {
|
| 7 |
+
"content": "<unk>",
|
| 8 |
+
"lstrip": false,
|
| 9 |
+
"normalized": false,
|
| 10 |
+
"rstrip": false,
|
| 11 |
+
"single_word": false,
|
| 12 |
+
"special": true
|
| 13 |
+
},
|
| 14 |
+
"1": {
|
| 15 |
+
"content": "<s>",
|
| 16 |
+
"lstrip": false,
|
| 17 |
+
"normalized": false,
|
| 18 |
+
"rstrip": false,
|
| 19 |
+
"single_word": false,
|
| 20 |
+
"special": true
|
| 21 |
+
},
|
| 22 |
+
"2": {
|
| 23 |
+
"content": "</s>",
|
| 24 |
+
"lstrip": false,
|
| 25 |
+
"normalized": false,
|
| 26 |
+
"rstrip": false,
|
| 27 |
+
"single_word": false,
|
| 28 |
+
"special": true
|
| 29 |
+
}
|
| 30 |
+
},
|
| 31 |
+
"bos_token": "<s>",
|
| 32 |
+
"chat_template": "{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% else %}{% set loop_messages = messages %}{% set system_message = 'You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe.' %}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if loop.index0 == 0 and system_message != false %}{% set content = '<<SYS>>\\n' + system_message + '\\n<</SYS>>\\n\\n' + message['content'] %}{% else %}{% set content = message['content'] %}{% endif %}{% if message['role'] == 'user' %}{{ bos_token + '[INST] ' + content.strip() + ' [/INST]' }}{% elif message['role'] == 'assistant' %}{{ ' ' + content.strip() + ' ' + eos_token }}{% endif %}{% endfor %}",
|
| 33 |
+
"clean_up_tokenization_spaces": false,
|
| 34 |
+
"eos_token": "</s>",
|
| 35 |
+
"legacy": true,
|
| 36 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 37 |
+
"pad_token": "</s>",
|
| 38 |
+
"sp_model_kwargs": {},
|
| 39 |
+
"spaces_between_special_tokens": false,
|
| 40 |
+
"tokenizer_class": "LlamaTokenizer",
|
| 41 |
+
"unk_token": "<unk>",
|
| 42 |
+
"use_default_system_prompt": false
|
| 43 |
+
}
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/trainer_state.json
ADDED
|
@@ -0,0 +1,2224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"best_metric": null,
|
| 3 |
+
"best_model_checkpoint": null,
|
| 4 |
+
"epoch": 3.9920127795527156,
|
| 5 |
+
"eval_steps": 500,
|
| 6 |
+
"global_step": 624,
|
| 7 |
+
"is_hyper_param_search": false,
|
| 8 |
+
"is_local_process_zero": true,
|
| 9 |
+
"is_world_process_zero": true,
|
| 10 |
+
"log_history": [
|
| 11 |
+
{
|
| 12 |
+
"epoch": 0.006389776357827476,
|
| 13 |
+
"grad_norm": 2.055291493195234,
|
| 14 |
+
"learning_rate": 3.125e-06,
|
| 15 |
+
"loss": 1.695,
|
| 16 |
+
"step": 1
|
| 17 |
+
},
|
| 18 |
+
{
|
| 19 |
+
"epoch": 0.012779552715654952,
|
| 20 |
+
"grad_norm": 2.0685233500522586,
|
| 21 |
+
"learning_rate": 6.25e-06,
|
| 22 |
+
"loss": 1.6748,
|
| 23 |
+
"step": 2
|
| 24 |
+
},
|
| 25 |
+
{
|
| 26 |
+
"epoch": 0.025559105431309903,
|
| 27 |
+
"grad_norm": 2.325735299422439,
|
| 28 |
+
"learning_rate": 1.25e-05,
|
| 29 |
+
"loss": 1.6964,
|
| 30 |
+
"step": 4
|
| 31 |
+
},
|
| 32 |
+
{
|
| 33 |
+
"epoch": 0.038338658146964855,
|
| 34 |
+
"grad_norm": 0.4729866673863026,
|
| 35 |
+
"learning_rate": 1.8750000000000002e-05,
|
| 36 |
+
"loss": 1.4325,
|
| 37 |
+
"step": 6
|
| 38 |
+
},
|
| 39 |
+
{
|
| 40 |
+
"epoch": 0.051118210862619806,
|
| 41 |
+
"grad_norm": 0.482620239981458,
|
| 42 |
+
"learning_rate": 2.5e-05,
|
| 43 |
+
"loss": 1.3874,
|
| 44 |
+
"step": 8
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"epoch": 0.06389776357827476,
|
| 48 |
+
"grad_norm": 1.6728433474079003,
|
| 49 |
+
"learning_rate": 3.125e-05,
|
| 50 |
+
"loss": 1.4689,
|
| 51 |
+
"step": 10
|
| 52 |
+
},
|
| 53 |
+
{
|
| 54 |
+
"epoch": 0.07667731629392971,
|
| 55 |
+
"grad_norm": 0.3405987431283081,
|
| 56 |
+
"learning_rate": 3.7500000000000003e-05,
|
| 57 |
+
"loss": 1.3127,
|
| 58 |
+
"step": 12
|
| 59 |
+
},
|
| 60 |
+
{
|
| 61 |
+
"epoch": 0.08945686900958466,
|
| 62 |
+
"grad_norm": 0.2323496464888272,
|
| 63 |
+
"learning_rate": 4.375e-05,
|
| 64 |
+
"loss": 1.2639,
|
| 65 |
+
"step": 14
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"epoch": 0.10223642172523961,
|
| 69 |
+
"grad_norm": 0.18809974511784008,
|
| 70 |
+
"learning_rate": 5e-05,
|
| 71 |
+
"loss": 1.2401,
|
| 72 |
+
"step": 16
|
| 73 |
+
},
|
| 74 |
+
{
|
| 75 |
+
"epoch": 0.11501597444089456,
|
| 76 |
+
"grad_norm": 0.18997340619225084,
|
| 77 |
+
"learning_rate": 5.6250000000000005e-05,
|
| 78 |
+
"loss": 1.2084,
|
| 79 |
+
"step": 18
|
| 80 |
+
},
|
| 81 |
+
{
|
| 82 |
+
"epoch": 0.12779552715654952,
|
| 83 |
+
"grad_norm": 0.15504216343509883,
|
| 84 |
+
"learning_rate": 6.25e-05,
|
| 85 |
+
"loss": 1.1855,
|
| 86 |
+
"step": 20
|
| 87 |
+
},
|
| 88 |
+
{
|
| 89 |
+
"epoch": 0.14057507987220447,
|
| 90 |
+
"grad_norm": 0.12848416587626313,
|
| 91 |
+
"learning_rate": 6.875e-05,
|
| 92 |
+
"loss": 1.146,
|
| 93 |
+
"step": 22
|
| 94 |
+
},
|
| 95 |
+
{
|
| 96 |
+
"epoch": 0.15335463258785942,
|
| 97 |
+
"grad_norm": 0.09889252813730416,
|
| 98 |
+
"learning_rate": 7.500000000000001e-05,
|
| 99 |
+
"loss": 1.1357,
|
| 100 |
+
"step": 24
|
| 101 |
+
},
|
| 102 |
+
{
|
| 103 |
+
"epoch": 0.16613418530351437,
|
| 104 |
+
"grad_norm": 0.09024188902019939,
|
| 105 |
+
"learning_rate": 8.125000000000001e-05,
|
| 106 |
+
"loss": 1.1096,
|
| 107 |
+
"step": 26
|
| 108 |
+
},
|
| 109 |
+
{
|
| 110 |
+
"epoch": 0.17891373801916932,
|
| 111 |
+
"grad_norm": 0.08133676595279006,
|
| 112 |
+
"learning_rate": 8.75e-05,
|
| 113 |
+
"loss": 1.0913,
|
| 114 |
+
"step": 28
|
| 115 |
+
},
|
| 116 |
+
{
|
| 117 |
+
"epoch": 0.19169329073482427,
|
| 118 |
+
"grad_norm": 0.0978463769637292,
|
| 119 |
+
"learning_rate": 9.375e-05,
|
| 120 |
+
"loss": 1.0679,
|
| 121 |
+
"step": 30
|
| 122 |
+
},
|
| 123 |
+
{
|
| 124 |
+
"epoch": 0.20447284345047922,
|
| 125 |
+
"grad_norm": 0.07943889170723487,
|
| 126 |
+
"learning_rate": 0.0001,
|
| 127 |
+
"loss": 1.075,
|
| 128 |
+
"step": 32
|
| 129 |
+
},
|
| 130 |
+
{
|
| 131 |
+
"epoch": 0.21725239616613418,
|
| 132 |
+
"grad_norm": 0.08240884428512509,
|
| 133 |
+
"learning_rate": 9.99971838728789e-05,
|
| 134 |
+
"loss": 1.075,
|
| 135 |
+
"step": 34
|
| 136 |
+
},
|
| 137 |
+
{
|
| 138 |
+
"epoch": 0.23003194888178913,
|
| 139 |
+
"grad_norm": 0.08253986997481327,
|
| 140 |
+
"learning_rate": 9.998873580873848e-05,
|
| 141 |
+
"loss": 1.0652,
|
| 142 |
+
"step": 36
|
| 143 |
+
},
|
| 144 |
+
{
|
| 145 |
+
"epoch": 0.24281150159744408,
|
| 146 |
+
"grad_norm": 0.07954648039103362,
|
| 147 |
+
"learning_rate": 9.997465675921163e-05,
|
| 148 |
+
"loss": 1.0519,
|
| 149 |
+
"step": 38
|
| 150 |
+
},
|
| 151 |
+
{
|
| 152 |
+
"epoch": 0.25559105431309903,
|
| 153 |
+
"grad_norm": 0.0776223200815433,
|
| 154 |
+
"learning_rate": 9.995494831023409e-05,
|
| 155 |
+
"loss": 1.0094,
|
| 156 |
+
"step": 40
|
| 157 |
+
},
|
| 158 |
+
{
|
| 159 |
+
"epoch": 0.268370607028754,
|
| 160 |
+
"grad_norm": 0.08000844411167178,
|
| 161 |
+
"learning_rate": 9.992961268186573e-05,
|
| 162 |
+
"loss": 1.0074,
|
| 163 |
+
"step": 42
|
| 164 |
+
},
|
| 165 |
+
{
|
| 166 |
+
"epoch": 0.28115015974440893,
|
| 167 |
+
"grad_norm": 0.0689657212250583,
|
| 168 |
+
"learning_rate": 9.989865272804063e-05,
|
| 169 |
+
"loss": 1.0087,
|
| 170 |
+
"step": 44
|
| 171 |
+
},
|
| 172 |
+
{
|
| 173 |
+
"epoch": 0.2939297124600639,
|
| 174 |
+
"grad_norm": 0.0722150479128947,
|
| 175 |
+
"learning_rate": 9.986207193624536e-05,
|
| 176 |
+
"loss": 1.0067,
|
| 177 |
+
"step": 46
|
| 178 |
+
},
|
| 179 |
+
{
|
| 180 |
+
"epoch": 0.30670926517571884,
|
| 181 |
+
"grad_norm": 0.06646168454668608,
|
| 182 |
+
"learning_rate": 9.981987442712633e-05,
|
| 183 |
+
"loss": 0.9837,
|
| 184 |
+
"step": 48
|
| 185 |
+
},
|
| 186 |
+
{
|
| 187 |
+
"epoch": 0.3194888178913738,
|
| 188 |
+
"grad_norm": 0.06815852582234988,
|
| 189 |
+
"learning_rate": 9.977206495402554e-05,
|
| 190 |
+
"loss": 1.0024,
|
| 191 |
+
"step": 50
|
| 192 |
+
},
|
| 193 |
+
{
|
| 194 |
+
"epoch": 0.33226837060702874,
|
| 195 |
+
"grad_norm": 0.07469571057420442,
|
| 196 |
+
"learning_rate": 9.971864890244513e-05,
|
| 197 |
+
"loss": 0.9606,
|
| 198 |
+
"step": 52
|
| 199 |
+
},
|
| 200 |
+
{
|
| 201 |
+
"epoch": 0.3450479233226837,
|
| 202 |
+
"grad_norm": 0.07160841663430713,
|
| 203 |
+
"learning_rate": 9.965963228944078e-05,
|
| 204 |
+
"loss": 0.9681,
|
| 205 |
+
"step": 54
|
| 206 |
+
},
|
| 207 |
+
{
|
| 208 |
+
"epoch": 0.35782747603833864,
|
| 209 |
+
"grad_norm": 0.06954866095292117,
|
| 210 |
+
"learning_rate": 9.959502176294383e-05,
|
| 211 |
+
"loss": 0.951,
|
| 212 |
+
"step": 56
|
| 213 |
+
},
|
| 214 |
+
{
|
| 215 |
+
"epoch": 0.3706070287539936,
|
| 216 |
+
"grad_norm": 0.06598684065212063,
|
| 217 |
+
"learning_rate": 9.95248246010126e-05,
|
| 218 |
+
"loss": 0.9501,
|
| 219 |
+
"step": 58
|
| 220 |
+
},
|
| 221 |
+
{
|
| 222 |
+
"epoch": 0.38338658146964855,
|
| 223 |
+
"grad_norm": 0.12103302407814338,
|
| 224 |
+
"learning_rate": 9.944904871101228e-05,
|
| 225 |
+
"loss": 0.9713,
|
| 226 |
+
"step": 60
|
| 227 |
+
},
|
| 228 |
+
{
|
| 229 |
+
"epoch": 0.3961661341853035,
|
| 230 |
+
"grad_norm": 0.07330981053456032,
|
| 231 |
+
"learning_rate": 9.936770262872443e-05,
|
| 232 |
+
"loss": 0.9283,
|
| 233 |
+
"step": 62
|
| 234 |
+
},
|
| 235 |
+
{
|
| 236 |
+
"epoch": 0.40894568690095845,
|
| 237 |
+
"grad_norm": 0.06537535724415816,
|
| 238 |
+
"learning_rate": 9.928079551738543e-05,
|
| 239 |
+
"loss": 0.9118,
|
| 240 |
+
"step": 64
|
| 241 |
+
},
|
| 242 |
+
{
|
| 243 |
+
"epoch": 0.4217252396166134,
|
| 244 |
+
"grad_norm": 0.07457609795137939,
|
| 245 |
+
"learning_rate": 9.918833716665419e-05,
|
| 246 |
+
"loss": 0.9279,
|
| 247 |
+
"step": 66
|
| 248 |
+
},
|
| 249 |
+
{
|
| 250 |
+
"epoch": 0.43450479233226835,
|
| 251 |
+
"grad_norm": 0.07491122165043795,
|
| 252 |
+
"learning_rate": 9.909033799150946e-05,
|
| 253 |
+
"loss": 0.935,
|
| 254 |
+
"step": 68
|
| 255 |
+
},
|
| 256 |
+
{
|
| 257 |
+
"epoch": 0.4472843450479233,
|
| 258 |
+
"grad_norm": 0.06781283989008571,
|
| 259 |
+
"learning_rate": 9.898680903107666e-05,
|
| 260 |
+
"loss": 0.9361,
|
| 261 |
+
"step": 70
|
| 262 |
+
},
|
| 263 |
+
{
|
| 264 |
+
"epoch": 0.46006389776357826,
|
| 265 |
+
"grad_norm": 0.07160916695151898,
|
| 266 |
+
"learning_rate": 9.887776194738432e-05,
|
| 267 |
+
"loss": 0.9159,
|
| 268 |
+
"step": 72
|
| 269 |
+
},
|
| 270 |
+
{
|
| 271 |
+
"epoch": 0.4728434504792332,
|
| 272 |
+
"grad_norm": 0.0681941013678725,
|
| 273 |
+
"learning_rate": 9.876320902405042e-05,
|
| 274 |
+
"loss": 0.8779,
|
| 275 |
+
"step": 74
|
| 276 |
+
},
|
| 277 |
+
{
|
| 278 |
+
"epoch": 0.48562300319488816,
|
| 279 |
+
"grad_norm": 0.07482319269062407,
|
| 280 |
+
"learning_rate": 9.864316316489873e-05,
|
| 281 |
+
"loss": 0.8825,
|
| 282 |
+
"step": 76
|
| 283 |
+
},
|
| 284 |
+
{
|
| 285 |
+
"epoch": 0.4984025559105431,
|
| 286 |
+
"grad_norm": 0.08697975313543096,
|
| 287 |
+
"learning_rate": 9.851763789250525e-05,
|
| 288 |
+
"loss": 0.922,
|
| 289 |
+
"step": 78
|
| 290 |
+
},
|
| 291 |
+
{
|
| 292 |
+
"epoch": 0.5111821086261981,
|
| 293 |
+
"grad_norm": 0.09978612068745818,
|
| 294 |
+
"learning_rate": 9.838664734667495e-05,
|
| 295 |
+
"loss": 0.8894,
|
| 296 |
+
"step": 80
|
| 297 |
+
},
|
| 298 |
+
{
|
| 299 |
+
"epoch": 0.5239616613418531,
|
| 300 |
+
"grad_norm": 0.09384667638421956,
|
| 301 |
+
"learning_rate": 9.825020628284896e-05,
|
| 302 |
+
"loss": 0.8593,
|
| 303 |
+
"step": 82
|
| 304 |
+
},
|
| 305 |
+
{
|
| 306 |
+
"epoch": 0.536741214057508,
|
| 307 |
+
"grad_norm": 0.06932081799385038,
|
| 308 |
+
"learning_rate": 9.810833007044247e-05,
|
| 309 |
+
"loss": 0.8662,
|
| 310 |
+
"step": 84
|
| 311 |
+
},
|
| 312 |
+
{
|
| 313 |
+
"epoch": 0.549520766773163,
|
| 314 |
+
"grad_norm": 0.10358699944795004,
|
| 315 |
+
"learning_rate": 9.796103469111351e-05,
|
| 316 |
+
"loss": 0.8723,
|
| 317 |
+
"step": 86
|
| 318 |
+
},
|
| 319 |
+
{
|
| 320 |
+
"epoch": 0.5623003194888179,
|
| 321 |
+
"grad_norm": 0.07169243369499742,
|
| 322 |
+
"learning_rate": 9.780833673696254e-05,
|
| 323 |
+
"loss": 0.8482,
|
| 324 |
+
"step": 88
|
| 325 |
+
},
|
| 326 |
+
{
|
| 327 |
+
"epoch": 0.5750798722044729,
|
| 328 |
+
"grad_norm": 0.1050406308556227,
|
| 329 |
+
"learning_rate": 9.76502534086636e-05,
|
| 330 |
+
"loss": 0.8496,
|
| 331 |
+
"step": 90
|
| 332 |
+
},
|
| 333 |
+
{
|
| 334 |
+
"epoch": 0.5878594249201278,
|
| 335 |
+
"grad_norm": 0.07201905690967678,
|
| 336 |
+
"learning_rate": 9.74868025135266e-05,
|
| 337 |
+
"loss": 0.8291,
|
| 338 |
+
"step": 92
|
| 339 |
+
},
|
| 340 |
+
{
|
| 341 |
+
"epoch": 0.6006389776357828,
|
| 342 |
+
"grad_norm": 1.2625349021090781,
|
| 343 |
+
"learning_rate": 9.731800246349148e-05,
|
| 344 |
+
"loss": 0.8503,
|
| 345 |
+
"step": 94
|
| 346 |
+
},
|
| 347 |
+
{
|
| 348 |
+
"epoch": 0.6134185303514377,
|
| 349 |
+
"grad_norm": 0.17981258022070712,
|
| 350 |
+
"learning_rate": 9.714387227305422e-05,
|
| 351 |
+
"loss": 0.8231,
|
| 352 |
+
"step": 96
|
| 353 |
+
},
|
| 354 |
+
{
|
| 355 |
+
"epoch": 0.6261980830670927,
|
| 356 |
+
"grad_norm": 0.07561478832740967,
|
| 357 |
+
"learning_rate": 9.696443155712486e-05,
|
| 358 |
+
"loss": 0.8119,
|
| 359 |
+
"step": 98
|
| 360 |
+
},
|
| 361 |
+
{
|
| 362 |
+
"epoch": 0.6389776357827476,
|
| 363 |
+
"grad_norm": 0.08195686915168865,
|
| 364 |
+
"learning_rate": 9.67797005288181e-05,
|
| 365 |
+
"loss": 0.7926,
|
| 366 |
+
"step": 100
|
| 367 |
+
},
|
| 368 |
+
{
|
| 369 |
+
"epoch": 0.6517571884984026,
|
| 370 |
+
"grad_norm": 0.0890476280007116,
|
| 371 |
+
"learning_rate": 9.65896999971763e-05,
|
| 372 |
+
"loss": 0.8039,
|
| 373 |
+
"step": 102
|
| 374 |
+
},
|
| 375 |
+
{
|
| 376 |
+
"epoch": 0.6645367412140575,
|
| 377 |
+
"grad_norm": 0.07738578891457887,
|
| 378 |
+
"learning_rate": 9.639445136482548e-05,
|
| 379 |
+
"loss": 0.7721,
|
| 380 |
+
"step": 104
|
| 381 |
+
},
|
| 382 |
+
{
|
| 383 |
+
"epoch": 0.6773162939297125,
|
| 384 |
+
"grad_norm": 0.0743037172920425,
|
| 385 |
+
"learning_rate": 9.619397662556435e-05,
|
| 386 |
+
"loss": 0.794,
|
| 387 |
+
"step": 106
|
| 388 |
+
},
|
| 389 |
+
{
|
| 390 |
+
"epoch": 0.6900958466453674,
|
| 391 |
+
"grad_norm": 0.08803835897602165,
|
| 392 |
+
"learning_rate": 9.598829836188694e-05,
|
| 393 |
+
"loss": 0.7721,
|
| 394 |
+
"step": 108
|
| 395 |
+
},
|
| 396 |
+
{
|
| 397 |
+
"epoch": 0.7028753993610224,
|
| 398 |
+
"grad_norm": 0.07702819696223887,
|
| 399 |
+
"learning_rate": 9.577743974243874e-05,
|
| 400 |
+
"loss": 0.7765,
|
| 401 |
+
"step": 110
|
| 402 |
+
},
|
| 403 |
+
{
|
| 404 |
+
"epoch": 0.7156549520766773,
|
| 405 |
+
"grad_norm": 0.07473535070111323,
|
| 406 |
+
"learning_rate": 9.55614245194068e-05,
|
| 407 |
+
"loss": 0.7598,
|
| 408 |
+
"step": 112
|
| 409 |
+
},
|
| 410 |
+
{
|
| 411 |
+
"epoch": 0.7284345047923323,
|
| 412 |
+
"grad_norm": 0.08433756541496004,
|
| 413 |
+
"learning_rate": 9.534027702584425e-05,
|
| 414 |
+
"loss": 0.7727,
|
| 415 |
+
"step": 114
|
| 416 |
+
},
|
| 417 |
+
{
|
| 418 |
+
"epoch": 0.7412140575079872,
|
| 419 |
+
"grad_norm": 0.07483257658817612,
|
| 420 |
+
"learning_rate": 9.511402217292926e-05,
|
| 421 |
+
"loss": 0.7465,
|
| 422 |
+
"step": 116
|
| 423 |
+
},
|
| 424 |
+
{
|
| 425 |
+
"epoch": 0.7539936102236422,
|
| 426 |
+
"grad_norm": 0.0880318685591304,
|
| 427 |
+
"learning_rate": 9.488268544715896e-05,
|
| 428 |
+
"loss": 0.7321,
|
| 429 |
+
"step": 118
|
| 430 |
+
},
|
| 431 |
+
{
|
| 432 |
+
"epoch": 0.7667731629392971,
|
| 433 |
+
"grad_norm": 0.07719604899450865,
|
| 434 |
+
"learning_rate": 9.464629290747842e-05,
|
| 435 |
+
"loss": 0.7624,
|
| 436 |
+
"step": 120
|
| 437 |
+
},
|
| 438 |
+
{
|
| 439 |
+
"epoch": 0.7795527156549521,
|
| 440 |
+
"grad_norm": 0.0733176421376437,
|
| 441 |
+
"learning_rate": 9.440487118234535e-05,
|
| 442 |
+
"loss": 0.6975,
|
| 443 |
+
"step": 122
|
| 444 |
+
},
|
| 445 |
+
{
|
| 446 |
+
"epoch": 0.792332268370607,
|
| 447 |
+
"grad_norm": 0.07051701385784455,
|
| 448 |
+
"learning_rate": 9.415844746673047e-05,
|
| 449 |
+
"loss": 0.7127,
|
| 450 |
+
"step": 124
|
| 451 |
+
},
|
| 452 |
+
{
|
| 453 |
+
"epoch": 0.805111821086262,
|
| 454 |
+
"grad_norm": 0.0729787562181977,
|
| 455 |
+
"learning_rate": 9.390704951905411e-05,
|
| 456 |
+
"loss": 0.7503,
|
| 457 |
+
"step": 126
|
| 458 |
+
},
|
| 459 |
+
{
|
| 460 |
+
"epoch": 0.8178913738019169,
|
| 461 |
+
"grad_norm": 0.07128874732953779,
|
| 462 |
+
"learning_rate": 9.365070565805941e-05,
|
| 463 |
+
"loss": 0.6941,
|
| 464 |
+
"step": 128
|
| 465 |
+
},
|
| 466 |
+
{
|
| 467 |
+
"epoch": 0.8306709265175719,
|
| 468 |
+
"grad_norm": 0.07804844381711577,
|
| 469 |
+
"learning_rate": 9.338944475962237e-05,
|
| 470 |
+
"loss": 0.7197,
|
| 471 |
+
"step": 130
|
| 472 |
+
},
|
| 473 |
+
{
|
| 474 |
+
"epoch": 0.8434504792332268,
|
| 475 |
+
"grad_norm": 0.08207580744924538,
|
| 476 |
+
"learning_rate": 9.312329625349902e-05,
|
| 477 |
+
"loss": 0.7134,
|
| 478 |
+
"step": 132
|
| 479 |
+
},
|
| 480 |
+
{
|
| 481 |
+
"epoch": 0.8562300319488818,
|
| 482 |
+
"grad_norm": 0.10268159904999394,
|
| 483 |
+
"learning_rate": 9.285229012001047e-05,
|
| 484 |
+
"loss": 0.705,
|
| 485 |
+
"step": 134
|
| 486 |
+
},
|
| 487 |
+
{
|
| 488 |
+
"epoch": 0.8690095846645367,
|
| 489 |
+
"grad_norm": 0.07097527094154266,
|
| 490 |
+
"learning_rate": 9.257645688666556e-05,
|
| 491 |
+
"loss": 0.7036,
|
| 492 |
+
"step": 136
|
| 493 |
+
},
|
| 494 |
+
{
|
| 495 |
+
"epoch": 0.8817891373801917,
|
| 496 |
+
"grad_norm": 0.07284443178958877,
|
| 497 |
+
"learning_rate": 9.22958276247223e-05,
|
| 498 |
+
"loss": 0.7313,
|
| 499 |
+
"step": 138
|
| 500 |
+
},
|
| 501 |
+
{
|
| 502 |
+
"epoch": 0.8945686900958466,
|
| 503 |
+
"grad_norm": 0.07294697279525543,
|
| 504 |
+
"learning_rate": 9.201043394568773e-05,
|
| 505 |
+
"loss": 0.6847,
|
| 506 |
+
"step": 140
|
| 507 |
+
},
|
| 508 |
+
{
|
| 509 |
+
"epoch": 0.9073482428115016,
|
| 510 |
+
"grad_norm": 0.0725032039002937,
|
| 511 |
+
"learning_rate": 9.172030799775699e-05,
|
| 512 |
+
"loss": 0.6877,
|
| 513 |
+
"step": 142
|
| 514 |
+
},
|
| 515 |
+
{
|
| 516 |
+
"epoch": 0.9201277955271565,
|
| 517 |
+
"grad_norm": 0.06708836437156662,
|
| 518 |
+
"learning_rate": 9.142548246219212e-05,
|
| 519 |
+
"loss": 0.6837,
|
| 520 |
+
"step": 144
|
| 521 |
+
},
|
| 522 |
+
{
|
| 523 |
+
"epoch": 0.9329073482428115,
|
| 524 |
+
"grad_norm": 0.07361178534656698,
|
| 525 |
+
"learning_rate": 9.112599054964057e-05,
|
| 526 |
+
"loss": 0.6522,
|
| 527 |
+
"step": 146
|
| 528 |
+
},
|
| 529 |
+
{
|
| 530 |
+
"epoch": 0.9456869009584664,
|
| 531 |
+
"grad_norm": 0.06961060997060975,
|
| 532 |
+
"learning_rate": 9.082186599639428e-05,
|
| 533 |
+
"loss": 0.6732,
|
| 534 |
+
"step": 148
|
| 535 |
+
},
|
| 536 |
+
{
|
| 537 |
+
"epoch": 0.9584664536741214,
|
| 538 |
+
"grad_norm": 0.06369267112915664,
|
| 539 |
+
"learning_rate": 9.051314306058933e-05,
|
| 540 |
+
"loss": 0.6615,
|
| 541 |
+
"step": 150
|
| 542 |
+
},
|
| 543 |
+
{
|
| 544 |
+
"epoch": 0.9712460063897763,
|
| 545 |
+
"grad_norm": 0.06667729772792583,
|
| 546 |
+
"learning_rate": 9.019985651834703e-05,
|
| 547 |
+
"loss": 0.6742,
|
| 548 |
+
"step": 152
|
| 549 |
+
},
|
| 550 |
+
{
|
| 551 |
+
"epoch": 0.9840255591054313,
|
| 552 |
+
"grad_norm": 0.07052786453330319,
|
| 553 |
+
"learning_rate": 8.988204165985649e-05,
|
| 554 |
+
"loss": 0.6365,
|
| 555 |
+
"step": 154
|
| 556 |
+
},
|
| 557 |
+
{
|
| 558 |
+
"epoch": 0.9968051118210862,
|
| 559 |
+
"grad_norm": 0.06352217971127558,
|
| 560 |
+
"learning_rate": 8.955973428539944e-05,
|
| 561 |
+
"loss": 0.6531,
|
| 562 |
+
"step": 156
|
| 563 |
+
},
|
| 564 |
+
{
|
| 565 |
+
"epoch": 1.011182108626198,
|
| 566 |
+
"grad_norm": 0.0907023898699884,
|
| 567 |
+
"learning_rate": 8.923297070131737e-05,
|
| 568 |
+
"loss": 0.6986,
|
| 569 |
+
"step": 158
|
| 570 |
+
},
|
| 571 |
+
{
|
| 572 |
+
"epoch": 1.023961661341853,
|
| 573 |
+
"grad_norm": 0.06588723514264389,
|
| 574 |
+
"learning_rate": 8.890178771592199e-05,
|
| 575 |
+
"loss": 0.4221,
|
| 576 |
+
"step": 160
|
| 577 |
+
},
|
| 578 |
+
{
|
| 579 |
+
"epoch": 1.036741214057508,
|
| 580 |
+
"grad_norm": 0.07457104912562523,
|
| 581 |
+
"learning_rate": 8.856622263534875e-05,
|
| 582 |
+
"loss": 0.4375,
|
| 583 |
+
"step": 162
|
| 584 |
+
},
|
| 585 |
+
{
|
| 586 |
+
"epoch": 1.049520766773163,
|
| 587 |
+
"grad_norm": 0.08716030746078077,
|
| 588 |
+
"learning_rate": 8.822631325935463e-05,
|
| 589 |
+
"loss": 0.4633,
|
| 590 |
+
"step": 164
|
| 591 |
+
},
|
| 592 |
+
{
|
| 593 |
+
"epoch": 1.0623003194888179,
|
| 594 |
+
"grad_norm": 0.07564657660605784,
|
| 595 |
+
"learning_rate": 8.788209787706015e-05,
|
| 596 |
+
"loss": 0.4149,
|
| 597 |
+
"step": 166
|
| 598 |
+
},
|
| 599 |
+
{
|
| 600 |
+
"epoch": 1.0750798722044728,
|
| 601 |
+
"grad_norm": 0.2601478494309565,
|
| 602 |
+
"learning_rate": 8.753361526263621e-05,
|
| 603 |
+
"loss": 0.4644,
|
| 604 |
+
"step": 168
|
| 605 |
+
},
|
| 606 |
+
{
|
| 607 |
+
"epoch": 1.0878594249201279,
|
| 608 |
+
"grad_norm": 0.07236244361689621,
|
| 609 |
+
"learning_rate": 8.718090467093654e-05,
|
| 610 |
+
"loss": 0.445,
|
| 611 |
+
"step": 170
|
| 612 |
+
},
|
| 613 |
+
{
|
| 614 |
+
"epoch": 1.1006389776357828,
|
| 615 |
+
"grad_norm": 0.07360308087849284,
|
| 616 |
+
"learning_rate": 8.682400583307562e-05,
|
| 617 |
+
"loss": 0.4189,
|
| 618 |
+
"step": 172
|
| 619 |
+
},
|
| 620 |
+
{
|
| 621 |
+
"epoch": 1.1134185303514377,
|
| 622 |
+
"grad_norm": 0.06934965586236702,
|
| 623 |
+
"learning_rate": 8.646295895195333e-05,
|
| 624 |
+
"loss": 0.4168,
|
| 625 |
+
"step": 174
|
| 626 |
+
},
|
| 627 |
+
{
|
| 628 |
+
"epoch": 1.1261980830670926,
|
| 629 |
+
"grad_norm": 0.06652725595095291,
|
| 630 |
+
"learning_rate": 8.609780469772623e-05,
|
| 631 |
+
"loss": 0.4332,
|
| 632 |
+
"step": 176
|
| 633 |
+
},
|
| 634 |
+
{
|
| 635 |
+
"epoch": 1.1389776357827477,
|
| 636 |
+
"grad_norm": 0.06493423808775205,
|
| 637 |
+
"learning_rate": 8.572858420322627e-05,
|
| 638 |
+
"loss": 0.4126,
|
| 639 |
+
"step": 178
|
| 640 |
+
},
|
| 641 |
+
{
|
| 642 |
+
"epoch": 1.1517571884984026,
|
| 643 |
+
"grad_norm": 0.07224306242862681,
|
| 644 |
+
"learning_rate": 8.535533905932738e-05,
|
| 645 |
+
"loss": 0.4639,
|
| 646 |
+
"step": 180
|
| 647 |
+
},
|
| 648 |
+
{
|
| 649 |
+
"epoch": 1.1645367412140575,
|
| 650 |
+
"grad_norm": 0.06325420247080109,
|
| 651 |
+
"learning_rate": 8.497811131026046e-05,
|
| 652 |
+
"loss": 0.4097,
|
| 653 |
+
"step": 182
|
| 654 |
+
},
|
| 655 |
+
{
|
| 656 |
+
"epoch": 1.1773162939297124,
|
| 657 |
+
"grad_norm": 0.05960690196531746,
|
| 658 |
+
"learning_rate": 8.459694344887732e-05,
|
| 659 |
+
"loss": 0.4258,
|
| 660 |
+
"step": 184
|
| 661 |
+
},
|
| 662 |
+
{
|
| 663 |
+
"epoch": 1.1900958466453675,
|
| 664 |
+
"grad_norm": 0.06526403248406679,
|
| 665 |
+
"learning_rate": 8.421187841186402e-05,
|
| 666 |
+
"loss": 0.4453,
|
| 667 |
+
"step": 186
|
| 668 |
+
},
|
| 669 |
+
{
|
| 670 |
+
"epoch": 1.2028753993610224,
|
| 671 |
+
"grad_norm": 0.06754636177295095,
|
| 672 |
+
"learning_rate": 8.382295957490436e-05,
|
| 673 |
+
"loss": 0.4277,
|
| 674 |
+
"step": 188
|
| 675 |
+
},
|
| 676 |
+
{
|
| 677 |
+
"epoch": 1.2156549520766773,
|
| 678 |
+
"grad_norm": 0.11883404710840821,
|
| 679 |
+
"learning_rate": 8.343023074779368e-05,
|
| 680 |
+
"loss": 0.4386,
|
| 681 |
+
"step": 190
|
| 682 |
+
},
|
| 683 |
+
{
|
| 684 |
+
"epoch": 1.2284345047923322,
|
| 685 |
+
"grad_norm": 0.07793571463351197,
|
| 686 |
+
"learning_rate": 8.303373616950408e-05,
|
| 687 |
+
"loss": 0.4072,
|
| 688 |
+
"step": 192
|
| 689 |
+
},
|
| 690 |
+
{
|
| 691 |
+
"epoch": 1.2412140575079873,
|
| 692 |
+
"grad_norm": 0.06518657342856102,
|
| 693 |
+
"learning_rate": 8.263352050320094e-05,
|
| 694 |
+
"loss": 0.4396,
|
| 695 |
+
"step": 194
|
| 696 |
+
},
|
| 697 |
+
{
|
| 698 |
+
"epoch": 1.2539936102236422,
|
| 699 |
+
"grad_norm": 0.05974282037032855,
|
| 700 |
+
"learning_rate": 8.222962883121196e-05,
|
| 701 |
+
"loss": 0.4016,
|
| 702 |
+
"step": 196
|
| 703 |
+
},
|
| 704 |
+
{
|
| 705 |
+
"epoch": 1.266773162939297,
|
| 706 |
+
"grad_norm": 0.0693639502217822,
|
| 707 |
+
"learning_rate": 8.182210664994878e-05,
|
| 708 |
+
"loss": 0.3808,
|
| 709 |
+
"step": 198
|
| 710 |
+
},
|
| 711 |
+
{
|
| 712 |
+
"epoch": 1.279552715654952,
|
| 713 |
+
"grad_norm": 0.06127831754623801,
|
| 714 |
+
"learning_rate": 8.141099986478212e-05,
|
| 715 |
+
"loss": 0.3961,
|
| 716 |
+
"step": 200
|
| 717 |
+
},
|
| 718 |
+
{
|
| 719 |
+
"epoch": 1.292332268370607,
|
| 720 |
+
"grad_norm": 0.06755312065722066,
|
| 721 |
+
"learning_rate": 8.099635478487064e-05,
|
| 722 |
+
"loss": 0.3894,
|
| 723 |
+
"step": 202
|
| 724 |
+
},
|
| 725 |
+
{
|
| 726 |
+
"epoch": 1.305111821086262,
|
| 727 |
+
"grad_norm": 0.0584212869146413,
|
| 728 |
+
"learning_rate": 8.057821811794458e-05,
|
| 729 |
+
"loss": 0.414,
|
| 730 |
+
"step": 204
|
| 731 |
+
},
|
| 732 |
+
{
|
| 733 |
+
"epoch": 1.317891373801917,
|
| 734 |
+
"grad_norm": 0.05983512956529008,
|
| 735 |
+
"learning_rate": 8.015663696504422e-05,
|
| 736 |
+
"loss": 0.3634,
|
| 737 |
+
"step": 206
|
| 738 |
+
},
|
| 739 |
+
{
|
| 740 |
+
"epoch": 1.330670926517572,
|
| 741 |
+
"grad_norm": 0.05778218969166584,
|
| 742 |
+
"learning_rate": 7.973165881521434e-05,
|
| 743 |
+
"loss": 0.4233,
|
| 744 |
+
"step": 208
|
| 745 |
+
},
|
| 746 |
+
{
|
| 747 |
+
"epoch": 1.343450479233227,
|
| 748 |
+
"grad_norm": 0.058310021079803646,
|
| 749 |
+
"learning_rate": 7.930333154015466e-05,
|
| 750 |
+
"loss": 0.4061,
|
| 751 |
+
"step": 210
|
| 752 |
+
},
|
| 753 |
+
{
|
| 754 |
+
"epoch": 1.3562300319488818,
|
| 755 |
+
"grad_norm": 0.0642143238679532,
|
| 756 |
+
"learning_rate": 7.88717033888274e-05,
|
| 757 |
+
"loss": 0.4083,
|
| 758 |
+
"step": 212
|
| 759 |
+
},
|
| 760 |
+
{
|
| 761 |
+
"epoch": 1.3690095846645367,
|
| 762 |
+
"grad_norm": 0.05656381877721736,
|
| 763 |
+
"learning_rate": 7.843682298202235e-05,
|
| 764 |
+
"loss": 0.4033,
|
| 765 |
+
"step": 214
|
| 766 |
+
},
|
| 767 |
+
{
|
| 768 |
+
"epoch": 1.3817891373801916,
|
| 769 |
+
"grad_norm": 0.05518190162844295,
|
| 770 |
+
"learning_rate": 7.799873930687978e-05,
|
| 771 |
+
"loss": 0.3953,
|
| 772 |
+
"step": 216
|
| 773 |
+
},
|
| 774 |
+
{
|
| 775 |
+
"epoch": 1.3945686900958467,
|
| 776 |
+
"grad_norm": 0.05903661851778338,
|
| 777 |
+
"learning_rate": 7.755750171137246e-05,
|
| 778 |
+
"loss": 0.4096,
|
| 779 |
+
"step": 218
|
| 780 |
+
},
|
| 781 |
+
{
|
| 782 |
+
"epoch": 1.4073482428115016,
|
| 783 |
+
"grad_norm": 0.05833074145436464,
|
| 784 |
+
"learning_rate": 7.711315989874677e-05,
|
| 785 |
+
"loss": 0.4151,
|
| 786 |
+
"step": 220
|
| 787 |
+
},
|
| 788 |
+
{
|
| 789 |
+
"epoch": 1.4201277955271565,
|
| 790 |
+
"grad_norm": 0.05919878363690307,
|
| 791 |
+
"learning_rate": 7.666576392192389e-05,
|
| 792 |
+
"loss": 0.39,
|
| 793 |
+
"step": 222
|
| 794 |
+
},
|
| 795 |
+
{
|
| 796 |
+
"epoch": 1.4329073482428116,
|
| 797 |
+
"grad_norm": 0.05913664327254173,
|
| 798 |
+
"learning_rate": 7.621536417786159e-05,
|
| 799 |
+
"loss": 0.4005,
|
| 800 |
+
"step": 224
|
| 801 |
+
},
|
| 802 |
+
{
|
| 803 |
+
"epoch": 1.4456869009584665,
|
| 804 |
+
"grad_norm": 0.0640842931075253,
|
| 805 |
+
"learning_rate": 7.576201140187727e-05,
|
| 806 |
+
"loss": 0.4165,
|
| 807 |
+
"step": 226
|
| 808 |
+
},
|
| 809 |
+
{
|
| 810 |
+
"epoch": 1.4584664536741214,
|
| 811 |
+
"grad_norm": 0.062131879810909965,
|
| 812 |
+
"learning_rate": 7.530575666193283e-05,
|
| 813 |
+
"loss": 0.3891,
|
| 814 |
+
"step": 228
|
| 815 |
+
},
|
| 816 |
+
{
|
| 817 |
+
"epoch": 1.4712460063897763,
|
| 818 |
+
"grad_norm": 0.06992276137309804,
|
| 819 |
+
"learning_rate": 7.484665135288213e-05,
|
| 820 |
+
"loss": 0.3971,
|
| 821 |
+
"step": 230
|
| 822 |
+
},
|
| 823 |
+
{
|
| 824 |
+
"epoch": 1.4840255591054312,
|
| 825 |
+
"grad_norm": 0.06078790664861669,
|
| 826 |
+
"learning_rate": 7.438474719068173e-05,
|
| 827 |
+
"loss": 0.3961,
|
| 828 |
+
"step": 232
|
| 829 |
+
},
|
| 830 |
+
{
|
| 831 |
+
"epoch": 1.4968051118210863,
|
| 832 |
+
"grad_norm": 0.06922648734675908,
|
| 833 |
+
"learning_rate": 7.392009620656513e-05,
|
| 834 |
+
"loss": 0.4331,
|
| 835 |
+
"step": 234
|
| 836 |
+
},
|
| 837 |
+
{
|
| 838 |
+
"epoch": 1.5095846645367412,
|
| 839 |
+
"grad_norm": 0.05766139832102871,
|
| 840 |
+
"learning_rate": 7.345275074118185e-05,
|
| 841 |
+
"loss": 0.4182,
|
| 842 |
+
"step": 236
|
| 843 |
+
},
|
| 844 |
+
{
|
| 845 |
+
"epoch": 1.5223642172523961,
|
| 846 |
+
"grad_norm": 0.06292873231888371,
|
| 847 |
+
"learning_rate": 7.298276343870151e-05,
|
| 848 |
+
"loss": 0.4061,
|
| 849 |
+
"step": 238
|
| 850 |
+
},
|
| 851 |
+
{
|
| 852 |
+
"epoch": 1.5351437699680512,
|
| 853 |
+
"grad_norm": 0.06000860844713537,
|
| 854 |
+
"learning_rate": 7.251018724088367e-05,
|
| 855 |
+
"loss": 0.4023,
|
| 856 |
+
"step": 240
|
| 857 |
+
},
|
| 858 |
+
{
|
| 859 |
+
"epoch": 1.547923322683706,
|
| 860 |
+
"grad_norm": 0.0585777107714916,
|
| 861 |
+
"learning_rate": 7.203507538111423e-05,
|
| 862 |
+
"loss": 0.3855,
|
| 863 |
+
"step": 242
|
| 864 |
+
},
|
| 865 |
+
{
|
| 866 |
+
"epoch": 1.560702875399361,
|
| 867 |
+
"grad_norm": 0.0571671995255021,
|
| 868 |
+
"learning_rate": 7.155748137840892e-05,
|
| 869 |
+
"loss": 0.3951,
|
| 870 |
+
"step": 244
|
| 871 |
+
},
|
| 872 |
+
{
|
| 873 |
+
"epoch": 1.573482428115016,
|
| 874 |
+
"grad_norm": 0.053447175708899994,
|
| 875 |
+
"learning_rate": 7.107745903138472e-05,
|
| 876 |
+
"loss": 0.3745,
|
| 877 |
+
"step": 246
|
| 878 |
+
},
|
| 879 |
+
{
|
| 880 |
+
"epoch": 1.5862619808306708,
|
| 881 |
+
"grad_norm": 0.055736902711725635,
|
| 882 |
+
"learning_rate": 7.059506241219965e-05,
|
| 883 |
+
"loss": 0.3911,
|
| 884 |
+
"step": 248
|
| 885 |
+
},
|
| 886 |
+
{
|
| 887 |
+
"epoch": 1.599041533546326,
|
| 888 |
+
"grad_norm": 0.05715355824554817,
|
| 889 |
+
"learning_rate": 7.011034586046176e-05,
|
| 890 |
+
"loss": 0.4043,
|
| 891 |
+
"step": 250
|
| 892 |
+
},
|
| 893 |
+
{
|
| 894 |
+
"epoch": 1.6118210862619808,
|
| 895 |
+
"grad_norm": 0.06030447320081754,
|
| 896 |
+
"learning_rate": 6.962336397710819e-05,
|
| 897 |
+
"loss": 0.3899,
|
| 898 |
+
"step": 252
|
| 899 |
+
},
|
| 900 |
+
{
|
| 901 |
+
"epoch": 1.6246006389776357,
|
| 902 |
+
"grad_norm": 0.061239135474291606,
|
| 903 |
+
"learning_rate": 6.91341716182545e-05,
|
| 904 |
+
"loss": 0.4246,
|
| 905 |
+
"step": 254
|
| 906 |
+
},
|
| 907 |
+
{
|
| 908 |
+
"epoch": 1.6373801916932909,
|
| 909 |
+
"grad_norm": 0.05695235071864785,
|
| 910 |
+
"learning_rate": 6.864282388901544e-05,
|
| 911 |
+
"loss": 0.3953,
|
| 912 |
+
"step": 256
|
| 913 |
+
},
|
| 914 |
+
{
|
| 915 |
+
"epoch": 1.6501597444089455,
|
| 916 |
+
"grad_norm": 0.05308868251491366,
|
| 917 |
+
"learning_rate": 6.814937613729766e-05,
|
| 918 |
+
"loss": 0.4103,
|
| 919 |
+
"step": 258
|
| 920 |
+
},
|
| 921 |
+
{
|
| 922 |
+
"epoch": 1.6629392971246006,
|
| 923 |
+
"grad_norm": 0.054046791633493914,
|
| 924 |
+
"learning_rate": 6.765388394756504e-05,
|
| 925 |
+
"loss": 0.4059,
|
| 926 |
+
"step": 260
|
| 927 |
+
},
|
| 928 |
+
{
|
| 929 |
+
"epoch": 1.6757188498402555,
|
| 930 |
+
"grad_norm": 0.05148697040730548,
|
| 931 |
+
"learning_rate": 6.715640313457733e-05,
|
| 932 |
+
"loss": 0.3767,
|
| 933 |
+
"step": 262
|
| 934 |
+
},
|
| 935 |
+
{
|
| 936 |
+
"epoch": 1.6884984025559104,
|
| 937 |
+
"grad_norm": 0.05318569591896447,
|
| 938 |
+
"learning_rate": 6.665698973710288e-05,
|
| 939 |
+
"loss": 0.3708,
|
| 940 |
+
"step": 264
|
| 941 |
+
},
|
| 942 |
+
{
|
| 943 |
+
"epoch": 1.7012779552715656,
|
| 944 |
+
"grad_norm": 0.05196719070381999,
|
| 945 |
+
"learning_rate": 6.615570001160626e-05,
|
| 946 |
+
"loss": 0.4042,
|
| 947 |
+
"step": 266
|
| 948 |
+
},
|
| 949 |
+
{
|
| 950 |
+
"epoch": 1.7140575079872205,
|
| 951 |
+
"grad_norm": 0.05632881769869459,
|
| 952 |
+
"learning_rate": 6.565259042591113e-05,
|
| 953 |
+
"loss": 0.3987,
|
| 954 |
+
"step": 268
|
| 955 |
+
},
|
| 956 |
+
{
|
| 957 |
+
"epoch": 1.7268370607028753,
|
| 958 |
+
"grad_norm": 0.05470059818193366,
|
| 959 |
+
"learning_rate": 6.514771765283942e-05,
|
| 960 |
+
"loss": 0.3973,
|
| 961 |
+
"step": 270
|
| 962 |
+
},
|
| 963 |
+
{
|
| 964 |
+
"epoch": 1.7396166134185305,
|
| 965 |
+
"grad_norm": 0.056351811449582394,
|
| 966 |
+
"learning_rate": 6.464113856382752e-05,
|
| 967 |
+
"loss": 0.3864,
|
| 968 |
+
"step": 272
|
| 969 |
+
},
|
| 970 |
+
{
|
| 971 |
+
"epoch": 1.7523961661341851,
|
| 972 |
+
"grad_norm": 0.05831258279981057,
|
| 973 |
+
"learning_rate": 6.413291022251989e-05,
|
| 974 |
+
"loss": 0.4041,
|
| 975 |
+
"step": 274
|
| 976 |
+
},
|
| 977 |
+
{
|
| 978 |
+
"epoch": 1.7651757188498403,
|
| 979 |
+
"grad_norm": 0.053467450310740065,
|
| 980 |
+
"learning_rate": 6.362308987834115e-05,
|
| 981 |
+
"loss": 0.3814,
|
| 982 |
+
"step": 276
|
| 983 |
+
},
|
| 984 |
+
{
|
| 985 |
+
"epoch": 1.7779552715654952,
|
| 986 |
+
"grad_norm": 0.051287152623381335,
|
| 987 |
+
"learning_rate": 6.311173496004723e-05,
|
| 988 |
+
"loss": 0.395,
|
| 989 |
+
"step": 278
|
| 990 |
+
},
|
| 991 |
+
{
|
| 992 |
+
"epoch": 1.79073482428115,
|
| 993 |
+
"grad_norm": 0.05429714498773308,
|
| 994 |
+
"learning_rate": 6.259890306925627e-05,
|
| 995 |
+
"loss": 0.3821,
|
| 996 |
+
"step": 280
|
| 997 |
+
},
|
| 998 |
+
{
|
| 999 |
+
"epoch": 1.8035143769968052,
|
| 1000 |
+
"grad_norm": 0.057523653580626326,
|
| 1001 |
+
"learning_rate": 6.208465197396013e-05,
|
| 1002 |
+
"loss": 0.3984,
|
| 1003 |
+
"step": 282
|
| 1004 |
+
},
|
| 1005 |
+
{
|
| 1006 |
+
"epoch": 1.81629392971246,
|
| 1007 |
+
"grad_norm": 0.05724842136937287,
|
| 1008 |
+
"learning_rate": 6.156903960201709e-05,
|
| 1009 |
+
"loss": 0.4181,
|
| 1010 |
+
"step": 284
|
| 1011 |
+
},
|
| 1012 |
+
{
|
| 1013 |
+
"epoch": 1.829073482428115,
|
| 1014 |
+
"grad_norm": 0.052227309043480996,
|
| 1015 |
+
"learning_rate": 6.105212403462651e-05,
|
| 1016 |
+
"loss": 0.4049,
|
| 1017 |
+
"step": 286
|
| 1018 |
+
},
|
| 1019 |
+
{
|
| 1020 |
+
"epoch": 1.84185303514377,
|
| 1021 |
+
"grad_norm": 0.04967908325326877,
|
| 1022 |
+
"learning_rate": 6.0533963499786314e-05,
|
| 1023 |
+
"loss": 0.4117,
|
| 1024 |
+
"step": 288
|
| 1025 |
+
},
|
| 1026 |
+
{
|
| 1027 |
+
"epoch": 1.854632587859425,
|
| 1028 |
+
"grad_norm": 0.05539898234566285,
|
| 1029 |
+
"learning_rate": 6.001461636573397e-05,
|
| 1030 |
+
"loss": 0.4006,
|
| 1031 |
+
"step": 290
|
| 1032 |
+
},
|
| 1033 |
+
{
|
| 1034 |
+
"epoch": 1.8674121405750799,
|
| 1035 |
+
"grad_norm": 0.05795414669880149,
|
| 1036 |
+
"learning_rate": 5.949414113437142e-05,
|
| 1037 |
+
"loss": 0.386,
|
| 1038 |
+
"step": 292
|
| 1039 |
+
},
|
| 1040 |
+
{
|
| 1041 |
+
"epoch": 1.880191693290735,
|
| 1042 |
+
"grad_norm": 0.050446841270231885,
|
| 1043 |
+
"learning_rate": 5.897259643467527e-05,
|
| 1044 |
+
"loss": 0.3842,
|
| 1045 |
+
"step": 294
|
| 1046 |
+
},
|
| 1047 |
+
{
|
| 1048 |
+
"epoch": 1.8929712460063897,
|
| 1049 |
+
"grad_norm": 0.052453051506198604,
|
| 1050 |
+
"learning_rate": 5.8450041016092464e-05,
|
| 1051 |
+
"loss": 0.3525,
|
| 1052 |
+
"step": 296
|
| 1053 |
+
},
|
| 1054 |
+
{
|
| 1055 |
+
"epoch": 1.9057507987220448,
|
| 1056 |
+
"grad_norm": 0.052803823491155276,
|
| 1057 |
+
"learning_rate": 5.792653374192245e-05,
|
| 1058 |
+
"loss": 0.3963,
|
| 1059 |
+
"step": 298
|
| 1060 |
+
},
|
| 1061 |
+
{
|
| 1062 |
+
"epoch": 1.9185303514376997,
|
| 1063 |
+
"grad_norm": 0.05180901601155745,
|
| 1064 |
+
"learning_rate": 5.7402133582686576e-05,
|
| 1065 |
+
"loss": 0.3798,
|
| 1066 |
+
"step": 300
|
| 1067 |
+
},
|
| 1068 |
+
{
|
| 1069 |
+
"epoch": 1.9313099041533546,
|
| 1070 |
+
"grad_norm": 0.05166645429890597,
|
| 1071 |
+
"learning_rate": 5.6876899609485256e-05,
|
| 1072 |
+
"loss": 0.3838,
|
| 1073 |
+
"step": 302
|
| 1074 |
+
},
|
| 1075 |
+
{
|
| 1076 |
+
"epoch": 1.9440894568690097,
|
| 1077 |
+
"grad_norm": 0.05306354741968808,
|
| 1078 |
+
"learning_rate": 5.6350890987343944e-05,
|
| 1079 |
+
"loss": 0.4165,
|
| 1080 |
+
"step": 304
|
| 1081 |
+
},
|
| 1082 |
+
{
|
| 1083 |
+
"epoch": 1.9568690095846646,
|
| 1084 |
+
"grad_norm": 0.0860975722690725,
|
| 1085 |
+
"learning_rate": 5.582416696854853e-05,
|
| 1086 |
+
"loss": 0.3737,
|
| 1087 |
+
"step": 306
|
| 1088 |
+
},
|
| 1089 |
+
{
|
| 1090 |
+
"epoch": 1.9696485623003195,
|
| 1091 |
+
"grad_norm": 0.05323286133666828,
|
| 1092 |
+
"learning_rate": 5.5296786885970805e-05,
|
| 1093 |
+
"loss": 0.3889,
|
| 1094 |
+
"step": 308
|
| 1095 |
+
},
|
| 1096 |
+
{
|
| 1097 |
+
"epoch": 1.9824281150159746,
|
| 1098 |
+
"grad_norm": 0.05299665331057226,
|
| 1099 |
+
"learning_rate": 5.476881014638491e-05,
|
| 1100 |
+
"loss": 0.3896,
|
| 1101 |
+
"step": 310
|
| 1102 |
+
},
|
| 1103 |
+
{
|
| 1104 |
+
"epoch": 1.9952076677316293,
|
| 1105 |
+
"grad_norm": 0.05157945275339266,
|
| 1106 |
+
"learning_rate": 5.4240296223775465e-05,
|
| 1107 |
+
"loss": 0.3637,
|
| 1108 |
+
"step": 312
|
| 1109 |
+
},
|
| 1110 |
+
{
|
| 1111 |
+
"epoch": 2.009584664536741,
|
| 1112 |
+
"grad_norm": 0.09139947660133817,
|
| 1113 |
+
"learning_rate": 5.3711304652638126e-05,
|
| 1114 |
+
"loss": 0.3775,
|
| 1115 |
+
"step": 314
|
| 1116 |
+
},
|
| 1117 |
+
{
|
| 1118 |
+
"epoch": 2.022364217252396,
|
| 1119 |
+
"grad_norm": 0.10130414532724454,
|
| 1120 |
+
"learning_rate": 5.318189502127332e-05,
|
| 1121 |
+
"loss": 0.2112,
|
| 1122 |
+
"step": 316
|
| 1123 |
+
},
|
| 1124 |
+
{
|
| 1125 |
+
"epoch": 2.0351437699680512,
|
| 1126 |
+
"grad_norm": 0.0633333619180165,
|
| 1127 |
+
"learning_rate": 5.265212696507387e-05,
|
| 1128 |
+
"loss": 0.2004,
|
| 1129 |
+
"step": 318
|
| 1130 |
+
},
|
| 1131 |
+
{
|
| 1132 |
+
"epoch": 2.047923322683706,
|
| 1133 |
+
"grad_norm": 0.0668276114954086,
|
| 1134 |
+
"learning_rate": 5.212206015980742e-05,
|
| 1135 |
+
"loss": 0.2019,
|
| 1136 |
+
"step": 320
|
| 1137 |
+
},
|
| 1138 |
+
{
|
| 1139 |
+
"epoch": 2.060702875399361,
|
| 1140 |
+
"grad_norm": 0.05942503367303514,
|
| 1141 |
+
"learning_rate": 5.159175431489424e-05,
|
| 1142 |
+
"loss": 0.1978,
|
| 1143 |
+
"step": 322
|
| 1144 |
+
},
|
| 1145 |
+
{
|
| 1146 |
+
"epoch": 2.073482428115016,
|
| 1147 |
+
"grad_norm": 0.07284145764738766,
|
| 1148 |
+
"learning_rate": 5.1061269166681183e-05,
|
| 1149 |
+
"loss": 0.1935,
|
| 1150 |
+
"step": 324
|
| 1151 |
+
},
|
| 1152 |
+
{
|
| 1153 |
+
"epoch": 2.086261980830671,
|
| 1154 |
+
"grad_norm": 0.052260140697323494,
|
| 1155 |
+
"learning_rate": 5.053066447171282e-05,
|
| 1156 |
+
"loss": 0.1854,
|
| 1157 |
+
"step": 326
|
| 1158 |
+
},
|
| 1159 |
+
{
|
| 1160 |
+
"epoch": 2.099041533546326,
|
| 1161 |
+
"grad_norm": 0.05754923159453662,
|
| 1162 |
+
"learning_rate": 5e-05,
|
| 1163 |
+
"loss": 0.1965,
|
| 1164 |
+
"step": 328
|
| 1165 |
+
},
|
| 1166 |
+
{
|
| 1167 |
+
"epoch": 2.1118210862619806,
|
| 1168 |
+
"grad_norm": 0.05500397186780569,
|
| 1169 |
+
"learning_rate": 4.94693355282872e-05,
|
| 1170 |
+
"loss": 0.1827,
|
| 1171 |
+
"step": 330
|
| 1172 |
+
},
|
| 1173 |
+
{
|
| 1174 |
+
"epoch": 2.1246006389776357,
|
| 1175 |
+
"grad_norm": 0.061606661346763424,
|
| 1176 |
+
"learning_rate": 4.893873083331882e-05,
|
| 1177 |
+
"loss": 0.2008,
|
| 1178 |
+
"step": 332
|
| 1179 |
+
},
|
| 1180 |
+
{
|
| 1181 |
+
"epoch": 2.137380191693291,
|
| 1182 |
+
"grad_norm": 0.05678242709297541,
|
| 1183 |
+
"learning_rate": 4.840824568510579e-05,
|
| 1184 |
+
"loss": 0.1853,
|
| 1185 |
+
"step": 334
|
| 1186 |
+
},
|
| 1187 |
+
{
|
| 1188 |
+
"epoch": 2.1501597444089455,
|
| 1189 |
+
"grad_norm": 0.054080318070508115,
|
| 1190 |
+
"learning_rate": 4.78779398401926e-05,
|
| 1191 |
+
"loss": 0.1952,
|
| 1192 |
+
"step": 336
|
| 1193 |
+
},
|
| 1194 |
+
{
|
| 1195 |
+
"epoch": 2.1629392971246006,
|
| 1196 |
+
"grad_norm": 0.057204881343756786,
|
| 1197 |
+
"learning_rate": 4.734787303492615e-05,
|
| 1198 |
+
"loss": 0.1778,
|
| 1199 |
+
"step": 338
|
| 1200 |
+
},
|
| 1201 |
+
{
|
| 1202 |
+
"epoch": 2.1757188498402558,
|
| 1203 |
+
"grad_norm": 0.6941487667655994,
|
| 1204 |
+
"learning_rate": 4.6818104978726685e-05,
|
| 1205 |
+
"loss": 0.219,
|
| 1206 |
+
"step": 340
|
| 1207 |
+
},
|
| 1208 |
+
{
|
| 1209 |
+
"epoch": 2.1884984025559104,
|
| 1210 |
+
"grad_norm": 0.06999590590614403,
|
| 1211 |
+
"learning_rate": 4.628869534736187e-05,
|
| 1212 |
+
"loss": 0.181,
|
| 1213 |
+
"step": 342
|
| 1214 |
+
},
|
| 1215 |
+
{
|
| 1216 |
+
"epoch": 2.2012779552715656,
|
| 1217 |
+
"grad_norm": 0.07558854262088241,
|
| 1218 |
+
"learning_rate": 4.575970377622456e-05,
|
| 1219 |
+
"loss": 0.2349,
|
| 1220 |
+
"step": 344
|
| 1221 |
+
},
|
| 1222 |
+
{
|
| 1223 |
+
"epoch": 2.2140575079872207,
|
| 1224 |
+
"grad_norm": 0.07120027160683609,
|
| 1225 |
+
"learning_rate": 4.52311898536151e-05,
|
| 1226 |
+
"loss": 0.1993,
|
| 1227 |
+
"step": 346
|
| 1228 |
+
},
|
| 1229 |
+
{
|
| 1230 |
+
"epoch": 2.2268370607028753,
|
| 1231 |
+
"grad_norm": 0.05697032990090494,
|
| 1232 |
+
"learning_rate": 4.47032131140292e-05,
|
| 1233 |
+
"loss": 0.1739,
|
| 1234 |
+
"step": 348
|
| 1235 |
+
},
|
| 1236 |
+
{
|
| 1237 |
+
"epoch": 2.2396166134185305,
|
| 1238 |
+
"grad_norm": 0.06092977319118132,
|
| 1239 |
+
"learning_rate": 4.4175833031451473e-05,
|
| 1240 |
+
"loss": 0.188,
|
| 1241 |
+
"step": 350
|
| 1242 |
+
},
|
| 1243 |
+
{
|
| 1244 |
+
"epoch": 2.252396166134185,
|
| 1245 |
+
"grad_norm": 0.05900721095602371,
|
| 1246 |
+
"learning_rate": 4.364910901265606e-05,
|
| 1247 |
+
"loss": 0.1778,
|
| 1248 |
+
"step": 352
|
| 1249 |
+
},
|
| 1250 |
+
{
|
| 1251 |
+
"epoch": 2.2651757188498403,
|
| 1252 |
+
"grad_norm": 0.08992850669862418,
|
| 1253 |
+
"learning_rate": 4.3123100390514756e-05,
|
| 1254 |
+
"loss": 0.1838,
|
| 1255 |
+
"step": 354
|
| 1256 |
+
},
|
| 1257 |
+
{
|
| 1258 |
+
"epoch": 2.2779552715654954,
|
| 1259 |
+
"grad_norm": 0.059213794143429914,
|
| 1260 |
+
"learning_rate": 4.2597866417313436e-05,
|
| 1261 |
+
"loss": 0.1902,
|
| 1262 |
+
"step": 356
|
| 1263 |
+
},
|
| 1264 |
+
{
|
| 1265 |
+
"epoch": 2.29073482428115,
|
| 1266 |
+
"grad_norm": 0.051525349318871976,
|
| 1267 |
+
"learning_rate": 4.207346625807756e-05,
|
| 1268 |
+
"loss": 0.1784,
|
| 1269 |
+
"step": 358
|
| 1270 |
+
},
|
| 1271 |
+
{
|
| 1272 |
+
"epoch": 2.303514376996805,
|
| 1273 |
+
"grad_norm": 0.055922862481655594,
|
| 1274 |
+
"learning_rate": 4.1549958983907555e-05,
|
| 1275 |
+
"loss": 0.1827,
|
| 1276 |
+
"step": 360
|
| 1277 |
+
},
|
| 1278 |
+
{
|
| 1279 |
+
"epoch": 2.31629392971246,
|
| 1280 |
+
"grad_norm": 0.054189632126131766,
|
| 1281 |
+
"learning_rate": 4.102740356532473e-05,
|
| 1282 |
+
"loss": 0.186,
|
| 1283 |
+
"step": 362
|
| 1284 |
+
},
|
| 1285 |
+
{
|
| 1286 |
+
"epoch": 2.329073482428115,
|
| 1287 |
+
"grad_norm": 0.06298745746452741,
|
| 1288 |
+
"learning_rate": 4.050585886562858e-05,
|
| 1289 |
+
"loss": 0.1854,
|
| 1290 |
+
"step": 364
|
| 1291 |
+
},
|
| 1292 |
+
{
|
| 1293 |
+
"epoch": 2.34185303514377,
|
| 1294 |
+
"grad_norm": 0.06476475169367538,
|
| 1295 |
+
"learning_rate": 3.998538363426605e-05,
|
| 1296 |
+
"loss": 0.1794,
|
| 1297 |
+
"step": 366
|
| 1298 |
+
},
|
| 1299 |
+
{
|
| 1300 |
+
"epoch": 2.3546325878594248,
|
| 1301 |
+
"grad_norm": 0.05187178001518817,
|
| 1302 |
+
"learning_rate": 3.94660365002137e-05,
|
| 1303 |
+
"loss": 0.1817,
|
| 1304 |
+
"step": 368
|
| 1305 |
+
},
|
| 1306 |
+
{
|
| 1307 |
+
"epoch": 2.36741214057508,
|
| 1308 |
+
"grad_norm": 0.05110076217610542,
|
| 1309 |
+
"learning_rate": 3.894787596537352e-05,
|
| 1310 |
+
"loss": 0.1757,
|
| 1311 |
+
"step": 370
|
| 1312 |
+
},
|
| 1313 |
+
{
|
| 1314 |
+
"epoch": 2.380191693290735,
|
| 1315 |
+
"grad_norm": 0.061027606854849537,
|
| 1316 |
+
"learning_rate": 3.843096039798293e-05,
|
| 1317 |
+
"loss": 0.1888,
|
| 1318 |
+
"step": 372
|
| 1319 |
+
},
|
| 1320 |
+
{
|
| 1321 |
+
"epoch": 2.3929712460063897,
|
| 1322 |
+
"grad_norm": 0.05689282057128392,
|
| 1323 |
+
"learning_rate": 3.791534802603988e-05,
|
| 1324 |
+
"loss": 0.1972,
|
| 1325 |
+
"step": 374
|
| 1326 |
+
},
|
| 1327 |
+
{
|
| 1328 |
+
"epoch": 2.405750798722045,
|
| 1329 |
+
"grad_norm": 0.05144327012401281,
|
| 1330 |
+
"learning_rate": 3.740109693074375e-05,
|
| 1331 |
+
"loss": 0.1975,
|
| 1332 |
+
"step": 376
|
| 1333 |
+
},
|
| 1334 |
+
{
|
| 1335 |
+
"epoch": 2.4185303514377,
|
| 1336 |
+
"grad_norm": 0.07243681779987425,
|
| 1337 |
+
"learning_rate": 3.68882650399528e-05,
|
| 1338 |
+
"loss": 0.1865,
|
| 1339 |
+
"step": 378
|
| 1340 |
+
},
|
| 1341 |
+
{
|
| 1342 |
+
"epoch": 2.4313099041533546,
|
| 1343 |
+
"grad_norm": 0.11601839655528177,
|
| 1344 |
+
"learning_rate": 3.637691012165886e-05,
|
| 1345 |
+
"loss": 0.1977,
|
| 1346 |
+
"step": 380
|
| 1347 |
+
},
|
| 1348 |
+
{
|
| 1349 |
+
"epoch": 2.4440894568690097,
|
| 1350 |
+
"grad_norm": 0.05323975029748036,
|
| 1351 |
+
"learning_rate": 3.586708977748012e-05,
|
| 1352 |
+
"loss": 0.1873,
|
| 1353 |
+
"step": 382
|
| 1354 |
+
},
|
| 1355 |
+
{
|
| 1356 |
+
"epoch": 2.4568690095846644,
|
| 1357 |
+
"grad_norm": 0.0499469664737551,
|
| 1358 |
+
"learning_rate": 3.5358861436172485e-05,
|
| 1359 |
+
"loss": 0.1832,
|
| 1360 |
+
"step": 384
|
| 1361 |
+
},
|
| 1362 |
+
{
|
| 1363 |
+
"epoch": 2.4696485623003195,
|
| 1364 |
+
"grad_norm": 0.05043024991533826,
|
| 1365 |
+
"learning_rate": 3.485228234716058e-05,
|
| 1366 |
+
"loss": 0.1821,
|
| 1367 |
+
"step": 386
|
| 1368 |
+
},
|
| 1369 |
+
{
|
| 1370 |
+
"epoch": 2.4824281150159746,
|
| 1371 |
+
"grad_norm": 0.054685112352780986,
|
| 1372 |
+
"learning_rate": 3.434740957408889e-05,
|
| 1373 |
+
"loss": 0.1816,
|
| 1374 |
+
"step": 388
|
| 1375 |
+
},
|
| 1376 |
+
{
|
| 1377 |
+
"epoch": 2.4952076677316293,
|
| 1378 |
+
"grad_norm": 0.057237969167094144,
|
| 1379 |
+
"learning_rate": 3.3844299988393755e-05,
|
| 1380 |
+
"loss": 0.1909,
|
| 1381 |
+
"step": 390
|
| 1382 |
+
},
|
| 1383 |
+
{
|
| 1384 |
+
"epoch": 2.5079872204472844,
|
| 1385 |
+
"grad_norm": 0.05134273506646416,
|
| 1386 |
+
"learning_rate": 3.334301026289712e-05,
|
| 1387 |
+
"loss": 0.1782,
|
| 1388 |
+
"step": 392
|
| 1389 |
+
},
|
| 1390 |
+
{
|
| 1391 |
+
"epoch": 2.520766773162939,
|
| 1392 |
+
"grad_norm": 0.049993934417102925,
|
| 1393 |
+
"learning_rate": 3.284359686542269e-05,
|
| 1394 |
+
"loss": 0.1928,
|
| 1395 |
+
"step": 394
|
| 1396 |
+
},
|
| 1397 |
+
{
|
| 1398 |
+
"epoch": 2.533546325878594,
|
| 1399 |
+
"grad_norm": 0.06457823051474779,
|
| 1400 |
+
"learning_rate": 3.234611605243496e-05,
|
| 1401 |
+
"loss": 0.196,
|
| 1402 |
+
"step": 396
|
| 1403 |
+
},
|
| 1404 |
+
{
|
| 1405 |
+
"epoch": 2.5463258785942493,
|
| 1406 |
+
"grad_norm": 0.051805062617152425,
|
| 1407 |
+
"learning_rate": 3.1850623862702344e-05,
|
| 1408 |
+
"loss": 0.1881,
|
| 1409 |
+
"step": 398
|
| 1410 |
+
},
|
| 1411 |
+
{
|
| 1412 |
+
"epoch": 2.559105431309904,
|
| 1413 |
+
"grad_norm": 0.049188541484928724,
|
| 1414 |
+
"learning_rate": 3.135717611098458e-05,
|
| 1415 |
+
"loss": 0.1806,
|
| 1416 |
+
"step": 400
|
| 1417 |
+
},
|
| 1418 |
+
{
|
| 1419 |
+
"epoch": 2.571884984025559,
|
| 1420 |
+
"grad_norm": 0.05687592017078177,
|
| 1421 |
+
"learning_rate": 3.086582838174551e-05,
|
| 1422 |
+
"loss": 0.1784,
|
| 1423 |
+
"step": 402
|
| 1424 |
+
},
|
| 1425 |
+
{
|
| 1426 |
+
"epoch": 2.584664536741214,
|
| 1427 |
+
"grad_norm": 0.05098573657706369,
|
| 1428 |
+
"learning_rate": 3.0376636022891812e-05,
|
| 1429 |
+
"loss": 0.1932,
|
| 1430 |
+
"step": 404
|
| 1431 |
+
},
|
| 1432 |
+
{
|
| 1433 |
+
"epoch": 2.597444089456869,
|
| 1434 |
+
"grad_norm": 0.052376381772842893,
|
| 1435 |
+
"learning_rate": 2.9889654139538246e-05,
|
| 1436 |
+
"loss": 0.1889,
|
| 1437 |
+
"step": 406
|
| 1438 |
+
},
|
| 1439 |
+
{
|
| 1440 |
+
"epoch": 2.610223642172524,
|
| 1441 |
+
"grad_norm": 0.05031660077056393,
|
| 1442 |
+
"learning_rate": 2.9404937587800375e-05,
|
| 1443 |
+
"loss": 0.1769,
|
| 1444 |
+
"step": 408
|
| 1445 |
+
},
|
| 1446 |
+
{
|
| 1447 |
+
"epoch": 2.623003194888179,
|
| 1448 |
+
"grad_norm": 0.04930354808056054,
|
| 1449 |
+
"learning_rate": 2.8922540968615286e-05,
|
| 1450 |
+
"loss": 0.1685,
|
| 1451 |
+
"step": 410
|
| 1452 |
+
},
|
| 1453 |
+
{
|
| 1454 |
+
"epoch": 2.635782747603834,
|
| 1455 |
+
"grad_norm": 0.06709139465230578,
|
| 1456 |
+
"learning_rate": 2.8442518621591086e-05,
|
| 1457 |
+
"loss": 0.1785,
|
| 1458 |
+
"step": 412
|
| 1459 |
+
},
|
| 1460 |
+
{
|
| 1461 |
+
"epoch": 2.648562300319489,
|
| 1462 |
+
"grad_norm": 0.0503489735828908,
|
| 1463 |
+
"learning_rate": 2.7964924618885778e-05,
|
| 1464 |
+
"loss": 0.1689,
|
| 1465 |
+
"step": 414
|
| 1466 |
+
},
|
| 1467 |
+
{
|
| 1468 |
+
"epoch": 2.661341853035144,
|
| 1469 |
+
"grad_norm": 0.05047783892143097,
|
| 1470 |
+
"learning_rate": 2.748981275911633e-05,
|
| 1471 |
+
"loss": 0.1808,
|
| 1472 |
+
"step": 416
|
| 1473 |
+
},
|
| 1474 |
+
{
|
| 1475 |
+
"epoch": 2.6741214057507987,
|
| 1476 |
+
"grad_norm": 0.04955419672921838,
|
| 1477 |
+
"learning_rate": 2.701723656129851e-05,
|
| 1478 |
+
"loss": 0.1727,
|
| 1479 |
+
"step": 418
|
| 1480 |
+
},
|
| 1481 |
+
{
|
| 1482 |
+
"epoch": 2.686900958466454,
|
| 1483 |
+
"grad_norm": 0.04769759775271665,
|
| 1484 |
+
"learning_rate": 2.6547249258818164e-05,
|
| 1485 |
+
"loss": 0.1708,
|
| 1486 |
+
"step": 420
|
| 1487 |
+
},
|
| 1488 |
+
{
|
| 1489 |
+
"epoch": 2.6996805111821085,
|
| 1490 |
+
"grad_norm": 0.050324696099913684,
|
| 1491 |
+
"learning_rate": 2.607990379343489e-05,
|
| 1492 |
+
"loss": 0.1817,
|
| 1493 |
+
"step": 422
|
| 1494 |
+
},
|
| 1495 |
+
{
|
| 1496 |
+
"epoch": 2.7124600638977636,
|
| 1497 |
+
"grad_norm": 0.05249496210993974,
|
| 1498 |
+
"learning_rate": 2.5615252809318284e-05,
|
| 1499 |
+
"loss": 0.1836,
|
| 1500 |
+
"step": 424
|
| 1501 |
+
},
|
| 1502 |
+
{
|
| 1503 |
+
"epoch": 2.7252396166134183,
|
| 1504 |
+
"grad_norm": 0.0472378188955872,
|
| 1505 |
+
"learning_rate": 2.5153348647117857e-05,
|
| 1506 |
+
"loss": 0.1736,
|
| 1507 |
+
"step": 426
|
| 1508 |
+
},
|
| 1509 |
+
{
|
| 1510 |
+
"epoch": 2.7380191693290734,
|
| 1511 |
+
"grad_norm": 0.049243154928981264,
|
| 1512 |
+
"learning_rate": 2.469424333806718e-05,
|
| 1513 |
+
"loss": 0.1675,
|
| 1514 |
+
"step": 428
|
| 1515 |
+
},
|
| 1516 |
+
{
|
| 1517 |
+
"epoch": 2.7507987220447285,
|
| 1518 |
+
"grad_norm": 0.05096273109137321,
|
| 1519 |
+
"learning_rate": 2.4237988598122752e-05,
|
| 1520 |
+
"loss": 0.1658,
|
| 1521 |
+
"step": 430
|
| 1522 |
+
},
|
| 1523 |
+
{
|
| 1524 |
+
"epoch": 2.763578274760383,
|
| 1525 |
+
"grad_norm": 0.0514806212844811,
|
| 1526 |
+
"learning_rate": 2.3784635822138424e-05,
|
| 1527 |
+
"loss": 0.1922,
|
| 1528 |
+
"step": 432
|
| 1529 |
+
},
|
| 1530 |
+
{
|
| 1531 |
+
"epoch": 2.7763578274760383,
|
| 1532 |
+
"grad_norm": 0.05006269553229606,
|
| 1533 |
+
"learning_rate": 2.333423607807613e-05,
|
| 1534 |
+
"loss": 0.1887,
|
| 1535 |
+
"step": 434
|
| 1536 |
+
},
|
| 1537 |
+
{
|
| 1538 |
+
"epoch": 2.7891373801916934,
|
| 1539 |
+
"grad_norm": 0.04935551516167026,
|
| 1540 |
+
"learning_rate": 2.288684010125325e-05,
|
| 1541 |
+
"loss": 0.1763,
|
| 1542 |
+
"step": 436
|
| 1543 |
+
},
|
| 1544 |
+
{
|
| 1545 |
+
"epoch": 2.801916932907348,
|
| 1546 |
+
"grad_norm": 0.05353903496894845,
|
| 1547 |
+
"learning_rate": 2.2442498288627556e-05,
|
| 1548 |
+
"loss": 0.1944,
|
| 1549 |
+
"step": 438
|
| 1550 |
+
},
|
| 1551 |
+
{
|
| 1552 |
+
"epoch": 2.8146964856230032,
|
| 1553 |
+
"grad_norm": 0.04697149845887787,
|
| 1554 |
+
"learning_rate": 2.2001260693120233e-05,
|
| 1555 |
+
"loss": 0.1672,
|
| 1556 |
+
"step": 440
|
| 1557 |
+
},
|
| 1558 |
+
{
|
| 1559 |
+
"epoch": 2.8274760383386583,
|
| 1560 |
+
"grad_norm": 0.054384654770629585,
|
| 1561 |
+
"learning_rate": 2.156317701797766e-05,
|
| 1562 |
+
"loss": 0.1807,
|
| 1563 |
+
"step": 442
|
| 1564 |
+
},
|
| 1565 |
+
{
|
| 1566 |
+
"epoch": 2.840255591054313,
|
| 1567 |
+
"grad_norm": 0.04684823569442938,
|
| 1568 |
+
"learning_rate": 2.1128296611172593e-05,
|
| 1569 |
+
"loss": 0.171,
|
| 1570 |
+
"step": 444
|
| 1571 |
+
},
|
| 1572 |
+
{
|
| 1573 |
+
"epoch": 2.853035143769968,
|
| 1574 |
+
"grad_norm": 0.0498371244165766,
|
| 1575 |
+
"learning_rate": 2.0696668459845355e-05,
|
| 1576 |
+
"loss": 0.1827,
|
| 1577 |
+
"step": 446
|
| 1578 |
+
},
|
| 1579 |
+
{
|
| 1580 |
+
"epoch": 2.8658146964856233,
|
| 1581 |
+
"grad_norm": 0.04969475724913098,
|
| 1582 |
+
"learning_rate": 2.026834118478567e-05,
|
| 1583 |
+
"loss": 0.1749,
|
| 1584 |
+
"step": 448
|
| 1585 |
+
},
|
| 1586 |
+
{
|
| 1587 |
+
"epoch": 2.878594249201278,
|
| 1588 |
+
"grad_norm": 0.051902756416916496,
|
| 1589 |
+
"learning_rate": 1.98433630349558e-05,
|
| 1590 |
+
"loss": 0.1891,
|
| 1591 |
+
"step": 450
|
| 1592 |
+
},
|
| 1593 |
+
{
|
| 1594 |
+
"epoch": 2.891373801916933,
|
| 1595 |
+
"grad_norm": 0.05102564026340021,
|
| 1596 |
+
"learning_rate": 1.9421781882055444e-05,
|
| 1597 |
+
"loss": 0.1849,
|
| 1598 |
+
"step": 452
|
| 1599 |
+
},
|
| 1600 |
+
{
|
| 1601 |
+
"epoch": 2.9041533546325877,
|
| 1602 |
+
"grad_norm": 0.05200929870376942,
|
| 1603 |
+
"learning_rate": 1.9003645215129355e-05,
|
| 1604 |
+
"loss": 0.1891,
|
| 1605 |
+
"step": 454
|
| 1606 |
+
},
|
| 1607 |
+
{
|
| 1608 |
+
"epoch": 2.916932907348243,
|
| 1609 |
+
"grad_norm": 0.05083154953396676,
|
| 1610 |
+
"learning_rate": 1.858900013521788e-05,
|
| 1611 |
+
"loss": 0.179,
|
| 1612 |
+
"step": 456
|
| 1613 |
+
},
|
| 1614 |
+
{
|
| 1615 |
+
"epoch": 2.9297124600638975,
|
| 1616 |
+
"grad_norm": 0.049127219472404525,
|
| 1617 |
+
"learning_rate": 1.817789335005121e-05,
|
| 1618 |
+
"loss": 0.17,
|
| 1619 |
+
"step": 458
|
| 1620 |
+
},
|
| 1621 |
+
{
|
| 1622 |
+
"epoch": 2.9424920127795526,
|
| 1623 |
+
"grad_norm": 0.049677004679461886,
|
| 1624 |
+
"learning_rate": 1.777037116878804e-05,
|
| 1625 |
+
"loss": 0.1831,
|
| 1626 |
+
"step": 460
|
| 1627 |
+
},
|
| 1628 |
+
{
|
| 1629 |
+
"epoch": 2.9552715654952078,
|
| 1630 |
+
"grad_norm": 0.054496479788018075,
|
| 1631 |
+
"learning_rate": 1.7366479496799077e-05,
|
| 1632 |
+
"loss": 0.1843,
|
| 1633 |
+
"step": 462
|
| 1634 |
+
},
|
| 1635 |
+
{
|
| 1636 |
+
"epoch": 2.9680511182108624,
|
| 1637 |
+
"grad_norm": 0.04820092295738451,
|
| 1638 |
+
"learning_rate": 1.6966263830495936e-05,
|
| 1639 |
+
"loss": 0.1685,
|
| 1640 |
+
"step": 464
|
| 1641 |
+
},
|
| 1642 |
+
{
|
| 1643 |
+
"epoch": 2.9808306709265175,
|
| 1644 |
+
"grad_norm": 0.04915420841884947,
|
| 1645 |
+
"learning_rate": 1.656976925220633e-05,
|
| 1646 |
+
"loss": 0.1875,
|
| 1647 |
+
"step": 466
|
| 1648 |
+
},
|
| 1649 |
+
{
|
| 1650 |
+
"epoch": 2.9936102236421727,
|
| 1651 |
+
"grad_norm": 0.07661474807504913,
|
| 1652 |
+
"learning_rate": 1.6177040425095662e-05,
|
| 1653 |
+
"loss": 0.1891,
|
| 1654 |
+
"step": 468
|
| 1655 |
+
},
|
| 1656 |
+
{
|
| 1657 |
+
"epoch": 3.0079872204472844,
|
| 1658 |
+
"grad_norm": 0.07655695803476695,
|
| 1659 |
+
"learning_rate": 1.5788121588135975e-05,
|
| 1660 |
+
"loss": 0.1837,
|
| 1661 |
+
"step": 470
|
| 1662 |
+
},
|
| 1663 |
+
{
|
| 1664 |
+
"epoch": 3.0207667731629395,
|
| 1665 |
+
"grad_norm": 0.060916330302725,
|
| 1666 |
+
"learning_rate": 1.5403056551122697e-05,
|
| 1667 |
+
"loss": 0.0872,
|
| 1668 |
+
"step": 472
|
| 1669 |
+
},
|
| 1670 |
+
{
|
| 1671 |
+
"epoch": 3.033546325878594,
|
| 1672 |
+
"grad_norm": 0.052542395235648506,
|
| 1673 |
+
"learning_rate": 1.5021888689739549e-05,
|
| 1674 |
+
"loss": 0.0778,
|
| 1675 |
+
"step": 474
|
| 1676 |
+
},
|
| 1677 |
+
{
|
| 1678 |
+
"epoch": 3.0463258785942493,
|
| 1679 |
+
"grad_norm": 0.20368087770560855,
|
| 1680 |
+
"learning_rate": 1.4644660940672627e-05,
|
| 1681 |
+
"loss": 0.102,
|
| 1682 |
+
"step": 476
|
| 1683 |
+
},
|
| 1684 |
+
{
|
| 1685 |
+
"epoch": 3.059105431309904,
|
| 1686 |
+
"grad_norm": 0.10396707161226072,
|
| 1687 |
+
"learning_rate": 1.427141579677374e-05,
|
| 1688 |
+
"loss": 0.083,
|
| 1689 |
+
"step": 478
|
| 1690 |
+
},
|
| 1691 |
+
{
|
| 1692 |
+
"epoch": 3.071884984025559,
|
| 1693 |
+
"grad_norm": 0.04599720220665865,
|
| 1694 |
+
"learning_rate": 1.3902195302273779e-05,
|
| 1695 |
+
"loss": 0.0757,
|
| 1696 |
+
"step": 480
|
| 1697 |
+
},
|
| 1698 |
+
{
|
| 1699 |
+
"epoch": 3.084664536741214,
|
| 1700 |
+
"grad_norm": 0.056109340867354925,
|
| 1701 |
+
"learning_rate": 1.3537041048046695e-05,
|
| 1702 |
+
"loss": 0.081,
|
| 1703 |
+
"step": 482
|
| 1704 |
+
},
|
| 1705 |
+
{
|
| 1706 |
+
"epoch": 3.097444089456869,
|
| 1707 |
+
"grad_norm": 0.048015102375770044,
|
| 1708 |
+
"learning_rate": 1.3175994166924394e-05,
|
| 1709 |
+
"loss": 0.0802,
|
| 1710 |
+
"step": 484
|
| 1711 |
+
},
|
| 1712 |
+
{
|
| 1713 |
+
"epoch": 3.110223642172524,
|
| 1714 |
+
"grad_norm": 0.04645228076024571,
|
| 1715 |
+
"learning_rate": 1.2819095329063469e-05,
|
| 1716 |
+
"loss": 0.0787,
|
| 1717 |
+
"step": 486
|
| 1718 |
+
},
|
| 1719 |
+
{
|
| 1720 |
+
"epoch": 3.123003194888179,
|
| 1721 |
+
"grad_norm": 0.04637085498651796,
|
| 1722 |
+
"learning_rate": 1.246638473736378e-05,
|
| 1723 |
+
"loss": 0.0839,
|
| 1724 |
+
"step": 488
|
| 1725 |
+
},
|
| 1726 |
+
{
|
| 1727 |
+
"epoch": 3.135782747603834,
|
| 1728 |
+
"grad_norm": 0.05039074009256794,
|
| 1729 |
+
"learning_rate": 1.2117902122939861e-05,
|
| 1730 |
+
"loss": 0.0812,
|
| 1731 |
+
"step": 490
|
| 1732 |
+
},
|
| 1733 |
+
{
|
| 1734 |
+
"epoch": 3.148562300319489,
|
| 1735 |
+
"grad_norm": 0.05079569512274489,
|
| 1736 |
+
"learning_rate": 1.1773686740645384e-05,
|
| 1737 |
+
"loss": 0.0797,
|
| 1738 |
+
"step": 492
|
| 1739 |
+
},
|
| 1740 |
+
{
|
| 1741 |
+
"epoch": 3.1613418530351436,
|
| 1742 |
+
"grad_norm": 0.04286375870307716,
|
| 1743 |
+
"learning_rate": 1.1433777364651271e-05,
|
| 1744 |
+
"loss": 0.0737,
|
| 1745 |
+
"step": 494
|
| 1746 |
+
},
|
| 1747 |
+
{
|
| 1748 |
+
"epoch": 3.1741214057507987,
|
| 1749 |
+
"grad_norm": 0.03982951021947898,
|
| 1750 |
+
"learning_rate": 1.1098212284078036e-05,
|
| 1751 |
+
"loss": 0.0722,
|
| 1752 |
+
"step": 496
|
| 1753 |
+
},
|
| 1754 |
+
{
|
| 1755 |
+
"epoch": 3.186900958466454,
|
| 1756 |
+
"grad_norm": 0.0446624849328897,
|
| 1757 |
+
"learning_rate": 1.076702929868264e-05,
|
| 1758 |
+
"loss": 0.079,
|
| 1759 |
+
"step": 498
|
| 1760 |
+
},
|
| 1761 |
+
{
|
| 1762 |
+
"epoch": 3.1996805111821085,
|
| 1763 |
+
"grad_norm": 0.04376807908723891,
|
| 1764 |
+
"learning_rate": 1.0440265714600572e-05,
|
| 1765 |
+
"loss": 0.0837,
|
| 1766 |
+
"step": 500
|
| 1767 |
+
},
|
| 1768 |
+
{
|
| 1769 |
+
"epoch": 3.2124600638977636,
|
| 1770 |
+
"grad_norm": 0.04087367539850916,
|
| 1771 |
+
"learning_rate": 1.0117958340143507e-05,
|
| 1772 |
+
"loss": 0.076,
|
| 1773 |
+
"step": 502
|
| 1774 |
+
},
|
| 1775 |
+
{
|
| 1776 |
+
"epoch": 3.2252396166134187,
|
| 1777 |
+
"grad_norm": 0.04066584417219993,
|
| 1778 |
+
"learning_rate": 9.800143481652979e-06,
|
| 1779 |
+
"loss": 0.0701,
|
| 1780 |
+
"step": 504
|
| 1781 |
+
},
|
| 1782 |
+
{
|
| 1783 |
+
"epoch": 3.2380191693290734,
|
| 1784 |
+
"grad_norm": 0.08215263649470263,
|
| 1785 |
+
"learning_rate": 9.48685693941067e-06,
|
| 1786 |
+
"loss": 0.0776,
|
| 1787 |
+
"step": 506
|
| 1788 |
+
},
|
| 1789 |
+
{
|
| 1790 |
+
"epoch": 3.2507987220447285,
|
| 1791 |
+
"grad_norm": 0.0437601284673361,
|
| 1792 |
+
"learning_rate": 9.17813400360572e-06,
|
| 1793 |
+
"loss": 0.0764,
|
| 1794 |
+
"step": 508
|
| 1795 |
+
},
|
| 1796 |
+
{
|
| 1797 |
+
"epoch": 3.263578274760383,
|
| 1798 |
+
"grad_norm": 0.04382435518426366,
|
| 1799 |
+
"learning_rate": 8.874009450359427e-06,
|
| 1800 |
+
"loss": 0.0826,
|
| 1801 |
+
"step": 510
|
| 1802 |
+
},
|
| 1803 |
+
{
|
| 1804 |
+
"epoch": 3.2763578274760383,
|
| 1805 |
+
"grad_norm": 0.04095610913441161,
|
| 1806 |
+
"learning_rate": 8.574517537807897e-06,
|
| 1807 |
+
"loss": 0.0753,
|
| 1808 |
+
"step": 512
|
| 1809 |
+
},
|
| 1810 |
+
{
|
| 1811 |
+
"epoch": 3.2891373801916934,
|
| 1812 |
+
"grad_norm": 0.040525949300480126,
|
| 1813 |
+
"learning_rate": 8.279692002243027e-06,
|
| 1814 |
+
"loss": 0.0764,
|
| 1815 |
+
"step": 514
|
| 1816 |
+
},
|
| 1817 |
+
{
|
| 1818 |
+
"epoch": 3.301916932907348,
|
| 1819 |
+
"grad_norm": 0.043675586209021296,
|
| 1820 |
+
"learning_rate": 7.989566054312287e-06,
|
| 1821 |
+
"loss": 0.0817,
|
| 1822 |
+
"step": 516
|
| 1823 |
+
},
|
| 1824 |
+
{
|
| 1825 |
+
"epoch": 3.3146964856230032,
|
| 1826 |
+
"grad_norm": 0.04319420448553361,
|
| 1827 |
+
"learning_rate": 7.704172375277691e-06,
|
| 1828 |
+
"loss": 0.0759,
|
| 1829 |
+
"step": 518
|
| 1830 |
+
},
|
| 1831 |
+
{
|
| 1832 |
+
"epoch": 3.3274760383386583,
|
| 1833 |
+
"grad_norm": 0.044446852802239034,
|
| 1834 |
+
"learning_rate": 7.423543113334436e-06,
|
| 1835 |
+
"loss": 0.0813,
|
| 1836 |
+
"step": 520
|
| 1837 |
+
},
|
| 1838 |
+
{
|
| 1839 |
+
"epoch": 3.340255591054313,
|
| 1840 |
+
"grad_norm": 0.09121973616663154,
|
| 1841 |
+
"learning_rate": 7.14770987998954e-06,
|
| 1842 |
+
"loss": 0.0838,
|
| 1843 |
+
"step": 522
|
| 1844 |
+
},
|
| 1845 |
+
{
|
| 1846 |
+
"epoch": 3.353035143769968,
|
| 1847 |
+
"grad_norm": 0.05879997473879583,
|
| 1848 |
+
"learning_rate": 6.876703746500984e-06,
|
| 1849 |
+
"loss": 0.0738,
|
| 1850 |
+
"step": 524
|
| 1851 |
+
},
|
| 1852 |
+
{
|
| 1853 |
+
"epoch": 3.365814696485623,
|
| 1854 |
+
"grad_norm": 0.04667273388126841,
|
| 1855 |
+
"learning_rate": 6.610555240377652e-06,
|
| 1856 |
+
"loss": 0.0787,
|
| 1857 |
+
"step": 526
|
| 1858 |
+
},
|
| 1859 |
+
{
|
| 1860 |
+
"epoch": 3.378594249201278,
|
| 1861 |
+
"grad_norm": 0.042105033545020404,
|
| 1862 |
+
"learning_rate": 6.349294341940593e-06,
|
| 1863 |
+
"loss": 0.0801,
|
| 1864 |
+
"step": 528
|
| 1865 |
+
},
|
| 1866 |
+
{
|
| 1867 |
+
"epoch": 3.391373801916933,
|
| 1868 |
+
"grad_norm": 0.0407975465413022,
|
| 1869 |
+
"learning_rate": 6.092950480945897e-06,
|
| 1870 |
+
"loss": 0.0735,
|
| 1871 |
+
"step": 530
|
| 1872 |
+
},
|
| 1873 |
+
{
|
| 1874 |
+
"epoch": 3.4041533546325877,
|
| 1875 |
+
"grad_norm": 0.04234912863253251,
|
| 1876 |
+
"learning_rate": 5.841552533269534e-06,
|
| 1877 |
+
"loss": 0.0772,
|
| 1878 |
+
"step": 532
|
| 1879 |
+
},
|
| 1880 |
+
{
|
| 1881 |
+
"epoch": 3.416932907348243,
|
| 1882 |
+
"grad_norm": 0.04032120711392374,
|
| 1883 |
+
"learning_rate": 5.595128817654638e-06,
|
| 1884 |
+
"loss": 0.0749,
|
| 1885 |
+
"step": 534
|
| 1886 |
+
},
|
| 1887 |
+
{
|
| 1888 |
+
"epoch": 3.4297124600638975,
|
| 1889 |
+
"grad_norm": 0.041050930036482094,
|
| 1890 |
+
"learning_rate": 5.353707092521582e-06,
|
| 1891 |
+
"loss": 0.0769,
|
| 1892 |
+
"step": 536
|
| 1893 |
+
},
|
| 1894 |
+
{
|
| 1895 |
+
"epoch": 3.4424920127795526,
|
| 1896 |
+
"grad_norm": 0.043382176933190755,
|
| 1897 |
+
"learning_rate": 5.117314552841052e-06,
|
| 1898 |
+
"loss": 0.0767,
|
| 1899 |
+
"step": 538
|
| 1900 |
+
},
|
| 1901 |
+
{
|
| 1902 |
+
"epoch": 3.4552715654952078,
|
| 1903 |
+
"grad_norm": 0.039240502138117625,
|
| 1904 |
+
"learning_rate": 4.885977827070748e-06,
|
| 1905 |
+
"loss": 0.0721,
|
| 1906 |
+
"step": 540
|
| 1907 |
+
},
|
| 1908 |
+
{
|
| 1909 |
+
"epoch": 3.4680511182108624,
|
| 1910 |
+
"grad_norm": 0.040812347040587296,
|
| 1911 |
+
"learning_rate": 4.659722974155767e-06,
|
| 1912 |
+
"loss": 0.1114,
|
| 1913 |
+
"step": 542
|
| 1914 |
+
},
|
| 1915 |
+
{
|
| 1916 |
+
"epoch": 3.4808306709265175,
|
| 1917 |
+
"grad_norm": 0.0423787622918925,
|
| 1918 |
+
"learning_rate": 4.43857548059321e-06,
|
| 1919 |
+
"loss": 0.0778,
|
| 1920 |
+
"step": 544
|
| 1921 |
+
},
|
| 1922 |
+
{
|
| 1923 |
+
"epoch": 3.4936102236421727,
|
| 1924 |
+
"grad_norm": 0.042228923687598445,
|
| 1925 |
+
"learning_rate": 4.2225602575612755e-06,
|
| 1926 |
+
"loss": 0.0814,
|
| 1927 |
+
"step": 546
|
| 1928 |
+
},
|
| 1929 |
+
{
|
| 1930 |
+
"epoch": 3.5063897763578273,
|
| 1931 |
+
"grad_norm": 0.0407267289339222,
|
| 1932 |
+
"learning_rate": 4.011701638113063e-06,
|
| 1933 |
+
"loss": 0.0782,
|
| 1934 |
+
"step": 548
|
| 1935 |
+
},
|
| 1936 |
+
{
|
| 1937 |
+
"epoch": 3.5191693290734825,
|
| 1938 |
+
"grad_norm": 0.0389855165359938,
|
| 1939 |
+
"learning_rate": 3.8060233744356633e-06,
|
| 1940 |
+
"loss": 0.0789,
|
| 1941 |
+
"step": 550
|
| 1942 |
+
},
|
| 1943 |
+
{
|
| 1944 |
+
"epoch": 3.5319488817891376,
|
| 1945 |
+
"grad_norm": 0.040904703617676376,
|
| 1946 |
+
"learning_rate": 3.605548635174533e-06,
|
| 1947 |
+
"loss": 0.078,
|
| 1948 |
+
"step": 552
|
| 1949 |
+
},
|
| 1950 |
+
{
|
| 1951 |
+
"epoch": 3.5447284345047922,
|
| 1952 |
+
"grad_norm": 0.04093280012624571,
|
| 1953 |
+
"learning_rate": 3.410300002823691e-06,
|
| 1954 |
+
"loss": 0.0777,
|
| 1955 |
+
"step": 554
|
| 1956 |
+
},
|
| 1957 |
+
{
|
| 1958 |
+
"epoch": 3.5575079872204474,
|
| 1959 |
+
"grad_norm": 0.042904856841507744,
|
| 1960 |
+
"learning_rate": 3.220299471181898e-06,
|
| 1961 |
+
"loss": 0.0757,
|
| 1962 |
+
"step": 556
|
| 1963 |
+
},
|
| 1964 |
+
{
|
| 1965 |
+
"epoch": 3.5702875399361025,
|
| 1966 |
+
"grad_norm": 0.0436449067886704,
|
| 1967 |
+
"learning_rate": 3.035568442875136e-06,
|
| 1968 |
+
"loss": 0.0798,
|
| 1969 |
+
"step": 558
|
| 1970 |
+
},
|
| 1971 |
+
{
|
| 1972 |
+
"epoch": 3.583067092651757,
|
| 1973 |
+
"grad_norm": 0.035664776931118955,
|
| 1974 |
+
"learning_rate": 2.85612772694579e-06,
|
| 1975 |
+
"loss": 0.0632,
|
| 1976 |
+
"step": 560
|
| 1977 |
+
},
|
| 1978 |
+
{
|
| 1979 |
+
"epoch": 3.5958466453674123,
|
| 1980 |
+
"grad_norm": 0.03847526723825484,
|
| 1981 |
+
"learning_rate": 2.6819975365085237e-06,
|
| 1982 |
+
"loss": 0.0744,
|
| 1983 |
+
"step": 562
|
| 1984 |
+
},
|
| 1985 |
+
{
|
| 1986 |
+
"epoch": 3.608626198083067,
|
| 1987 |
+
"grad_norm": 0.039939236612970476,
|
| 1988 |
+
"learning_rate": 2.5131974864734066e-06,
|
| 1989 |
+
"loss": 0.0794,
|
| 1990 |
+
"step": 564
|
| 1991 |
+
},
|
| 1992 |
+
{
|
| 1993 |
+
"epoch": 3.621405750798722,
|
| 1994 |
+
"grad_norm": 0.040388305870748,
|
| 1995 |
+
"learning_rate": 2.349746591336405e-06,
|
| 1996 |
+
"loss": 0.0718,
|
| 1997 |
+
"step": 566
|
| 1998 |
+
},
|
| 1999 |
+
{
|
| 2000 |
+
"epoch": 3.6341853035143767,
|
| 2001 |
+
"grad_norm": 0.04232813426430434,
|
| 2002 |
+
"learning_rate": 2.191663263037458e-06,
|
| 2003 |
+
"loss": 0.0769,
|
| 2004 |
+
"step": 568
|
| 2005 |
+
},
|
| 2006 |
+
{
|
| 2007 |
+
"epoch": 3.646964856230032,
|
| 2008 |
+
"grad_norm": 0.04213845492527589,
|
| 2009 |
+
"learning_rate": 2.0389653088865036e-06,
|
| 2010 |
+
"loss": 0.0728,
|
| 2011 |
+
"step": 570
|
| 2012 |
+
},
|
| 2013 |
+
{
|
| 2014 |
+
"epoch": 3.659744408945687,
|
| 2015 |
+
"grad_norm": 0.04098999517730541,
|
| 2016 |
+
"learning_rate": 1.8916699295575324e-06,
|
| 2017 |
+
"loss": 0.0724,
|
| 2018 |
+
"step": 572
|
| 2019 |
+
},
|
| 2020 |
+
{
|
| 2021 |
+
"epoch": 3.6725239616613417,
|
| 2022 |
+
"grad_norm": 0.037533240934183365,
|
| 2023 |
+
"learning_rate": 1.7497937171510547e-06,
|
| 2024 |
+
"loss": 0.0709,
|
| 2025 |
+
"step": 574
|
| 2026 |
+
},
|
| 2027 |
+
{
|
| 2028 |
+
"epoch": 3.6853035143769968,
|
| 2029 |
+
"grad_norm": 0.039040304607963414,
|
| 2030 |
+
"learning_rate": 1.6133526533250565e-06,
|
| 2031 |
+
"loss": 0.0756,
|
| 2032 |
+
"step": 576
|
| 2033 |
+
},
|
| 2034 |
+
{
|
| 2035 |
+
"epoch": 3.698083067092652,
|
| 2036 |
+
"grad_norm": 0.04065729024121047,
|
| 2037 |
+
"learning_rate": 1.4823621074947503e-06,
|
| 2038 |
+
"loss": 0.0774,
|
| 2039 |
+
"step": 578
|
| 2040 |
+
},
|
| 2041 |
+
{
|
| 2042 |
+
"epoch": 3.7108626198083066,
|
| 2043 |
+
"grad_norm": 0.04252602887603373,
|
| 2044 |
+
"learning_rate": 1.3568368351012717e-06,
|
| 2045 |
+
"loss": 0.0824,
|
| 2046 |
+
"step": 580
|
| 2047 |
+
},
|
| 2048 |
+
{
|
| 2049 |
+
"epoch": 3.7236421725239617,
|
| 2050 |
+
"grad_norm": 0.04343672134882273,
|
| 2051 |
+
"learning_rate": 1.236790975949592e-06,
|
| 2052 |
+
"loss": 0.074,
|
| 2053 |
+
"step": 582
|
| 2054 |
+
},
|
| 2055 |
+
{
|
| 2056 |
+
"epoch": 3.736421725239617,
|
| 2057 |
+
"grad_norm": 0.0403766223584342,
|
| 2058 |
+
"learning_rate": 1.1222380526156928e-06,
|
| 2059 |
+
"loss": 0.0755,
|
| 2060 |
+
"step": 584
|
| 2061 |
+
},
|
| 2062 |
+
{
|
| 2063 |
+
"epoch": 3.7492012779552715,
|
| 2064 |
+
"grad_norm": 0.04234625541762105,
|
| 2065 |
+
"learning_rate": 1.0131909689233442e-06,
|
| 2066 |
+
"loss": 0.0814,
|
| 2067 |
+
"step": 586
|
| 2068 |
+
},
|
| 2069 |
+
{
|
| 2070 |
+
"epoch": 3.7619808306709266,
|
| 2071 |
+
"grad_norm": 0.03861507912847567,
|
| 2072 |
+
"learning_rate": 9.096620084905472e-07,
|
| 2073 |
+
"loss": 0.0664,
|
| 2074 |
+
"step": 588
|
| 2075 |
+
},
|
| 2076 |
+
{
|
| 2077 |
+
"epoch": 3.7747603833865817,
|
| 2078 |
+
"grad_norm": 0.041892733843973705,
|
| 2079 |
+
"learning_rate": 8.11662833345822e-07,
|
| 2080 |
+
"loss": 0.0832,
|
| 2081 |
+
"step": 590
|
| 2082 |
+
},
|
| 2083 |
+
{
|
| 2084 |
+
"epoch": 3.7875399361022364,
|
| 2085 |
+
"grad_norm": 0.05413889236863839,
|
| 2086 |
+
"learning_rate": 7.192044826145771e-07,
|
| 2087 |
+
"loss": 0.0921,
|
| 2088 |
+
"step": 592
|
| 2089 |
+
},
|
| 2090 |
+
{
|
| 2091 |
+
"epoch": 3.8003194888178915,
|
| 2092 |
+
"grad_norm": 0.04010280150213322,
|
| 2093 |
+
"learning_rate": 6.322973712755697e-07,
|
| 2094 |
+
"loss": 0.0752,
|
| 2095 |
+
"step": 594
|
| 2096 |
+
},
|
| 2097 |
+
{
|
| 2098 |
+
"epoch": 3.813099041533546,
|
| 2099 |
+
"grad_norm": 0.04321423418162425,
|
| 2100 |
+
"learning_rate": 5.509512889877333e-07,
|
| 2101 |
+
"loss": 0.0781,
|
| 2102 |
+
"step": 596
|
| 2103 |
+
},
|
| 2104 |
+
{
|
| 2105 |
+
"epoch": 3.8258785942492013,
|
| 2106 |
+
"grad_norm": 0.04049679761598481,
|
| 2107 |
+
"learning_rate": 4.7517539898741524e-07,
|
| 2108 |
+
"loss": 0.0694,
|
| 2109 |
+
"step": 598
|
| 2110 |
+
},
|
| 2111 |
+
{
|
| 2112 |
+
"epoch": 3.838658146964856,
|
| 2113 |
+
"grad_norm": 0.04258434666712487,
|
| 2114 |
+
"learning_rate": 4.049782370561583e-07,
|
| 2115 |
+
"loss": 0.0756,
|
| 2116 |
+
"step": 600
|
| 2117 |
+
},
|
| 2118 |
+
{
|
| 2119 |
+
"epoch": 3.851437699680511,
|
| 2120 |
+
"grad_norm": 0.03927978960342531,
|
| 2121 |
+
"learning_rate": 3.4036771055923066e-07,
|
| 2122 |
+
"loss": 0.075,
|
| 2123 |
+
"step": 602
|
| 2124 |
+
},
|
| 2125 |
+
{
|
| 2126 |
+
"epoch": 3.864217252396166,
|
| 2127 |
+
"grad_norm": 0.04093422273122725,
|
| 2128 |
+
"learning_rate": 2.813510975548772e-07,
|
| 2129 |
+
"loss": 0.0793,
|
| 2130 |
+
"step": 604
|
| 2131 |
+
},
|
| 2132 |
+
{
|
| 2133 |
+
"epoch": 3.876996805111821,
|
| 2134 |
+
"grad_norm": 0.0433141394014271,
|
| 2135 |
+
"learning_rate": 2.2793504597447002e-07,
|
| 2136 |
+
"loss": 0.0796,
|
| 2137 |
+
"step": 606
|
| 2138 |
+
},
|
| 2139 |
+
{
|
| 2140 |
+
"epoch": 3.889776357827476,
|
| 2141 |
+
"grad_norm": 0.04198937065288365,
|
| 2142 |
+
"learning_rate": 1.8012557287367392e-07,
|
| 2143 |
+
"loss": 0.0753,
|
| 2144 |
+
"step": 608
|
| 2145 |
+
},
|
| 2146 |
+
{
|
| 2147 |
+
"epoch": 3.902555910543131,
|
| 2148 |
+
"grad_norm": 0.043002763720086865,
|
| 2149 |
+
"learning_rate": 1.379280637546443e-07,
|
| 2150 |
+
"loss": 0.0917,
|
| 2151 |
+
"step": 610
|
| 2152 |
+
},
|
| 2153 |
+
{
|
| 2154 |
+
"epoch": 3.915335463258786,
|
| 2155 |
+
"grad_norm": 0.042376326172823574,
|
| 2156 |
+
"learning_rate": 1.0134727195937333e-07,
|
| 2157 |
+
"loss": 0.0747,
|
| 2158 |
+
"step": 612
|
| 2159 |
+
},
|
| 2160 |
+
{
|
| 2161 |
+
"epoch": 3.928115015974441,
|
| 2162 |
+
"grad_norm": 0.040600294489722695,
|
| 2163 |
+
"learning_rate": 7.038731813426291e-08,
|
| 2164 |
+
"loss": 0.0714,
|
| 2165 |
+
"step": 614
|
| 2166 |
+
},
|
| 2167 |
+
{
|
| 2168 |
+
"epoch": 3.940894568690096,
|
| 2169 |
+
"grad_norm": 0.0395711578920217,
|
| 2170 |
+
"learning_rate": 4.5051689765929214e-08,
|
| 2171 |
+
"loss": 0.0801,
|
| 2172 |
+
"step": 616
|
| 2173 |
+
},
|
| 2174 |
+
{
|
| 2175 |
+
"epoch": 3.9536741214057507,
|
| 2176 |
+
"grad_norm": 0.03943811103107873,
|
| 2177 |
+
"learning_rate": 2.534324078837802e-08,
|
| 2178 |
+
"loss": 0.074,
|
| 2179 |
+
"step": 618
|
| 2180 |
+
},
|
| 2181 |
+
{
|
| 2182 |
+
"epoch": 3.966453674121406,
|
| 2183 |
+
"grad_norm": 0.041905340316324986,
|
| 2184 |
+
"learning_rate": 1.1264191261528557e-08,
|
| 2185 |
+
"loss": 0.0771,
|
| 2186 |
+
"step": 620
|
| 2187 |
+
},
|
| 2188 |
+
{
|
| 2189 |
+
"epoch": 3.979233226837061,
|
| 2190 |
+
"grad_norm": 0.06686218682304546,
|
| 2191 |
+
"learning_rate": 2.8161271211024633e-09,
|
| 2192 |
+
"loss": 0.0811,
|
| 2193 |
+
"step": 622
|
| 2194 |
+
},
|
| 2195 |
+
{
|
| 2196 |
+
"epoch": 3.9920127795527156,
|
| 2197 |
+
"grad_norm": 0.03876030687059135,
|
| 2198 |
+
"learning_rate": 0.0,
|
| 2199 |
+
"loss": 0.076,
|
| 2200 |
+
"step": 624
|
| 2201 |
+
}
|
| 2202 |
+
],
|
| 2203 |
+
"logging_steps": 2,
|
| 2204 |
+
"max_steps": 624,
|
| 2205 |
+
"num_input_tokens_seen": 0,
|
| 2206 |
+
"num_train_epochs": 4,
|
| 2207 |
+
"save_steps": 500,
|
| 2208 |
+
"stateful_callbacks": {
|
| 2209 |
+
"TrainerControl": {
|
| 2210 |
+
"args": {
|
| 2211 |
+
"should_epoch_stop": false,
|
| 2212 |
+
"should_evaluate": false,
|
| 2213 |
+
"should_log": false,
|
| 2214 |
+
"should_save": true,
|
| 2215 |
+
"should_training_stop": true
|
| 2216 |
+
},
|
| 2217 |
+
"attributes": {}
|
| 2218 |
+
}
|
| 2219 |
+
},
|
| 2220 |
+
"total_flos": 2.5262683933881926e+19,
|
| 2221 |
+
"train_batch_size": 2,
|
| 2222 |
+
"trial_name": null,
|
| 2223 |
+
"trial_params": null
|
| 2224 |
+
}
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fbc6c15cc6de09ed10b88b2483f84e85b7b1119b7dd63c1e2d29d8ad02f02dab
|
| 3 |
+
size 7352
|
uccix_v2_instruct_191224_lr1e-4/checkpoint-624/zero_to_fp32.py
ADDED
|
@@ -0,0 +1,592 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
|
| 3 |
+
# Copyright (c) Microsoft Corporation.
|
| 4 |
+
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
+
|
| 6 |
+
# DeepSpeed Team
|
| 7 |
+
|
| 8 |
+
# This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
+
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
+
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
+
# application.
|
| 12 |
+
#
|
| 13 |
+
# example: python zero_to_fp32.py . pytorch_model.bin
|
| 14 |
+
|
| 15 |
+
import argparse
|
| 16 |
+
import torch
|
| 17 |
+
import glob
|
| 18 |
+
import math
|
| 19 |
+
import os
|
| 20 |
+
import re
|
| 21 |
+
from collections import OrderedDict
|
| 22 |
+
from dataclasses import dataclass
|
| 23 |
+
|
| 24 |
+
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 25 |
+
# DeepSpeed data structures it has to be available in the current python environment.
|
| 26 |
+
from deepspeed.utils import logger
|
| 27 |
+
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 28 |
+
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 29 |
+
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
@dataclass
|
| 33 |
+
class zero_model_state:
|
| 34 |
+
buffers: dict()
|
| 35 |
+
param_shapes: dict()
|
| 36 |
+
shared_params: list
|
| 37 |
+
ds_version: int
|
| 38 |
+
frozen_param_shapes: dict()
|
| 39 |
+
frozen_param_fragments: dict()
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
debug = 0
|
| 43 |
+
|
| 44 |
+
# load to cpu
|
| 45 |
+
device = torch.device('cpu')
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def atoi(text):
|
| 49 |
+
return int(text) if text.isdigit() else text
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def natural_keys(text):
|
| 53 |
+
'''
|
| 54 |
+
alist.sort(key=natural_keys) sorts in human order
|
| 55 |
+
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 56 |
+
(See Toothy's implementation in the comments)
|
| 57 |
+
'''
|
| 58 |
+
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 62 |
+
if not os.path.isdir(checkpoint_dir):
|
| 63 |
+
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 64 |
+
|
| 65 |
+
# there should be only one file
|
| 66 |
+
if zero_stage <= 2:
|
| 67 |
+
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 68 |
+
elif zero_stage == 3:
|
| 69 |
+
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 70 |
+
|
| 71 |
+
if not os.path.exists(file):
|
| 72 |
+
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 73 |
+
|
| 74 |
+
return file
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 78 |
+
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 79 |
+
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 80 |
+
|
| 81 |
+
if len(ckpt_files) == 0:
|
| 82 |
+
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 83 |
+
|
| 84 |
+
return ckpt_files
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def get_optim_files(checkpoint_dir):
|
| 88 |
+
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def get_model_state_files(checkpoint_dir):
|
| 92 |
+
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
def parse_model_states(files):
|
| 96 |
+
zero_model_states = []
|
| 97 |
+
for file in files:
|
| 98 |
+
state_dict = torch.load(file, map_location=device)
|
| 99 |
+
|
| 100 |
+
if BUFFER_NAMES not in state_dict:
|
| 101 |
+
raise ValueError(f"{file} is not a model state checkpoint")
|
| 102 |
+
buffer_names = state_dict[BUFFER_NAMES]
|
| 103 |
+
if debug:
|
| 104 |
+
print("Found buffers:", buffer_names)
|
| 105 |
+
|
| 106 |
+
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 107 |
+
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 108 |
+
param_shapes = state_dict[PARAM_SHAPES]
|
| 109 |
+
|
| 110 |
+
# collect parameters that are included in param_shapes
|
| 111 |
+
param_names = []
|
| 112 |
+
for s in param_shapes:
|
| 113 |
+
for name in s.keys():
|
| 114 |
+
param_names.append(name)
|
| 115 |
+
|
| 116 |
+
# update with frozen parameters
|
| 117 |
+
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 118 |
+
if frozen_param_shapes is not None:
|
| 119 |
+
if debug:
|
| 120 |
+
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 121 |
+
param_names += list(frozen_param_shapes.keys())
|
| 122 |
+
|
| 123 |
+
# handle shared params
|
| 124 |
+
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 125 |
+
|
| 126 |
+
ds_version = state_dict.get(DS_VERSION, None)
|
| 127 |
+
|
| 128 |
+
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 129 |
+
|
| 130 |
+
z_model_state = zero_model_state(buffers=buffers,
|
| 131 |
+
param_shapes=param_shapes,
|
| 132 |
+
shared_params=shared_params,
|
| 133 |
+
ds_version=ds_version,
|
| 134 |
+
frozen_param_shapes=frozen_param_shapes,
|
| 135 |
+
frozen_param_fragments=frozen_param_fragments)
|
| 136 |
+
zero_model_states.append(z_model_state)
|
| 137 |
+
|
| 138 |
+
return zero_model_states
|
| 139 |
+
|
| 140 |
+
|
| 141 |
+
def parse_optim_states(files, ds_checkpoint_dir):
|
| 142 |
+
|
| 143 |
+
total_files = len(files)
|
| 144 |
+
state_dicts = []
|
| 145 |
+
for f in files:
|
| 146 |
+
state_dict = torch.load(f, map_location=device)
|
| 147 |
+
# immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
|
| 148 |
+
# and also handle the case where it was already removed by another helper script
|
| 149 |
+
state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
|
| 150 |
+
state_dicts.append(state_dict)
|
| 151 |
+
|
| 152 |
+
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 153 |
+
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 154 |
+
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 155 |
+
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 156 |
+
|
| 157 |
+
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 158 |
+
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 159 |
+
# use the max of the partition_count to get the dp world_size.
|
| 160 |
+
|
| 161 |
+
if type(world_size) is list:
|
| 162 |
+
world_size = max(world_size)
|
| 163 |
+
|
| 164 |
+
if world_size != total_files:
|
| 165 |
+
raise ValueError(
|
| 166 |
+
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 167 |
+
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
# the groups are named differently in each stage
|
| 171 |
+
if zero_stage <= 2:
|
| 172 |
+
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 173 |
+
elif zero_stage == 3:
|
| 174 |
+
fp32_groups_key = FP32_FLAT_GROUPS
|
| 175 |
+
else:
|
| 176 |
+
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 177 |
+
|
| 178 |
+
if zero_stage <= 2:
|
| 179 |
+
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 180 |
+
elif zero_stage == 3:
|
| 181 |
+
# if there is more than one param group, there will be multiple flattened tensors - one
|
| 182 |
+
# flattened tensor per group - for simplicity merge them into a single tensor
|
| 183 |
+
#
|
| 184 |
+
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
| 185 |
+
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
| 186 |
+
|
| 187 |
+
fp32_flat_groups = [
|
| 188 |
+
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
| 189 |
+
]
|
| 190 |
+
|
| 191 |
+
return zero_stage, world_size, fp32_flat_groups
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
| 195 |
+
"""
|
| 196 |
+
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 197 |
+
|
| 198 |
+
Args:
|
| 199 |
+
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 200 |
+
|
| 201 |
+
"""
|
| 202 |
+
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 203 |
+
|
| 204 |
+
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 205 |
+
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 206 |
+
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 207 |
+
|
| 208 |
+
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 209 |
+
|
| 210 |
+
zero_model_states = parse_model_states(model_files)
|
| 211 |
+
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 212 |
+
|
| 213 |
+
if zero_stage <= 2:
|
| 214 |
+
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
| 215 |
+
elif zero_stage == 3:
|
| 216 |
+
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 220 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 221 |
+
return
|
| 222 |
+
|
| 223 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 224 |
+
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 225 |
+
|
| 226 |
+
if debug:
|
| 227 |
+
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 228 |
+
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 229 |
+
|
| 230 |
+
wanted_params = len(frozen_param_shapes)
|
| 231 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 232 |
+
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 233 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 234 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 235 |
+
|
| 236 |
+
total_params = 0
|
| 237 |
+
total_numel = 0
|
| 238 |
+
for name, shape in frozen_param_shapes.items():
|
| 239 |
+
total_params += 1
|
| 240 |
+
unpartitioned_numel = shape.numel()
|
| 241 |
+
total_numel += unpartitioned_numel
|
| 242 |
+
|
| 243 |
+
state_dict[name] = frozen_param_fragments[name]
|
| 244 |
+
|
| 245 |
+
if debug:
|
| 246 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 247 |
+
|
| 248 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 249 |
+
|
| 250 |
+
|
| 251 |
+
def _has_callable(obj, fn):
|
| 252 |
+
attr = getattr(obj, fn, None)
|
| 253 |
+
return callable(attr)
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 257 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 258 |
+
|
| 259 |
+
# Reconstruction protocol:
|
| 260 |
+
#
|
| 261 |
+
# XXX: document this
|
| 262 |
+
|
| 263 |
+
if debug:
|
| 264 |
+
for i in range(world_size):
|
| 265 |
+
for j in range(len(fp32_flat_groups[0])):
|
| 266 |
+
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 267 |
+
|
| 268 |
+
# XXX: memory usage doubles here (zero2)
|
| 269 |
+
num_param_groups = len(fp32_flat_groups[0])
|
| 270 |
+
merged_single_partition_of_fp32_groups = []
|
| 271 |
+
for i in range(num_param_groups):
|
| 272 |
+
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 273 |
+
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 274 |
+
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 275 |
+
avail_numel = sum(
|
| 276 |
+
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 277 |
+
|
| 278 |
+
if debug:
|
| 279 |
+
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 280 |
+
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 281 |
+
# not asserting if there is a mismatch due to possible padding
|
| 282 |
+
print(f"Have {avail_numel} numels to process.")
|
| 283 |
+
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 284 |
+
|
| 285 |
+
# params
|
| 286 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 287 |
+
# out-of-core computing solution
|
| 288 |
+
total_numel = 0
|
| 289 |
+
total_params = 0
|
| 290 |
+
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 291 |
+
offset = 0
|
| 292 |
+
avail_numel = full_single_fp32_vector.numel()
|
| 293 |
+
for name, shape in shapes.items():
|
| 294 |
+
|
| 295 |
+
unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
|
| 296 |
+
total_numel += unpartitioned_numel
|
| 297 |
+
total_params += 1
|
| 298 |
+
|
| 299 |
+
if debug:
|
| 300 |
+
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 301 |
+
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 302 |
+
offset += unpartitioned_numel
|
| 303 |
+
|
| 304 |
+
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 305 |
+
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 306 |
+
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 307 |
+
# live optimizer object, so we are checking that the numbers are within the right range
|
| 308 |
+
align_to = 2 * world_size
|
| 309 |
+
|
| 310 |
+
def zero2_align(x):
|
| 311 |
+
return align_to * math.ceil(x / align_to)
|
| 312 |
+
|
| 313 |
+
if debug:
|
| 314 |
+
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 315 |
+
|
| 316 |
+
offset = zero2_align(offset)
|
| 317 |
+
avail_numel = zero2_align(avail_numel)
|
| 318 |
+
|
| 319 |
+
if debug:
|
| 320 |
+
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 321 |
+
|
| 322 |
+
# Sanity check
|
| 323 |
+
if offset != avail_numel:
|
| 324 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 325 |
+
|
| 326 |
+
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 327 |
+
|
| 328 |
+
|
| 329 |
+
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
| 330 |
+
state_dict = OrderedDict()
|
| 331 |
+
|
| 332 |
+
# buffers
|
| 333 |
+
buffers = zero_model_states[0].buffers
|
| 334 |
+
state_dict.update(buffers)
|
| 335 |
+
if debug:
|
| 336 |
+
print(f"added {len(buffers)} buffers")
|
| 337 |
+
|
| 338 |
+
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 339 |
+
|
| 340 |
+
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 341 |
+
|
| 342 |
+
# recover shared parameters
|
| 343 |
+
for pair in zero_model_states[0].shared_params:
|
| 344 |
+
if pair[1] in state_dict:
|
| 345 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 346 |
+
|
| 347 |
+
return state_dict
|
| 348 |
+
|
| 349 |
+
|
| 350 |
+
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 351 |
+
remainder = unpartitioned_numel % world_size
|
| 352 |
+
padding_numel = (world_size - remainder) if remainder else 0
|
| 353 |
+
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 354 |
+
return partitioned_numel, padding_numel
|
| 355 |
+
|
| 356 |
+
|
| 357 |
+
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 358 |
+
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 359 |
+
return
|
| 360 |
+
|
| 361 |
+
if debug:
|
| 362 |
+
for i in range(world_size):
|
| 363 |
+
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 364 |
+
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 365 |
+
|
| 366 |
+
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 367 |
+
wanted_params = len(frozen_param_shapes)
|
| 368 |
+
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 369 |
+
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 370 |
+
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 371 |
+
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 372 |
+
|
| 373 |
+
total_params = 0
|
| 374 |
+
total_numel = 0
|
| 375 |
+
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 376 |
+
total_params += 1
|
| 377 |
+
unpartitioned_numel = shape.numel()
|
| 378 |
+
total_numel += unpartitioned_numel
|
| 379 |
+
|
| 380 |
+
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 381 |
+
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 382 |
+
|
| 383 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 384 |
+
|
| 385 |
+
if debug:
|
| 386 |
+
print(
|
| 387 |
+
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 388 |
+
)
|
| 389 |
+
|
| 390 |
+
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 391 |
+
|
| 392 |
+
|
| 393 |
+
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 394 |
+
param_shapes = zero_model_states[0].param_shapes
|
| 395 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 396 |
+
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 397 |
+
# param, re-consolidating each param, while dealing with padding if any
|
| 398 |
+
|
| 399 |
+
# merge list of dicts, preserving order
|
| 400 |
+
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 401 |
+
|
| 402 |
+
if debug:
|
| 403 |
+
for i in range(world_size):
|
| 404 |
+
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 405 |
+
|
| 406 |
+
wanted_params = len(param_shapes)
|
| 407 |
+
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 408 |
+
# not asserting if there is a mismatch due to possible padding
|
| 409 |
+
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 410 |
+
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 411 |
+
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 412 |
+
|
| 413 |
+
# params
|
| 414 |
+
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 415 |
+
# out-of-core computing solution
|
| 416 |
+
offset = 0
|
| 417 |
+
total_numel = 0
|
| 418 |
+
total_params = 0
|
| 419 |
+
for name, shape in param_shapes.items():
|
| 420 |
+
|
| 421 |
+
unpartitioned_numel = shape.numel()
|
| 422 |
+
total_numel += unpartitioned_numel
|
| 423 |
+
total_params += 1
|
| 424 |
+
|
| 425 |
+
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 426 |
+
|
| 427 |
+
if debug:
|
| 428 |
+
print(
|
| 429 |
+
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 430 |
+
)
|
| 431 |
+
|
| 432 |
+
# XXX: memory usage doubles here
|
| 433 |
+
state_dict[name] = torch.cat(
|
| 434 |
+
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
| 435 |
+
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 436 |
+
offset += partitioned_numel
|
| 437 |
+
|
| 438 |
+
offset *= world_size
|
| 439 |
+
|
| 440 |
+
# Sanity check
|
| 441 |
+
if offset != avail_numel:
|
| 442 |
+
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 443 |
+
|
| 444 |
+
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 445 |
+
|
| 446 |
+
|
| 447 |
+
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
| 448 |
+
state_dict = OrderedDict()
|
| 449 |
+
|
| 450 |
+
# buffers
|
| 451 |
+
buffers = zero_model_states[0].buffers
|
| 452 |
+
state_dict.update(buffers)
|
| 453 |
+
if debug:
|
| 454 |
+
print(f"added {len(buffers)} buffers")
|
| 455 |
+
|
| 456 |
+
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 457 |
+
|
| 458 |
+
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 459 |
+
|
| 460 |
+
# recover shared parameters
|
| 461 |
+
for pair in zero_model_states[0].shared_params:
|
| 462 |
+
if pair[1] in state_dict:
|
| 463 |
+
state_dict[pair[0]] = state_dict[pair[1]]
|
| 464 |
+
|
| 465 |
+
return state_dict
|
| 466 |
+
|
| 467 |
+
|
| 468 |
+
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
| 469 |
+
"""
|
| 470 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 471 |
+
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 472 |
+
via a model hub.
|
| 473 |
+
|
| 474 |
+
Args:
|
| 475 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 476 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 477 |
+
|
| 478 |
+
Returns:
|
| 479 |
+
- pytorch ``state_dict``
|
| 480 |
+
|
| 481 |
+
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
| 482 |
+
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 483 |
+
the checkpoint.
|
| 484 |
+
|
| 485 |
+
A typical usage might be ::
|
| 486 |
+
|
| 487 |
+
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 488 |
+
# do the training and checkpoint saving
|
| 489 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 490 |
+
model = model.cpu() # move to cpu
|
| 491 |
+
model.load_state_dict(state_dict)
|
| 492 |
+
# submit to model hub or save the model to share with others
|
| 493 |
+
|
| 494 |
+
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 495 |
+
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 496 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 497 |
+
|
| 498 |
+
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 499 |
+
|
| 500 |
+
"""
|
| 501 |
+
if tag is None:
|
| 502 |
+
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 503 |
+
if os.path.isfile(latest_path):
|
| 504 |
+
with open(latest_path, 'r') as fd:
|
| 505 |
+
tag = fd.read().strip()
|
| 506 |
+
else:
|
| 507 |
+
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 508 |
+
|
| 509 |
+
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 510 |
+
|
| 511 |
+
if not os.path.isdir(ds_checkpoint_dir):
|
| 512 |
+
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 513 |
+
|
| 514 |
+
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
| 515 |
+
|
| 516 |
+
|
| 517 |
+
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
| 518 |
+
"""
|
| 519 |
+
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 520 |
+
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 521 |
+
|
| 522 |
+
Args:
|
| 523 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 524 |
+
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
| 525 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 526 |
+
"""
|
| 527 |
+
|
| 528 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 529 |
+
print(f"Saving fp32 state dict to {output_file}")
|
| 530 |
+
torch.save(state_dict, output_file)
|
| 531 |
+
|
| 532 |
+
|
| 533 |
+
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 534 |
+
"""
|
| 535 |
+
1. Put the provided model to cpu
|
| 536 |
+
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 537 |
+
3. Load it into the provided model
|
| 538 |
+
|
| 539 |
+
Args:
|
| 540 |
+
- ``model``: the model object to update
|
| 541 |
+
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 542 |
+
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 543 |
+
|
| 544 |
+
Returns:
|
| 545 |
+
- ``model`: modified model
|
| 546 |
+
|
| 547 |
+
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 548 |
+
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 549 |
+
conveniently placed for you in the checkpoint folder.
|
| 550 |
+
|
| 551 |
+
A typical usage might be ::
|
| 552 |
+
|
| 553 |
+
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 554 |
+
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 555 |
+
# submit to model hub or save the model to share with others
|
| 556 |
+
|
| 557 |
+
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 558 |
+
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 559 |
+
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 560 |
+
|
| 561 |
+
"""
|
| 562 |
+
logger.info(f"Extracting fp32 weights")
|
| 563 |
+
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 564 |
+
|
| 565 |
+
logger.info(f"Overwriting model with fp32 weights")
|
| 566 |
+
model = model.cpu()
|
| 567 |
+
model.load_state_dict(state_dict, strict=False)
|
| 568 |
+
|
| 569 |
+
return model
|
| 570 |
+
|
| 571 |
+
|
| 572 |
+
if __name__ == "__main__":
|
| 573 |
+
|
| 574 |
+
parser = argparse.ArgumentParser()
|
| 575 |
+
parser.add_argument("checkpoint_dir",
|
| 576 |
+
type=str,
|
| 577 |
+
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 578 |
+
parser.add_argument(
|
| 579 |
+
"output_file",
|
| 580 |
+
type=str,
|
| 581 |
+
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
| 582 |
+
parser.add_argument("-t",
|
| 583 |
+
"--tag",
|
| 584 |
+
type=str,
|
| 585 |
+
default=None,
|
| 586 |
+
help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
|
| 587 |
+
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 588 |
+
args = parser.parse_args()
|
| 589 |
+
|
| 590 |
+
debug = args.debug
|
| 591 |
+
|
| 592 |
+
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file, tag=args.tag)
|