Rich740804 commited on
Commit
15ae283
·
verified ·
1 Parent(s): e159179

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,440 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:18963
8
+ - loss:MultipleNegativesRankingLoss
9
+ base_model: sentence-transformers/paraphrase-mpnet-base-v2
10
+ widget:
11
+ - source_sentence: If the comatose man had previously expressed a desire to be euthanized
12
+ in such a situation, respecting his autonomy would support euthanasia.
13
+ sentences:
14
+ - If the comatose man had previously expressed a desire for euthanasia in such circumstances,
15
+ there may be a duty to respect his autonomy, which would support the action.
16
+ - If the man is believed to be suffering in his comatose state or there is a significant
17
+ burden on his family, there may be a duty to alleviate suffering that supports
18
+ euthanasia.
19
+ - As a living being, the rat may warrant a duty of care from humans, which may include
20
+ providing it with appropriate medical treatment or humane euthanasia in case of
21
+ suffering.
22
+ - source_sentence: Resisting authoritarianism can defend individual freedom and undermine
23
+ oppressive regimes.
24
+ sentences:
25
+ - Resisting authoritarianism can be a means of exercising the right to free speech
26
+ and expression, which may be suppressed by the government.
27
+ - If retreating serves to protect the lives of soldiers and civilians, then it upholds
28
+ the value of the duty to protect.
29
+ - Resisting authoritarianism could result in negative consequences for safety and
30
+ security if violence is used to resist.
31
+ - source_sentence: Saving someone upholds their fundamental right to life, as it prevents
32
+ them from experiencing harm or death.
33
+ sentences:
34
+ - Donating the money to charity has the potential to benefit those in need and can
35
+ be seen as fulfilling a duty to improve the well-being of others.
36
+ - Saving someone may preserve their freedom and ability to make choices in their
37
+ life.
38
+ - If saving someone involves protecting their body from injury or harm, their right
39
+ to bodily integrity is respected.
40
+ - source_sentence: Helping those in need, such as a starving person, promotes a sense
41
+ of community and responsibility towards fellow humans.
42
+ sentences:
43
+ - We have a moral responsibility to treat others with respect and dignity, regardless
44
+ of their race. Hanging out with black people allows for the opportunity to demonstrate
45
+ this respect.
46
+ - A starving person's right to life is at stake, and providing them with food can
47
+ help protect this fundamental right.
48
+ - Providing aid and resources to someone in need is an expression of the duty to
49
+ promote the well-being of others.
50
+ - source_sentence: The marriage of Baptiste and Hannah demonstrates their commitment
51
+ to sharing their lives and supporting one another.
52
+ sentences:
53
+ - Helping others may be a moral duty, but using unethical means like cheating goes
54
+ against other moral principles.
55
+ - If the marriage brings happiness to Baptiste and Hannah, then they are pursuing
56
+ their right to happiness.
57
+ - By getting married, Baptiste and Hannah take on a duty to care for each other,
58
+ both emotionally and materially.
59
+ pipeline_tag: sentence-similarity
60
+ library_name: sentence-transformers
61
+ ---
62
+
63
+ # SentenceTransformer based on sentence-transformers/paraphrase-mpnet-base-v2
64
+
65
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) on the train dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
66
+
67
+ ## Model Details
68
+
69
+ ### Model Description
70
+ - **Model Type:** Sentence Transformer
71
+ - **Base model:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) <!-- at revision 0446e4ee4c8cef910c1b1dd164b6276d66bd47c0 -->
72
+ - **Maximum Sequence Length:** 512 tokens
73
+ - **Output Dimensionality:** 768 dimensions
74
+ - **Similarity Function:** Cosine Similarity
75
+ - **Training Dataset:**
76
+ - train
77
+ <!-- - **Language:** Unknown -->
78
+ <!-- - **License:** Unknown -->
79
+
80
+ ### Model Sources
81
+
82
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
83
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
84
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
85
+
86
+ ### Full Model Architecture
87
+
88
+ ```
89
+ SentenceTransformer(
90
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
91
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
92
+ )
93
+ ```
94
+
95
+ ## Usage
96
+
97
+ ### Direct Usage (Sentence Transformers)
98
+
99
+ First install the Sentence Transformers library:
100
+
101
+ ```bash
102
+ pip install -U sentence-transformers
103
+ ```
104
+
105
+ Then you can load this model and run inference.
106
+ ```python
107
+ from sentence_transformers import SentenceTransformer
108
+
109
+ # Download from the 🤗 Hub
110
+ model = SentenceTransformer("sentence_transformers_model_id")
111
+ # Run inference
112
+ sentences = [
113
+ 'The marriage of Baptiste and Hannah demonstrates their commitment to sharing their lives and supporting one another.',
114
+ 'By getting married, Baptiste and Hannah take on a duty to care for each other, both emotionally and materially.',
115
+ 'If the marriage brings happiness to Baptiste and Hannah, then they are pursuing their right to happiness.',
116
+ ]
117
+ embeddings = model.encode(sentences)
118
+ print(embeddings.shape)
119
+ # [3, 768]
120
+
121
+ # Get the similarity scores for the embeddings
122
+ similarities = model.similarity(embeddings, embeddings)
123
+ print(similarities.shape)
124
+ # [3, 3]
125
+ ```
126
+
127
+ <!--
128
+ ### Direct Usage (Transformers)
129
+
130
+ <details><summary>Click to see the direct usage in Transformers</summary>
131
+
132
+ </details>
133
+ -->
134
+
135
+ <!--
136
+ ### Downstream Usage (Sentence Transformers)
137
+
138
+ You can finetune this model on your own dataset.
139
+
140
+ <details><summary>Click to expand</summary>
141
+
142
+ </details>
143
+ -->
144
+
145
+ <!--
146
+ ### Out-of-Scope Use
147
+
148
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
149
+ -->
150
+
151
+ <!--
152
+ ## Bias, Risks and Limitations
153
+
154
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
155
+ -->
156
+
157
+ <!--
158
+ ### Recommendations
159
+
160
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
161
+ -->
162
+
163
+ ## Training Details
164
+
165
+ ### Training Dataset
166
+
167
+ #### train
168
+
169
+ * Dataset: train
170
+ * Size: 18,963 training samples
171
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
172
+ * Approximate statistics based on the first 1000 samples:
173
+ | | anchor | positive | negative |
174
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
175
+ | type | string | string | string |
176
+ | details | <ul><li>min: 10 tokens</li><li>mean: 25.92 tokens</li><li>max: 51 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 28.31 tokens</li><li>max: 60 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 28.69 tokens</li><li>max: 67 tokens</li></ul> |
177
+ * Samples:
178
+ | anchor | positive | negative |
179
+ |:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
180
+ | <code>Saving the group of people from harm by diverting the trolley supports the value of preserving life.</code> | <code>The group of people tied to the tracks have a right to life, which is protected when the trolley is diverted to save them.</code> | <code>Diverting the trolley reduces overall harm by preventing the deaths of many people at the cost of one person's life.</code> |
181
+ | <code>The bake sale could be seen as an expression of support for a particular cause, and the right to freely express oneself and associate with others who share the same views is important.</code> | <code>The bake sale might be seen as a form of protest or support for a specific cause, and individuals have the right to engage in peaceful protest or show support.</code> | <code>If the bake sale directly or indirectly promotes religious discrimination, this can infringe on the fundamental right of individuals to be free from discrimination or harm due to their religious beliefs.</code> |
182
+ | <code>Children have a right to life, and saving them from danger upholds this right.</code> | <code>Children should be protected from harm, abuse, and danger, and saving them ensures this right is respected.</code> | <code>Children have a right to grow up with access to healthcare, education, and a nurturing environment. Saving them may help secure these rights.</code> |
183
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
184
+ ```json
185
+ {
186
+ "scale": 40,
187
+ "similarity_fct": "cos_sim"
188
+ }
189
+ ```
190
+
191
+ ### Training Hyperparameters
192
+ #### Non-Default Hyperparameters
193
+
194
+ - `overwrite_output_dir`: True
195
+ - `per_device_train_batch_size`: 32
196
+ - `learning_rate`: 2.1456771788455288e-05
197
+ - `num_train_epochs`: 2
198
+ - `warmup_ratio`: 0.03254893834779507
199
+ - `fp16`: True
200
+ - `dataloader_num_workers`: 4
201
+ - `remove_unused_columns`: False
202
+
203
+ #### All Hyperparameters
204
+ <details><summary>Click to expand</summary>
205
+
206
+ - `overwrite_output_dir`: True
207
+ - `do_predict`: False
208
+ - `eval_strategy`: no
209
+ - `prediction_loss_only`: True
210
+ - `per_device_train_batch_size`: 32
211
+ - `per_device_eval_batch_size`: 8
212
+ - `per_gpu_train_batch_size`: None
213
+ - `per_gpu_eval_batch_size`: None
214
+ - `gradient_accumulation_steps`: 1
215
+ - `eval_accumulation_steps`: None
216
+ - `torch_empty_cache_steps`: None
217
+ - `learning_rate`: 2.1456771788455288e-05
218
+ - `weight_decay`: 0.0
219
+ - `adam_beta1`: 0.9
220
+ - `adam_beta2`: 0.999
221
+ - `adam_epsilon`: 1e-08
222
+ - `max_grad_norm`: 1.0
223
+ - `num_train_epochs`: 2
224
+ - `max_steps`: -1
225
+ - `lr_scheduler_type`: linear
226
+ - `lr_scheduler_kwargs`: {}
227
+ - `warmup_ratio`: 0.03254893834779507
228
+ - `warmup_steps`: 0
229
+ - `log_level`: passive
230
+ - `log_level_replica`: warning
231
+ - `log_on_each_node`: True
232
+ - `logging_nan_inf_filter`: True
233
+ - `save_safetensors`: True
234
+ - `save_on_each_node`: False
235
+ - `save_only_model`: False
236
+ - `restore_callback_states_from_checkpoint`: False
237
+ - `no_cuda`: False
238
+ - `use_cpu`: False
239
+ - `use_mps_device`: False
240
+ - `seed`: 42
241
+ - `data_seed`: None
242
+ - `jit_mode_eval`: False
243
+ - `use_ipex`: False
244
+ - `bf16`: False
245
+ - `fp16`: True
246
+ - `fp16_opt_level`: O1
247
+ - `half_precision_backend`: auto
248
+ - `bf16_full_eval`: False
249
+ - `fp16_full_eval`: False
250
+ - `tf32`: None
251
+ - `local_rank`: 0
252
+ - `ddp_backend`: None
253
+ - `tpu_num_cores`: None
254
+ - `tpu_metrics_debug`: False
255
+ - `debug`: []
256
+ - `dataloader_drop_last`: False
257
+ - `dataloader_num_workers`: 4
258
+ - `dataloader_prefetch_factor`: None
259
+ - `past_index`: -1
260
+ - `disable_tqdm`: False
261
+ - `remove_unused_columns`: False
262
+ - `label_names`: None
263
+ - `load_best_model_at_end`: False
264
+ - `ignore_data_skip`: False
265
+ - `fsdp`: []
266
+ - `fsdp_min_num_params`: 0
267
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
268
+ - `fsdp_transformer_layer_cls_to_wrap`: None
269
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
270
+ - `deepspeed`: None
271
+ - `label_smoothing_factor`: 0.0
272
+ - `optim`: adamw_torch
273
+ - `optim_args`: None
274
+ - `adafactor`: False
275
+ - `group_by_length`: False
276
+ - `length_column_name`: length
277
+ - `ddp_find_unused_parameters`: None
278
+ - `ddp_bucket_cap_mb`: None
279
+ - `ddp_broadcast_buffers`: False
280
+ - `dataloader_pin_memory`: True
281
+ - `dataloader_persistent_workers`: False
282
+ - `skip_memory_metrics`: True
283
+ - `use_legacy_prediction_loop`: False
284
+ - `push_to_hub`: False
285
+ - `resume_from_checkpoint`: None
286
+ - `hub_model_id`: None
287
+ - `hub_strategy`: every_save
288
+ - `hub_private_repo`: None
289
+ - `hub_always_push`: False
290
+ - `gradient_checkpointing`: False
291
+ - `gradient_checkpointing_kwargs`: None
292
+ - `include_inputs_for_metrics`: False
293
+ - `include_for_metrics`: []
294
+ - `eval_do_concat_batches`: True
295
+ - `fp16_backend`: auto
296
+ - `push_to_hub_model_id`: None
297
+ - `push_to_hub_organization`: None
298
+ - `mp_parameters`:
299
+ - `auto_find_batch_size`: False
300
+ - `full_determinism`: False
301
+ - `torchdynamo`: None
302
+ - `ray_scope`: last
303
+ - `ddp_timeout`: 1800
304
+ - `torch_compile`: False
305
+ - `torch_compile_backend`: None
306
+ - `torch_compile_mode`: None
307
+ - `include_tokens_per_second`: False
308
+ - `include_num_input_tokens_seen`: False
309
+ - `neftune_noise_alpha`: None
310
+ - `optim_target_modules`: None
311
+ - `batch_eval_metrics`: False
312
+ - `eval_on_start`: False
313
+ - `use_liger_kernel`: False
314
+ - `eval_use_gather_object`: False
315
+ - `average_tokens_across_devices`: False
316
+ - `prompts`: None
317
+ - `batch_sampler`: batch_sampler
318
+ - `multi_dataset_batch_sampler`: proportional
319
+
320
+ </details>
321
+
322
+ ### Training Logs
323
+ | Epoch | Step | Training Loss |
324
+ |:------:|:----:|:-------------:|
325
+ | 0.0337 | 20 | 0.2448 |
326
+ | 0.0675 | 40 | 0.1918 |
327
+ | 0.1012 | 60 | 0.14 |
328
+ | 0.1349 | 80 | 0.186 |
329
+ | 0.1686 | 100 | 0.1407 |
330
+ | 0.2024 | 120 | 0.1672 |
331
+ | 0.2361 | 140 | 0.1832 |
332
+ | 0.2698 | 160 | 0.116 |
333
+ | 0.3035 | 180 | 0.1341 |
334
+ | 0.3373 | 200 | 0.2118 |
335
+ | 0.3710 | 220 | 0.1274 |
336
+ | 0.4047 | 240 | 0.1993 |
337
+ | 0.4384 | 260 | 0.1561 |
338
+ | 0.4722 | 280 | 0.1517 |
339
+ | 0.5059 | 300 | 0.1635 |
340
+ | 0.5396 | 320 | 0.1646 |
341
+ | 0.5734 | 340 | 0.1337 |
342
+ | 0.6071 | 360 | 0.1406 |
343
+ | 0.6408 | 380 | 0.1114 |
344
+ | 0.6745 | 400 | 0.1314 |
345
+ | 0.7083 | 420 | 0.1481 |
346
+ | 0.7420 | 440 | 0.1932 |
347
+ | 0.7757 | 460 | 0.1568 |
348
+ | 0.8094 | 480 | 0.1319 |
349
+ | 0.8432 | 500 | 0.1536 |
350
+ | 0.8769 | 520 | 0.1462 |
351
+ | 0.9106 | 540 | 0.1336 |
352
+ | 0.9444 | 560 | 0.1453 |
353
+ | 0.9781 | 580 | 0.2005 |
354
+ | 1.0118 | 600 | 0.1265 |
355
+ | 1.0455 | 620 | 0.0702 |
356
+ | 1.0793 | 640 | 0.0739 |
357
+ | 1.1130 | 660 | 0.049 |
358
+ | 1.1467 | 680 | 0.0613 |
359
+ | 1.1804 | 700 | 0.0663 |
360
+ | 1.2142 | 720 | 0.0726 |
361
+ | 1.2479 | 740 | 0.0822 |
362
+ | 1.2816 | 760 | 0.0651 |
363
+ | 1.3153 | 780 | 0.0603 |
364
+ | 1.3491 | 800 | 0.0468 |
365
+ | 1.3828 | 820 | 0.061 |
366
+ | 1.4165 | 840 | 0.0891 |
367
+ | 1.4503 | 860 | 0.0607 |
368
+ | 1.4840 | 880 | 0.0673 |
369
+ | 1.5177 | 900 | 0.0728 |
370
+ | 1.5514 | 920 | 0.065 |
371
+ | 1.5852 | 940 | 0.0824 |
372
+ | 1.6189 | 960 | 0.0695 |
373
+ | 1.6526 | 980 | 0.0626 |
374
+ | 1.6863 | 1000 | 0.0525 |
375
+ | 1.7201 | 1020 | 0.0482 |
376
+ | 1.7538 | 1040 | 0.0968 |
377
+ | 1.7875 | 1060 | 0.0717 |
378
+ | 1.8212 | 1080 | 0.0704 |
379
+ | 1.8550 | 1100 | 0.0666 |
380
+ | 1.8887 | 1120 | 0.0841 |
381
+ | 1.9224 | 1140 | 0.0682 |
382
+ | 1.9562 | 1160 | 0.0584 |
383
+ | 1.9899 | 1180 | 0.0423 |
384
+
385
+
386
+ ### Framework Versions
387
+ - Python: 3.9.21
388
+ - Sentence Transformers: 4.1.0
389
+ - Transformers: 4.52.4
390
+ - PyTorch: 2.6.0+cu124
391
+ - Accelerate: 1.5.2
392
+ - Datasets: 3.4.1
393
+ - Tokenizers: 0.21.1
394
+
395
+ ## Citation
396
+
397
+ ### BibTeX
398
+
399
+ #### Sentence Transformers
400
+ ```bibtex
401
+ @inproceedings{reimers-2019-sentence-bert,
402
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
403
+ author = "Reimers, Nils and Gurevych, Iryna",
404
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
405
+ month = "11",
406
+ year = "2019",
407
+ publisher = "Association for Computational Linguistics",
408
+ url = "https://arxiv.org/abs/1908.10084",
409
+ }
410
+ ```
411
+
412
+ #### MultipleNegativesRankingLoss
413
+ ```bibtex
414
+ @misc{henderson2017efficient,
415
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
416
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
417
+ year={2017},
418
+ eprint={1705.00652},
419
+ archivePrefix={arXiv},
420
+ primaryClass={cs.CL}
421
+ }
422
+ ```
423
+
424
+ <!--
425
+ ## Glossary
426
+
427
+ *Clearly define terms in order to be accessible across audiences.*
428
+ -->
429
+
430
+ <!--
431
+ ## Model Card Authors
432
+
433
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
434
+ -->
435
+
436
+ <!--
437
+ ## Model Card Contact
438
+
439
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
440
+ -->
config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "MPNetModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "bos_token_id": 0,
7
+ "eos_token_id": 2,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 3072,
13
+ "layer_norm_eps": 1e-05,
14
+ "max_position_embeddings": 514,
15
+ "model_type": "mpnet",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 1,
19
+ "relative_attention_num_buckets": 32,
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.52.4",
22
+ "vocab_size": 30527
23
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.1.0",
4
+ "transformers": "4.52.4",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:223c657f4bf2c2dfb47e50e8f81953e4dc114328c6880c4cb04bd746c32b3b74
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:16bee095091cb54694d9e280f3503981ea52637e5af3b5b32e05adc13b5941ba
3
+ size 871331770
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:453a0dc84b4f7d6b3d6119db839c1a67a9212af3b92d13014e3d691643227e6b
3
+ size 14244
scaler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1300331f6a0e3c4471b8a56365ccd78df20109d26c833448cc1f66f9e5d88fa6
3
+ size 988
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:910cf5dbaaaf2bc4cea5efbe1ecc61775cce0fc384d2bcaec9d177e61c6e9ee7
3
+ size 1064
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "104": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "30526": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "<s>",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": true,
49
+ "eos_token": "</s>",
50
+ "extra_special_tokens": {},
51
+ "mask_token": "<mask>",
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_token": "<pad>",
55
+ "sep_token": "</s>",
56
+ "strip_accents": null,
57
+ "tokenize_chinese_chars": true,
58
+ "tokenizer_class": "MPNetTokenizer",
59
+ "unk_token": "[UNK]"
60
+ }
trainer_state.json ADDED
@@ -0,0 +1,447 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 2.0,
6
+ "eval_steps": 500,
7
+ "global_step": 1186,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.03372681281618887,
14
+ "grad_norm": 5.941967487335205,
15
+ "learning_rate": 1.0453299076426935e-05,
16
+ "loss": 0.2448,
17
+ "step": 20
18
+ },
19
+ {
20
+ "epoch": 0.06745362563237774,
21
+ "grad_norm": 9.986567497253418,
22
+ "learning_rate": 2.1456771788455288e-05,
23
+ "loss": 0.1918,
24
+ "step": 40
25
+ },
26
+ {
27
+ "epoch": 0.10118043844856661,
28
+ "grad_norm": 3.148054599761963,
29
+ "learning_rate": 2.1082634529720233e-05,
30
+ "loss": 0.14,
31
+ "step": 60
32
+ },
33
+ {
34
+ "epoch": 0.13490725126475547,
35
+ "grad_norm": 8.24326229095459,
36
+ "learning_rate": 2.070849727098518e-05,
37
+ "loss": 0.186,
38
+ "step": 80
39
+ },
40
+ {
41
+ "epoch": 0.16863406408094436,
42
+ "grad_norm": 2.4032340049743652,
43
+ "learning_rate": 2.033436001225013e-05,
44
+ "loss": 0.1407,
45
+ "step": 100
46
+ },
47
+ {
48
+ "epoch": 0.20236087689713322,
49
+ "grad_norm": 3.855356216430664,
50
+ "learning_rate": 1.9960222753515078e-05,
51
+ "loss": 0.1672,
52
+ "step": 120
53
+ },
54
+ {
55
+ "epoch": 0.23608768971332209,
56
+ "grad_norm": 5.036954879760742,
57
+ "learning_rate": 1.9586085494780023e-05,
58
+ "loss": 0.1832,
59
+ "step": 140
60
+ },
61
+ {
62
+ "epoch": 0.26981450252951095,
63
+ "grad_norm": 1.7486367225646973,
64
+ "learning_rate": 1.921194823604497e-05,
65
+ "loss": 0.116,
66
+ "step": 160
67
+ },
68
+ {
69
+ "epoch": 0.30354131534569984,
70
+ "grad_norm": 2.300610303878784,
71
+ "learning_rate": 1.8837810977309916e-05,
72
+ "loss": 0.1341,
73
+ "step": 180
74
+ },
75
+ {
76
+ "epoch": 0.3372681281618887,
77
+ "grad_norm": 7.484567642211914,
78
+ "learning_rate": 1.846367371857486e-05,
79
+ "loss": 0.2118,
80
+ "step": 200
81
+ },
82
+ {
83
+ "epoch": 0.37099494097807756,
84
+ "grad_norm": 3.249177932739258,
85
+ "learning_rate": 1.808953645983981e-05,
86
+ "loss": 0.1274,
87
+ "step": 220
88
+ },
89
+ {
90
+ "epoch": 0.40472175379426645,
91
+ "grad_norm": 4.78777551651001,
92
+ "learning_rate": 1.7715399201104758e-05,
93
+ "loss": 0.1993,
94
+ "step": 240
95
+ },
96
+ {
97
+ "epoch": 0.43844856661045534,
98
+ "grad_norm": 3.9657957553863525,
99
+ "learning_rate": 1.7341261942369707e-05,
100
+ "loss": 0.1561,
101
+ "step": 260
102
+ },
103
+ {
104
+ "epoch": 0.47217537942664417,
105
+ "grad_norm": 5.606136798858643,
106
+ "learning_rate": 1.6967124683634652e-05,
107
+ "loss": 0.1517,
108
+ "step": 280
109
+ },
110
+ {
111
+ "epoch": 0.5059021922428331,
112
+ "grad_norm": 5.850975036621094,
113
+ "learning_rate": 1.65929874248996e-05,
114
+ "loss": 0.1635,
115
+ "step": 300
116
+ },
117
+ {
118
+ "epoch": 0.5396290050590219,
119
+ "grad_norm": 6.081123352050781,
120
+ "learning_rate": 1.6218850166164545e-05,
121
+ "loss": 0.1646,
122
+ "step": 320
123
+ },
124
+ {
125
+ "epoch": 0.5733558178752108,
126
+ "grad_norm": 2.2266976833343506,
127
+ "learning_rate": 1.5844712907429494e-05,
128
+ "loss": 0.1337,
129
+ "step": 340
130
+ },
131
+ {
132
+ "epoch": 0.6070826306913997,
133
+ "grad_norm": 3.113185167312622,
134
+ "learning_rate": 1.5470575648694442e-05,
135
+ "loss": 0.1406,
136
+ "step": 360
137
+ },
138
+ {
139
+ "epoch": 0.6408094435075885,
140
+ "grad_norm": 3.9175527095794678,
141
+ "learning_rate": 1.5096438389959387e-05,
142
+ "loss": 0.1114,
143
+ "step": 380
144
+ },
145
+ {
146
+ "epoch": 0.6745362563237775,
147
+ "grad_norm": 7.268213272094727,
148
+ "learning_rate": 1.4741007994161085e-05,
149
+ "loss": 0.1314,
150
+ "step": 400
151
+ },
152
+ {
153
+ "epoch": 0.7082630691399663,
154
+ "grad_norm": 0.12521882355213165,
155
+ "learning_rate": 1.4366870735426034e-05,
156
+ "loss": 0.1481,
157
+ "step": 420
158
+ },
159
+ {
160
+ "epoch": 0.7419898819561551,
161
+ "grad_norm": 0.6655579805374146,
162
+ "learning_rate": 1.399273347669098e-05,
163
+ "loss": 0.1932,
164
+ "step": 440
165
+ },
166
+ {
167
+ "epoch": 0.7757166947723441,
168
+ "grad_norm": 1.8391481637954712,
169
+ "learning_rate": 1.3618596217955929e-05,
170
+ "loss": 0.1568,
171
+ "step": 460
172
+ },
173
+ {
174
+ "epoch": 0.8094435075885329,
175
+ "grad_norm": 2.549755573272705,
176
+ "learning_rate": 1.3244458959220876e-05,
177
+ "loss": 0.1319,
178
+ "step": 480
179
+ },
180
+ {
181
+ "epoch": 0.8431703204047217,
182
+ "grad_norm": 5.393273830413818,
183
+ "learning_rate": 1.287032170048582e-05,
184
+ "loss": 0.1536,
185
+ "step": 500
186
+ },
187
+ {
188
+ "epoch": 0.8768971332209107,
189
+ "grad_norm": 6.554528713226318,
190
+ "learning_rate": 1.2496184441750769e-05,
191
+ "loss": 0.1462,
192
+ "step": 520
193
+ },
194
+ {
195
+ "epoch": 0.9106239460370995,
196
+ "grad_norm": 1.6136741638183594,
197
+ "learning_rate": 1.2140754045952469e-05,
198
+ "loss": 0.1336,
199
+ "step": 540
200
+ },
201
+ {
202
+ "epoch": 0.9443507588532883,
203
+ "grad_norm": 5.212509632110596,
204
+ "learning_rate": 1.1766616787217416e-05,
205
+ "loss": 0.1453,
206
+ "step": 560
207
+ },
208
+ {
209
+ "epoch": 0.9780775716694773,
210
+ "grad_norm": 3.5280606746673584,
211
+ "learning_rate": 1.1392479528482364e-05,
212
+ "loss": 0.2005,
213
+ "step": 580
214
+ },
215
+ {
216
+ "epoch": 1.0118043844856661,
217
+ "grad_norm": 1.6883734464645386,
218
+ "learning_rate": 1.101834226974731e-05,
219
+ "loss": 0.1265,
220
+ "step": 600
221
+ },
222
+ {
223
+ "epoch": 1.045531197301855,
224
+ "grad_norm": 3.4844117164611816,
225
+ "learning_rate": 1.0644205011012256e-05,
226
+ "loss": 0.0702,
227
+ "step": 620
228
+ },
229
+ {
230
+ "epoch": 1.0792580101180438,
231
+ "grad_norm": 3.2391409873962402,
232
+ "learning_rate": 1.0270067752277204e-05,
233
+ "loss": 0.0739,
234
+ "step": 640
235
+ },
236
+ {
237
+ "epoch": 1.1129848229342327,
238
+ "grad_norm": 0.9840973019599915,
239
+ "learning_rate": 9.895930493542151e-06,
240
+ "loss": 0.049,
241
+ "step": 660
242
+ },
243
+ {
244
+ "epoch": 1.1467116357504217,
245
+ "grad_norm": 1.558282494544983,
246
+ "learning_rate": 9.521793234807098e-06,
247
+ "loss": 0.0613,
248
+ "step": 680
249
+ },
250
+ {
251
+ "epoch": 1.1804384485666104,
252
+ "grad_norm": 4.577453136444092,
253
+ "learning_rate": 9.147655976072046e-06,
254
+ "loss": 0.0663,
255
+ "step": 700
256
+ },
257
+ {
258
+ "epoch": 1.2141652613827993,
259
+ "grad_norm": 3.983466386795044,
260
+ "learning_rate": 8.773518717336993e-06,
261
+ "loss": 0.0726,
262
+ "step": 720
263
+ },
264
+ {
265
+ "epoch": 1.2478920741989883,
266
+ "grad_norm": 1.6742738485336304,
267
+ "learning_rate": 8.399381458601938e-06,
268
+ "loss": 0.0822,
269
+ "step": 740
270
+ },
271
+ {
272
+ "epoch": 1.281618887015177,
273
+ "grad_norm": 3.7029430866241455,
274
+ "learning_rate": 8.025244199866886e-06,
275
+ "loss": 0.0651,
276
+ "step": 760
277
+ },
278
+ {
279
+ "epoch": 1.315345699831366,
280
+ "grad_norm": 2.690622329711914,
281
+ "learning_rate": 7.651106941131833e-06,
282
+ "loss": 0.0603,
283
+ "step": 780
284
+ },
285
+ {
286
+ "epoch": 1.3490725126475547,
287
+ "grad_norm": 2.1681394577026367,
288
+ "learning_rate": 7.27696968239678e-06,
289
+ "loss": 0.0468,
290
+ "step": 800
291
+ },
292
+ {
293
+ "epoch": 1.3827993254637436,
294
+ "grad_norm": 1.7206655740737915,
295
+ "learning_rate": 6.902832423661727e-06,
296
+ "loss": 0.061,
297
+ "step": 820
298
+ },
299
+ {
300
+ "epoch": 1.4165261382799326,
301
+ "grad_norm": 9.609166145324707,
302
+ "learning_rate": 6.528695164926675e-06,
303
+ "loss": 0.0891,
304
+ "step": 840
305
+ },
306
+ {
307
+ "epoch": 1.4502529510961213,
308
+ "grad_norm": 7.554985046386719,
309
+ "learning_rate": 6.154557906191622e-06,
310
+ "loss": 0.0607,
311
+ "step": 860
312
+ },
313
+ {
314
+ "epoch": 1.4839797639123102,
315
+ "grad_norm": 5.7379679679870605,
316
+ "learning_rate": 5.7804206474565675e-06,
317
+ "loss": 0.0673,
318
+ "step": 880
319
+ },
320
+ {
321
+ "epoch": 1.5177065767284992,
322
+ "grad_norm": 0.8277637958526611,
323
+ "learning_rate": 5.406283388721515e-06,
324
+ "loss": 0.0728,
325
+ "step": 900
326
+ },
327
+ {
328
+ "epoch": 1.551433389544688,
329
+ "grad_norm": 8.901878356933594,
330
+ "learning_rate": 5.032146129986462e-06,
331
+ "loss": 0.065,
332
+ "step": 920
333
+ },
334
+ {
335
+ "epoch": 1.5851602023608768,
336
+ "grad_norm": 4.0218729972839355,
337
+ "learning_rate": 4.658008871251409e-06,
338
+ "loss": 0.0824,
339
+ "step": 940
340
+ },
341
+ {
342
+ "epoch": 1.6188870151770658,
343
+ "grad_norm": 3.5292980670928955,
344
+ "learning_rate": 4.283871612516357e-06,
345
+ "loss": 0.0695,
346
+ "step": 960
347
+ },
348
+ {
349
+ "epoch": 1.6526138279932545,
350
+ "grad_norm": 5.086415767669678,
351
+ "learning_rate": 3.909734353781304e-06,
352
+ "loss": 0.0626,
353
+ "step": 980
354
+ },
355
+ {
356
+ "epoch": 1.6863406408094435,
357
+ "grad_norm": 4.6788811683654785,
358
+ "learning_rate": 3.5355970950462504e-06,
359
+ "loss": 0.0525,
360
+ "step": 1000
361
+ },
362
+ {
363
+ "epoch": 1.7200674536256324,
364
+ "grad_norm": 2.9604878425598145,
365
+ "learning_rate": 3.1614598363111975e-06,
366
+ "loss": 0.0482,
367
+ "step": 1020
368
+ },
369
+ {
370
+ "epoch": 1.7537942664418211,
371
+ "grad_norm": 6.82230281829834,
372
+ "learning_rate": 2.7873225775761446e-06,
373
+ "loss": 0.0968,
374
+ "step": 1040
375
+ },
376
+ {
377
+ "epoch": 1.78752107925801,
378
+ "grad_norm": 3.8208751678466797,
379
+ "learning_rate": 2.4131853188410918e-06,
380
+ "loss": 0.0717,
381
+ "step": 1060
382
+ },
383
+ {
384
+ "epoch": 1.821247892074199,
385
+ "grad_norm": 1.3548328876495361,
386
+ "learning_rate": 2.0390480601060385e-06,
387
+ "loss": 0.0704,
388
+ "step": 1080
389
+ },
390
+ {
391
+ "epoch": 1.8549747048903877,
392
+ "grad_norm": 5.133670806884766,
393
+ "learning_rate": 1.6649108013709859e-06,
394
+ "loss": 0.0666,
395
+ "step": 1100
396
+ },
397
+ {
398
+ "epoch": 1.8887015177065767,
399
+ "grad_norm": 2.3805644512176514,
400
+ "learning_rate": 1.3094804055726854e-06,
401
+ "loss": 0.0841,
402
+ "step": 1120
403
+ },
404
+ {
405
+ "epoch": 1.9224283305227656,
406
+ "grad_norm": 6.70649528503418,
407
+ "learning_rate": 9.353431468376325e-07,
408
+ "loss": 0.0682,
409
+ "step": 1140
410
+ },
411
+ {
412
+ "epoch": 1.9561551433389543,
413
+ "grad_norm": 1.9125243425369263,
414
+ "learning_rate": 5.612058881025794e-07,
415
+ "loss": 0.0584,
416
+ "step": 1160
417
+ },
418
+ {
419
+ "epoch": 1.9898819561551433,
420
+ "grad_norm": 3.1292877197265625,
421
+ "learning_rate": 1.8706862936752648e-07,
422
+ "loss": 0.0423,
423
+ "step": 1180
424
+ }
425
+ ],
426
+ "logging_steps": 20,
427
+ "max_steps": 1186,
428
+ "num_input_tokens_seen": 0,
429
+ "num_train_epochs": 2,
430
+ "save_steps": 500,
431
+ "stateful_callbacks": {
432
+ "TrainerControl": {
433
+ "args": {
434
+ "should_epoch_stop": false,
435
+ "should_evaluate": false,
436
+ "should_log": false,
437
+ "should_save": true,
438
+ "should_training_stop": true
439
+ },
440
+ "attributes": {}
441
+ }
442
+ },
443
+ "total_flos": 0.0,
444
+ "train_batch_size": 32,
445
+ "trial_name": null,
446
+ "trial_params": null
447
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2c97e4b3dd5bd84b086862dab3a5e4a2f8651ea1f526abc26541842490fd600c
3
+ size 5624
vocab.txt ADDED
The diff for this file is too large to render. See raw diff