Upload resampler.py with huggingface_hub
Browse files- resampler.py +171 -0
resampler.py
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import partial
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import nn
|
6 |
+
# from torch.nn.init import trunc_normal_
|
7 |
+
|
8 |
+
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
|
9 |
+
# Convert tensor to float32
|
10 |
+
tensor = tensor.float()
|
11 |
+
with torch.no_grad():
|
12 |
+
tensor.normal_(mean, std)
|
13 |
+
valid = (tensor > a) & (tensor < b)
|
14 |
+
ind = valid.max()
|
15 |
+
tensor = tensor[ind].uniform_(a, b)
|
16 |
+
return tensor.half()
|
17 |
+
|
18 |
+
def get_2d_sincos_pos_embed(embed_dim, image_size):
|
19 |
+
"""
|
20 |
+
image_size: image_size or (image_height, image_width)
|
21 |
+
return:
|
22 |
+
pos_embed: [image_height, image_width, embed_dim]
|
23 |
+
"""
|
24 |
+
if isinstance(image_size, int):
|
25 |
+
grid_h_size, grid_w_size = image_size, image_size
|
26 |
+
else:
|
27 |
+
grid_h_size, grid_w_size = image_size[0], image_size[1]
|
28 |
+
|
29 |
+
grid_h = np.arange(grid_h_size, dtype=np.float32)
|
30 |
+
grid_w = np.arange(grid_w_size, dtype=np.float32)
|
31 |
+
grid = np.meshgrid(grid_w, grid_h) # here w goes first
|
32 |
+
grid = np.stack(grid, axis=0)
|
33 |
+
|
34 |
+
pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
|
35 |
+
return pos_embed
|
36 |
+
|
37 |
+
|
38 |
+
def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
|
39 |
+
assert embed_dim % 2 == 0
|
40 |
+
|
41 |
+
# use half of dimensions to encode grid_h
|
42 |
+
emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim // 2, grid[0]) # (H, W, D/2)
|
43 |
+
emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim // 2, grid[1]) # (H, W, D/2)
|
44 |
+
|
45 |
+
emb = np.concatenate([emb_h, emb_w], axis=-1) # (H, W, D)
|
46 |
+
return emb
|
47 |
+
|
48 |
+
def get_1d_sincos_pos_embed_from_grid_new(embed_dim, pos):
|
49 |
+
"""
|
50 |
+
embed_dim: output dimension for each position
|
51 |
+
pos: a list of positions to be encoded: size (H, W)
|
52 |
+
out: (H, W, D)
|
53 |
+
"""
|
54 |
+
assert embed_dim % 2 == 0
|
55 |
+
omega = np.arange(embed_dim // 2, dtype=np.float32)
|
56 |
+
omega /= embed_dim / 2.
|
57 |
+
omega = 1. / 10000 ** omega # (D/2,)
|
58 |
+
|
59 |
+
out = np.einsum('hw,d->hwd', pos, omega) # (H, W, D/2), outer product
|
60 |
+
|
61 |
+
emb_sin = np.sin(out) # (H, W, D/2)
|
62 |
+
emb_cos = np.cos(out) # (H, W, D/2)
|
63 |
+
|
64 |
+
emb = np.concatenate([emb_sin, emb_cos], axis=-1) # (H, W, D)
|
65 |
+
return emb
|
66 |
+
|
67 |
+
class Resampler(nn.Module):
|
68 |
+
"""
|
69 |
+
A 2D perceiver-resampler network with one cross attention layers by
|
70 |
+
given learnable queries and 2d sincos pos_emb
|
71 |
+
Outputs:
|
72 |
+
A tensor with the shape of (batch_size, num_queries, embed_dim)
|
73 |
+
"""
|
74 |
+
|
75 |
+
def __init__(
|
76 |
+
self,
|
77 |
+
num_queries,
|
78 |
+
embed_dim,
|
79 |
+
num_heads,
|
80 |
+
kv_dim=None,
|
81 |
+
norm_layer=partial(nn.LayerNorm, eps=1e-6),
|
82 |
+
adaptive=False,
|
83 |
+
max_size=(70, 70),
|
84 |
+
):
|
85 |
+
super().__init__()
|
86 |
+
self.num_queries = num_queries
|
87 |
+
self.embed_dim = embed_dim
|
88 |
+
self.num_heads = num_heads
|
89 |
+
self.adaptive = adaptive
|
90 |
+
self.max_size = max_size
|
91 |
+
|
92 |
+
self.query = nn.Parameter(torch.zeros(self.num_queries, embed_dim))
|
93 |
+
trunc_normal_(self.query, std=.02)
|
94 |
+
|
95 |
+
if kv_dim is not None and kv_dim != embed_dim:
|
96 |
+
self.kv_proj = nn.Linear(kv_dim, embed_dim, bias=False)
|
97 |
+
else:
|
98 |
+
self.kv_proj = nn.Identity()
|
99 |
+
|
100 |
+
self.attn = nn.MultiheadAttention(embed_dim, num_heads)
|
101 |
+
self.ln_q = norm_layer(embed_dim)
|
102 |
+
self.ln_kv = norm_layer(embed_dim)
|
103 |
+
|
104 |
+
self.ln_post = norm_layer(embed_dim)
|
105 |
+
self.proj = nn.Parameter((embed_dim ** -0.5) * torch.randn(embed_dim, embed_dim))
|
106 |
+
|
107 |
+
self._set_2d_pos_cache(self.max_size)
|
108 |
+
self.apply(self._init_weights)
|
109 |
+
|
110 |
+
def _set_2d_pos_cache(self, max_size, device='cpu'):
|
111 |
+
pos_embed = torch.from_numpy(get_2d_sincos_pos_embed(self.embed_dim, max_size)).float().to(device)
|
112 |
+
self.register_buffer("pos_embed", pos_embed, persistent=False)
|
113 |
+
|
114 |
+
def _adjust_pos_cache(self, tgt_sizes, device):
|
115 |
+
max_h = torch.max(tgt_sizes[:, 0])
|
116 |
+
max_w = torch.max(tgt_sizes[:, 1])
|
117 |
+
if max_h > self.max_size[0] or max_w > self.max_size[1]:
|
118 |
+
self.max_size = [max(max_h, self.max_size[0]), max(max_w, self.max_size[1])]
|
119 |
+
self._set_2d_pos_cache(self.max_size, device)
|
120 |
+
|
121 |
+
def _init_weights(self, m):
|
122 |
+
if isinstance(m, nn.Linear):
|
123 |
+
trunc_normal_(m.weight, std=.02)
|
124 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
125 |
+
nn.init.constant_(m.bias, 0)
|
126 |
+
elif isinstance(m, nn.LayerNorm):
|
127 |
+
nn.init.constant_(m.bias, 0)
|
128 |
+
nn.init.constant_(m.weight, 1.0)
|
129 |
+
|
130 |
+
def forward(self, x, tgt_sizes=None):
|
131 |
+
assert x.shape[0] == tgt_sizes.shape[0]
|
132 |
+
bs = x.shape[0]
|
133 |
+
|
134 |
+
device = x.device
|
135 |
+
dtype = x.dtype
|
136 |
+
|
137 |
+
patch_len = tgt_sizes[:, 0] * tgt_sizes[:, 1]
|
138 |
+
|
139 |
+
self._adjust_pos_cache(tgt_sizes, device=device)
|
140 |
+
|
141 |
+
max_patch_len = torch.max(patch_len)
|
142 |
+
key_padding_mask = torch.zeros((bs, max_patch_len), dtype=torch.bool, device=device)
|
143 |
+
|
144 |
+
pos_embed = []
|
145 |
+
for i in range(bs):
|
146 |
+
tgt_h, tgt_w = tgt_sizes[i]
|
147 |
+
pos_embed.append(self.pos_embed[:tgt_h, :tgt_w, :].reshape((tgt_h * tgt_w, -1)).to(dtype)) # patches * D
|
148 |
+
key_padding_mask[i, patch_len[i]:] = True
|
149 |
+
|
150 |
+
pos_embed = torch.nn.utils.rnn.pad_sequence(
|
151 |
+
pos_embed, batch_first=True, padding_value=0.0).permute(1, 0, 2) # BLD => L * B * D
|
152 |
+
|
153 |
+
x = self.kv_proj(x) # B * L * D
|
154 |
+
x = self.ln_kv(x).permute(1, 0, 2) # L * B * D
|
155 |
+
|
156 |
+
q = self.ln_q(self.query) # Q * D
|
157 |
+
|
158 |
+
out = self.attn(
|
159 |
+
self._repeat(q, bs), # Q * B * D
|
160 |
+
x + pos_embed, # L * B * D + L * B * D
|
161 |
+
x,
|
162 |
+
key_padding_mask=key_padding_mask)[0]
|
163 |
+
# out: Q * B * D
|
164 |
+
x = out.permute(1, 0, 2) # B * Q * D
|
165 |
+
|
166 |
+
x = self.ln_post(x)
|
167 |
+
x = x @ self.proj
|
168 |
+
return x
|
169 |
+
|
170 |
+
def _repeat(self, query, N: int):
|
171 |
+
return query.unsqueeze(1).repeat(1, N, 1)
|