Upload folder using huggingface_hub
Browse files- 1_Pooling/config.json +10 -0
- README.md +440 -0
- config.json +23 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- optimizer.pt +3 -0
- rng_state.pth +3 -0
- scaler.pt +3 -0
- scheduler.pt +3 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +60 -0
- trainer_state.json +447 -0
- training_args.bin +3 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,440 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- sentence-transformers
|
4 |
+
- sentence-similarity
|
5 |
+
- feature-extraction
|
6 |
+
- generated_from_trainer
|
7 |
+
- dataset_size:18963
|
8 |
+
- loss:MultipleNegativesRankingLoss
|
9 |
+
base_model: sentence-transformers/paraphrase-mpnet-base-v2
|
10 |
+
widget:
|
11 |
+
- source_sentence: If the comatose man had previously expressed a desire to be euthanized
|
12 |
+
in such a situation, respecting his autonomy would support euthanasia.
|
13 |
+
sentences:
|
14 |
+
- If the comatose man had previously expressed a desire for euthanasia in such circumstances,
|
15 |
+
there may be a duty to respect his autonomy, which would support the action.
|
16 |
+
- If the man is believed to be suffering in his comatose state or there is a significant
|
17 |
+
burden on his family, there may be a duty to alleviate suffering that supports
|
18 |
+
euthanasia.
|
19 |
+
- As a living being, the rat may warrant a duty of care from humans, which may include
|
20 |
+
providing it with appropriate medical treatment or humane euthanasia in case of
|
21 |
+
suffering.
|
22 |
+
- source_sentence: Resisting authoritarianism can defend individual freedom and undermine
|
23 |
+
oppressive regimes.
|
24 |
+
sentences:
|
25 |
+
- Resisting authoritarianism can be a means of exercising the right to free speech
|
26 |
+
and expression, which may be suppressed by the government.
|
27 |
+
- If retreating serves to protect the lives of soldiers and civilians, then it upholds
|
28 |
+
the value of the duty to protect.
|
29 |
+
- Resisting authoritarianism could result in negative consequences for safety and
|
30 |
+
security if violence is used to resist.
|
31 |
+
- source_sentence: Saving someone upholds their fundamental right to life, as it prevents
|
32 |
+
them from experiencing harm or death.
|
33 |
+
sentences:
|
34 |
+
- Donating the money to charity has the potential to benefit those in need and can
|
35 |
+
be seen as fulfilling a duty to improve the well-being of others.
|
36 |
+
- Saving someone may preserve their freedom and ability to make choices in their
|
37 |
+
life.
|
38 |
+
- If saving someone involves protecting their body from injury or harm, their right
|
39 |
+
to bodily integrity is respected.
|
40 |
+
- source_sentence: Helping those in need, such as a starving person, promotes a sense
|
41 |
+
of community and responsibility towards fellow humans.
|
42 |
+
sentences:
|
43 |
+
- We have a moral responsibility to treat others with respect and dignity, regardless
|
44 |
+
of their race. Hanging out with black people allows for the opportunity to demonstrate
|
45 |
+
this respect.
|
46 |
+
- A starving person's right to life is at stake, and providing them with food can
|
47 |
+
help protect this fundamental right.
|
48 |
+
- Providing aid and resources to someone in need is an expression of the duty to
|
49 |
+
promote the well-being of others.
|
50 |
+
- source_sentence: The marriage of Baptiste and Hannah demonstrates their commitment
|
51 |
+
to sharing their lives and supporting one another.
|
52 |
+
sentences:
|
53 |
+
- Helping others may be a moral duty, but using unethical means like cheating goes
|
54 |
+
against other moral principles.
|
55 |
+
- If the marriage brings happiness to Baptiste and Hannah, then they are pursuing
|
56 |
+
their right to happiness.
|
57 |
+
- By getting married, Baptiste and Hannah take on a duty to care for each other,
|
58 |
+
both emotionally and materially.
|
59 |
+
pipeline_tag: sentence-similarity
|
60 |
+
library_name: sentence-transformers
|
61 |
+
---
|
62 |
+
|
63 |
+
# SentenceTransformer based on sentence-transformers/paraphrase-mpnet-base-v2
|
64 |
+
|
65 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) on the train dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
66 |
+
|
67 |
+
## Model Details
|
68 |
+
|
69 |
+
### Model Description
|
70 |
+
- **Model Type:** Sentence Transformer
|
71 |
+
- **Base model:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) <!-- at revision 0446e4ee4c8cef910c1b1dd164b6276d66bd47c0 -->
|
72 |
+
- **Maximum Sequence Length:** 512 tokens
|
73 |
+
- **Output Dimensionality:** 768 dimensions
|
74 |
+
- **Similarity Function:** Cosine Similarity
|
75 |
+
- **Training Dataset:**
|
76 |
+
- train
|
77 |
+
<!-- - **Language:** Unknown -->
|
78 |
+
<!-- - **License:** Unknown -->
|
79 |
+
|
80 |
+
### Model Sources
|
81 |
+
|
82 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
83 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
84 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
85 |
+
|
86 |
+
### Full Model Architecture
|
87 |
+
|
88 |
+
```
|
89 |
+
SentenceTransformer(
|
90 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel
|
91 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
92 |
+
)
|
93 |
+
```
|
94 |
+
|
95 |
+
## Usage
|
96 |
+
|
97 |
+
### Direct Usage (Sentence Transformers)
|
98 |
+
|
99 |
+
First install the Sentence Transformers library:
|
100 |
+
|
101 |
+
```bash
|
102 |
+
pip install -U sentence-transformers
|
103 |
+
```
|
104 |
+
|
105 |
+
Then you can load this model and run inference.
|
106 |
+
```python
|
107 |
+
from sentence_transformers import SentenceTransformer
|
108 |
+
|
109 |
+
# Download from the 🤗 Hub
|
110 |
+
model = SentenceTransformer("sentence_transformers_model_id")
|
111 |
+
# Run inference
|
112 |
+
sentences = [
|
113 |
+
'The marriage of Baptiste and Hannah demonstrates their commitment to sharing their lives and supporting one another.',
|
114 |
+
'By getting married, Baptiste and Hannah take on a duty to care for each other, both emotionally and materially.',
|
115 |
+
'If the marriage brings happiness to Baptiste and Hannah, then they are pursuing their right to happiness.',
|
116 |
+
]
|
117 |
+
embeddings = model.encode(sentences)
|
118 |
+
print(embeddings.shape)
|
119 |
+
# [3, 768]
|
120 |
+
|
121 |
+
# Get the similarity scores for the embeddings
|
122 |
+
similarities = model.similarity(embeddings, embeddings)
|
123 |
+
print(similarities.shape)
|
124 |
+
# [3, 3]
|
125 |
+
```
|
126 |
+
|
127 |
+
<!--
|
128 |
+
### Direct Usage (Transformers)
|
129 |
+
|
130 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
131 |
+
|
132 |
+
</details>
|
133 |
+
-->
|
134 |
+
|
135 |
+
<!--
|
136 |
+
### Downstream Usage (Sentence Transformers)
|
137 |
+
|
138 |
+
You can finetune this model on your own dataset.
|
139 |
+
|
140 |
+
<details><summary>Click to expand</summary>
|
141 |
+
|
142 |
+
</details>
|
143 |
+
-->
|
144 |
+
|
145 |
+
<!--
|
146 |
+
### Out-of-Scope Use
|
147 |
+
|
148 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
149 |
+
-->
|
150 |
+
|
151 |
+
<!--
|
152 |
+
## Bias, Risks and Limitations
|
153 |
+
|
154 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
155 |
+
-->
|
156 |
+
|
157 |
+
<!--
|
158 |
+
### Recommendations
|
159 |
+
|
160 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
161 |
+
-->
|
162 |
+
|
163 |
+
## Training Details
|
164 |
+
|
165 |
+
### Training Dataset
|
166 |
+
|
167 |
+
#### train
|
168 |
+
|
169 |
+
* Dataset: train
|
170 |
+
* Size: 18,963 training samples
|
171 |
+
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
|
172 |
+
* Approximate statistics based on the first 1000 samples:
|
173 |
+
| | anchor | positive | negative |
|
174 |
+
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|
|
175 |
+
| type | string | string | string |
|
176 |
+
| details | <ul><li>min: 10 tokens</li><li>mean: 25.92 tokens</li><li>max: 51 tokens</li></ul> | <ul><li>min: 9 tokens</li><li>mean: 28.31 tokens</li><li>max: 60 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 28.69 tokens</li><li>max: 67 tokens</li></ul> |
|
177 |
+
* Samples:
|
178 |
+
| anchor | positive | negative |
|
179 |
+
|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
180 |
+
| <code>Saving the group of people from harm by diverting the trolley supports the value of preserving life.</code> | <code>The group of people tied to the tracks have a right to life, which is protected when the trolley is diverted to save them.</code> | <code>Diverting the trolley reduces overall harm by preventing the deaths of many people at the cost of one person's life.</code> |
|
181 |
+
| <code>The bake sale could be seen as an expression of support for a particular cause, and the right to freely express oneself and associate with others who share the same views is important.</code> | <code>The bake sale might be seen as a form of protest or support for a specific cause, and individuals have the right to engage in peaceful protest or show support.</code> | <code>If the bake sale directly or indirectly promotes religious discrimination, this can infringe on the fundamental right of individuals to be free from discrimination or harm due to their religious beliefs.</code> |
|
182 |
+
| <code>Children have a right to life, and saving them from danger upholds this right.</code> | <code>Children should be protected from harm, abuse, and danger, and saving them ensures this right is respected.</code> | <code>Children have a right to grow up with access to healthcare, education, and a nurturing environment. Saving them may help secure these rights.</code> |
|
183 |
+
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
184 |
+
```json
|
185 |
+
{
|
186 |
+
"scale": 40,
|
187 |
+
"similarity_fct": "cos_sim"
|
188 |
+
}
|
189 |
+
```
|
190 |
+
|
191 |
+
### Training Hyperparameters
|
192 |
+
#### Non-Default Hyperparameters
|
193 |
+
|
194 |
+
- `overwrite_output_dir`: True
|
195 |
+
- `per_device_train_batch_size`: 32
|
196 |
+
- `learning_rate`: 2.1456771788455288e-05
|
197 |
+
- `num_train_epochs`: 2
|
198 |
+
- `warmup_ratio`: 0.03254893834779507
|
199 |
+
- `fp16`: True
|
200 |
+
- `dataloader_num_workers`: 4
|
201 |
+
- `remove_unused_columns`: False
|
202 |
+
|
203 |
+
#### All Hyperparameters
|
204 |
+
<details><summary>Click to expand</summary>
|
205 |
+
|
206 |
+
- `overwrite_output_dir`: True
|
207 |
+
- `do_predict`: False
|
208 |
+
- `eval_strategy`: no
|
209 |
+
- `prediction_loss_only`: True
|
210 |
+
- `per_device_train_batch_size`: 32
|
211 |
+
- `per_device_eval_batch_size`: 8
|
212 |
+
- `per_gpu_train_batch_size`: None
|
213 |
+
- `per_gpu_eval_batch_size`: None
|
214 |
+
- `gradient_accumulation_steps`: 1
|
215 |
+
- `eval_accumulation_steps`: None
|
216 |
+
- `torch_empty_cache_steps`: None
|
217 |
+
- `learning_rate`: 2.1456771788455288e-05
|
218 |
+
- `weight_decay`: 0.0
|
219 |
+
- `adam_beta1`: 0.9
|
220 |
+
- `adam_beta2`: 0.999
|
221 |
+
- `adam_epsilon`: 1e-08
|
222 |
+
- `max_grad_norm`: 1.0
|
223 |
+
- `num_train_epochs`: 2
|
224 |
+
- `max_steps`: -1
|
225 |
+
- `lr_scheduler_type`: linear
|
226 |
+
- `lr_scheduler_kwargs`: {}
|
227 |
+
- `warmup_ratio`: 0.03254893834779507
|
228 |
+
- `warmup_steps`: 0
|
229 |
+
- `log_level`: passive
|
230 |
+
- `log_level_replica`: warning
|
231 |
+
- `log_on_each_node`: True
|
232 |
+
- `logging_nan_inf_filter`: True
|
233 |
+
- `save_safetensors`: True
|
234 |
+
- `save_on_each_node`: False
|
235 |
+
- `save_only_model`: False
|
236 |
+
- `restore_callback_states_from_checkpoint`: False
|
237 |
+
- `no_cuda`: False
|
238 |
+
- `use_cpu`: False
|
239 |
+
- `use_mps_device`: False
|
240 |
+
- `seed`: 42
|
241 |
+
- `data_seed`: None
|
242 |
+
- `jit_mode_eval`: False
|
243 |
+
- `use_ipex`: False
|
244 |
+
- `bf16`: False
|
245 |
+
- `fp16`: True
|
246 |
+
- `fp16_opt_level`: O1
|
247 |
+
- `half_precision_backend`: auto
|
248 |
+
- `bf16_full_eval`: False
|
249 |
+
- `fp16_full_eval`: False
|
250 |
+
- `tf32`: None
|
251 |
+
- `local_rank`: 0
|
252 |
+
- `ddp_backend`: None
|
253 |
+
- `tpu_num_cores`: None
|
254 |
+
- `tpu_metrics_debug`: False
|
255 |
+
- `debug`: []
|
256 |
+
- `dataloader_drop_last`: False
|
257 |
+
- `dataloader_num_workers`: 4
|
258 |
+
- `dataloader_prefetch_factor`: None
|
259 |
+
- `past_index`: -1
|
260 |
+
- `disable_tqdm`: False
|
261 |
+
- `remove_unused_columns`: False
|
262 |
+
- `label_names`: None
|
263 |
+
- `load_best_model_at_end`: False
|
264 |
+
- `ignore_data_skip`: False
|
265 |
+
- `fsdp`: []
|
266 |
+
- `fsdp_min_num_params`: 0
|
267 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
268 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
269 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
270 |
+
- `deepspeed`: None
|
271 |
+
- `label_smoothing_factor`: 0.0
|
272 |
+
- `optim`: adamw_torch
|
273 |
+
- `optim_args`: None
|
274 |
+
- `adafactor`: False
|
275 |
+
- `group_by_length`: False
|
276 |
+
- `length_column_name`: length
|
277 |
+
- `ddp_find_unused_parameters`: None
|
278 |
+
- `ddp_bucket_cap_mb`: None
|
279 |
+
- `ddp_broadcast_buffers`: False
|
280 |
+
- `dataloader_pin_memory`: True
|
281 |
+
- `dataloader_persistent_workers`: False
|
282 |
+
- `skip_memory_metrics`: True
|
283 |
+
- `use_legacy_prediction_loop`: False
|
284 |
+
- `push_to_hub`: False
|
285 |
+
- `resume_from_checkpoint`: None
|
286 |
+
- `hub_model_id`: None
|
287 |
+
- `hub_strategy`: every_save
|
288 |
+
- `hub_private_repo`: None
|
289 |
+
- `hub_always_push`: False
|
290 |
+
- `gradient_checkpointing`: False
|
291 |
+
- `gradient_checkpointing_kwargs`: None
|
292 |
+
- `include_inputs_for_metrics`: False
|
293 |
+
- `include_for_metrics`: []
|
294 |
+
- `eval_do_concat_batches`: True
|
295 |
+
- `fp16_backend`: auto
|
296 |
+
- `push_to_hub_model_id`: None
|
297 |
+
- `push_to_hub_organization`: None
|
298 |
+
- `mp_parameters`:
|
299 |
+
- `auto_find_batch_size`: False
|
300 |
+
- `full_determinism`: False
|
301 |
+
- `torchdynamo`: None
|
302 |
+
- `ray_scope`: last
|
303 |
+
- `ddp_timeout`: 1800
|
304 |
+
- `torch_compile`: False
|
305 |
+
- `torch_compile_backend`: None
|
306 |
+
- `torch_compile_mode`: None
|
307 |
+
- `include_tokens_per_second`: False
|
308 |
+
- `include_num_input_tokens_seen`: False
|
309 |
+
- `neftune_noise_alpha`: None
|
310 |
+
- `optim_target_modules`: None
|
311 |
+
- `batch_eval_metrics`: False
|
312 |
+
- `eval_on_start`: False
|
313 |
+
- `use_liger_kernel`: False
|
314 |
+
- `eval_use_gather_object`: False
|
315 |
+
- `average_tokens_across_devices`: False
|
316 |
+
- `prompts`: None
|
317 |
+
- `batch_sampler`: batch_sampler
|
318 |
+
- `multi_dataset_batch_sampler`: proportional
|
319 |
+
|
320 |
+
</details>
|
321 |
+
|
322 |
+
### Training Logs
|
323 |
+
| Epoch | Step | Training Loss |
|
324 |
+
|:------:|:----:|:-------------:|
|
325 |
+
| 0.0337 | 20 | 0.2448 |
|
326 |
+
| 0.0675 | 40 | 0.1918 |
|
327 |
+
| 0.1012 | 60 | 0.14 |
|
328 |
+
| 0.1349 | 80 | 0.186 |
|
329 |
+
| 0.1686 | 100 | 0.1407 |
|
330 |
+
| 0.2024 | 120 | 0.1672 |
|
331 |
+
| 0.2361 | 140 | 0.1832 |
|
332 |
+
| 0.2698 | 160 | 0.116 |
|
333 |
+
| 0.3035 | 180 | 0.1341 |
|
334 |
+
| 0.3373 | 200 | 0.2118 |
|
335 |
+
| 0.3710 | 220 | 0.1274 |
|
336 |
+
| 0.4047 | 240 | 0.1993 |
|
337 |
+
| 0.4384 | 260 | 0.1561 |
|
338 |
+
| 0.4722 | 280 | 0.1517 |
|
339 |
+
| 0.5059 | 300 | 0.1635 |
|
340 |
+
| 0.5396 | 320 | 0.1646 |
|
341 |
+
| 0.5734 | 340 | 0.1337 |
|
342 |
+
| 0.6071 | 360 | 0.1406 |
|
343 |
+
| 0.6408 | 380 | 0.1114 |
|
344 |
+
| 0.6745 | 400 | 0.1314 |
|
345 |
+
| 0.7083 | 420 | 0.1481 |
|
346 |
+
| 0.7420 | 440 | 0.1932 |
|
347 |
+
| 0.7757 | 460 | 0.1568 |
|
348 |
+
| 0.8094 | 480 | 0.1319 |
|
349 |
+
| 0.8432 | 500 | 0.1536 |
|
350 |
+
| 0.8769 | 520 | 0.1462 |
|
351 |
+
| 0.9106 | 540 | 0.1336 |
|
352 |
+
| 0.9444 | 560 | 0.1453 |
|
353 |
+
| 0.9781 | 580 | 0.2005 |
|
354 |
+
| 1.0118 | 600 | 0.1265 |
|
355 |
+
| 1.0455 | 620 | 0.0702 |
|
356 |
+
| 1.0793 | 640 | 0.0739 |
|
357 |
+
| 1.1130 | 660 | 0.049 |
|
358 |
+
| 1.1467 | 680 | 0.0613 |
|
359 |
+
| 1.1804 | 700 | 0.0663 |
|
360 |
+
| 1.2142 | 720 | 0.0726 |
|
361 |
+
| 1.2479 | 740 | 0.0822 |
|
362 |
+
| 1.2816 | 760 | 0.0651 |
|
363 |
+
| 1.3153 | 780 | 0.0603 |
|
364 |
+
| 1.3491 | 800 | 0.0468 |
|
365 |
+
| 1.3828 | 820 | 0.061 |
|
366 |
+
| 1.4165 | 840 | 0.0891 |
|
367 |
+
| 1.4503 | 860 | 0.0607 |
|
368 |
+
| 1.4840 | 880 | 0.0673 |
|
369 |
+
| 1.5177 | 900 | 0.0728 |
|
370 |
+
| 1.5514 | 920 | 0.065 |
|
371 |
+
| 1.5852 | 940 | 0.0824 |
|
372 |
+
| 1.6189 | 960 | 0.0695 |
|
373 |
+
| 1.6526 | 980 | 0.0626 |
|
374 |
+
| 1.6863 | 1000 | 0.0525 |
|
375 |
+
| 1.7201 | 1020 | 0.0482 |
|
376 |
+
| 1.7538 | 1040 | 0.0968 |
|
377 |
+
| 1.7875 | 1060 | 0.0717 |
|
378 |
+
| 1.8212 | 1080 | 0.0704 |
|
379 |
+
| 1.8550 | 1100 | 0.0666 |
|
380 |
+
| 1.8887 | 1120 | 0.0841 |
|
381 |
+
| 1.9224 | 1140 | 0.0682 |
|
382 |
+
| 1.9562 | 1160 | 0.0584 |
|
383 |
+
| 1.9899 | 1180 | 0.0423 |
|
384 |
+
|
385 |
+
|
386 |
+
### Framework Versions
|
387 |
+
- Python: 3.9.21
|
388 |
+
- Sentence Transformers: 4.1.0
|
389 |
+
- Transformers: 4.52.4
|
390 |
+
- PyTorch: 2.6.0+cu124
|
391 |
+
- Accelerate: 1.5.2
|
392 |
+
- Datasets: 3.4.1
|
393 |
+
- Tokenizers: 0.21.1
|
394 |
+
|
395 |
+
## Citation
|
396 |
+
|
397 |
+
### BibTeX
|
398 |
+
|
399 |
+
#### Sentence Transformers
|
400 |
+
```bibtex
|
401 |
+
@inproceedings{reimers-2019-sentence-bert,
|
402 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
403 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
404 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
405 |
+
month = "11",
|
406 |
+
year = "2019",
|
407 |
+
publisher = "Association for Computational Linguistics",
|
408 |
+
url = "https://arxiv.org/abs/1908.10084",
|
409 |
+
}
|
410 |
+
```
|
411 |
+
|
412 |
+
#### MultipleNegativesRankingLoss
|
413 |
+
```bibtex
|
414 |
+
@misc{henderson2017efficient,
|
415 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
416 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
417 |
+
year={2017},
|
418 |
+
eprint={1705.00652},
|
419 |
+
archivePrefix={arXiv},
|
420 |
+
primaryClass={cs.CL}
|
421 |
+
}
|
422 |
+
```
|
423 |
+
|
424 |
+
<!--
|
425 |
+
## Glossary
|
426 |
+
|
427 |
+
*Clearly define terms in order to be accessible across audiences.*
|
428 |
+
-->
|
429 |
+
|
430 |
+
<!--
|
431 |
+
## Model Card Authors
|
432 |
+
|
433 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
434 |
+
-->
|
435 |
+
|
436 |
+
<!--
|
437 |
+
## Model Card Contact
|
438 |
+
|
439 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
440 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"MPNetModel"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"bos_token_id": 0,
|
7 |
+
"eos_token_id": 2,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 768,
|
11 |
+
"initializer_range": 0.02,
|
12 |
+
"intermediate_size": 3072,
|
13 |
+
"layer_norm_eps": 1e-05,
|
14 |
+
"max_position_embeddings": 514,
|
15 |
+
"model_type": "mpnet",
|
16 |
+
"num_attention_heads": 12,
|
17 |
+
"num_hidden_layers": 12,
|
18 |
+
"pad_token_id": 1,
|
19 |
+
"relative_attention_num_buckets": 32,
|
20 |
+
"torch_dtype": "float32",
|
21 |
+
"transformers_version": "4.52.4",
|
22 |
+
"vocab_size": 30527
|
23 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "4.1.0",
|
4 |
+
"transformers": "4.52.4",
|
5 |
+
"pytorch": "2.6.0+cu124"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:223c657f4bf2c2dfb47e50e8f81953e4dc114328c6880c4cb04bd746c32b3b74
|
3 |
+
size 437967672
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
optimizer.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:16bee095091cb54694d9e280f3503981ea52637e5af3b5b32e05adc13b5941ba
|
3 |
+
size 871331770
|
rng_state.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:453a0dc84b4f7d6b3d6119db839c1a67a9212af3b92d13014e3d691643227e6b
|
3 |
+
size 14244
|
scaler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1300331f6a0e3c4471b8a56365ccd78df20109d26c833448cc1f66f9e5d88fa6
|
3 |
+
size 988
|
scheduler.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:910cf5dbaaaf2bc4cea5efbe1ecc61775cce0fc384d2bcaec9d177e61c6e9ee7
|
3 |
+
size 1064
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"104": {
|
28 |
+
"content": "[UNK]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"30526": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"do_basic_tokenize": true,
|
48 |
+
"do_lower_case": true,
|
49 |
+
"eos_token": "</s>",
|
50 |
+
"extra_special_tokens": {},
|
51 |
+
"mask_token": "<mask>",
|
52 |
+
"model_max_length": 512,
|
53 |
+
"never_split": null,
|
54 |
+
"pad_token": "<pad>",
|
55 |
+
"sep_token": "</s>",
|
56 |
+
"strip_accents": null,
|
57 |
+
"tokenize_chinese_chars": true,
|
58 |
+
"tokenizer_class": "MPNetTokenizer",
|
59 |
+
"unk_token": "[UNK]"
|
60 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,447 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_global_step": null,
|
3 |
+
"best_metric": null,
|
4 |
+
"best_model_checkpoint": null,
|
5 |
+
"epoch": 2.0,
|
6 |
+
"eval_steps": 500,
|
7 |
+
"global_step": 1186,
|
8 |
+
"is_hyper_param_search": false,
|
9 |
+
"is_local_process_zero": true,
|
10 |
+
"is_world_process_zero": true,
|
11 |
+
"log_history": [
|
12 |
+
{
|
13 |
+
"epoch": 0.03372681281618887,
|
14 |
+
"grad_norm": 5.941967487335205,
|
15 |
+
"learning_rate": 1.0453299076426935e-05,
|
16 |
+
"loss": 0.2448,
|
17 |
+
"step": 20
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"epoch": 0.06745362563237774,
|
21 |
+
"grad_norm": 9.986567497253418,
|
22 |
+
"learning_rate": 2.1456771788455288e-05,
|
23 |
+
"loss": 0.1918,
|
24 |
+
"step": 40
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"epoch": 0.10118043844856661,
|
28 |
+
"grad_norm": 3.148054599761963,
|
29 |
+
"learning_rate": 2.1082634529720233e-05,
|
30 |
+
"loss": 0.14,
|
31 |
+
"step": 60
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"epoch": 0.13490725126475547,
|
35 |
+
"grad_norm": 8.24326229095459,
|
36 |
+
"learning_rate": 2.070849727098518e-05,
|
37 |
+
"loss": 0.186,
|
38 |
+
"step": 80
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"epoch": 0.16863406408094436,
|
42 |
+
"grad_norm": 2.4032340049743652,
|
43 |
+
"learning_rate": 2.033436001225013e-05,
|
44 |
+
"loss": 0.1407,
|
45 |
+
"step": 100
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"epoch": 0.20236087689713322,
|
49 |
+
"grad_norm": 3.855356216430664,
|
50 |
+
"learning_rate": 1.9960222753515078e-05,
|
51 |
+
"loss": 0.1672,
|
52 |
+
"step": 120
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"epoch": 0.23608768971332209,
|
56 |
+
"grad_norm": 5.036954879760742,
|
57 |
+
"learning_rate": 1.9586085494780023e-05,
|
58 |
+
"loss": 0.1832,
|
59 |
+
"step": 140
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 0.26981450252951095,
|
63 |
+
"grad_norm": 1.7486367225646973,
|
64 |
+
"learning_rate": 1.921194823604497e-05,
|
65 |
+
"loss": 0.116,
|
66 |
+
"step": 160
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 0.30354131534569984,
|
70 |
+
"grad_norm": 2.300610303878784,
|
71 |
+
"learning_rate": 1.8837810977309916e-05,
|
72 |
+
"loss": 0.1341,
|
73 |
+
"step": 180
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"epoch": 0.3372681281618887,
|
77 |
+
"grad_norm": 7.484567642211914,
|
78 |
+
"learning_rate": 1.846367371857486e-05,
|
79 |
+
"loss": 0.2118,
|
80 |
+
"step": 200
|
81 |
+
},
|
82 |
+
{
|
83 |
+
"epoch": 0.37099494097807756,
|
84 |
+
"grad_norm": 3.249177932739258,
|
85 |
+
"learning_rate": 1.808953645983981e-05,
|
86 |
+
"loss": 0.1274,
|
87 |
+
"step": 220
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"epoch": 0.40472175379426645,
|
91 |
+
"grad_norm": 4.78777551651001,
|
92 |
+
"learning_rate": 1.7715399201104758e-05,
|
93 |
+
"loss": 0.1993,
|
94 |
+
"step": 240
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"epoch": 0.43844856661045534,
|
98 |
+
"grad_norm": 3.9657957553863525,
|
99 |
+
"learning_rate": 1.7341261942369707e-05,
|
100 |
+
"loss": 0.1561,
|
101 |
+
"step": 260
|
102 |
+
},
|
103 |
+
{
|
104 |
+
"epoch": 0.47217537942664417,
|
105 |
+
"grad_norm": 5.606136798858643,
|
106 |
+
"learning_rate": 1.6967124683634652e-05,
|
107 |
+
"loss": 0.1517,
|
108 |
+
"step": 280
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"epoch": 0.5059021922428331,
|
112 |
+
"grad_norm": 5.850975036621094,
|
113 |
+
"learning_rate": 1.65929874248996e-05,
|
114 |
+
"loss": 0.1635,
|
115 |
+
"step": 300
|
116 |
+
},
|
117 |
+
{
|
118 |
+
"epoch": 0.5396290050590219,
|
119 |
+
"grad_norm": 6.081123352050781,
|
120 |
+
"learning_rate": 1.6218850166164545e-05,
|
121 |
+
"loss": 0.1646,
|
122 |
+
"step": 320
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"epoch": 0.5733558178752108,
|
126 |
+
"grad_norm": 2.2266976833343506,
|
127 |
+
"learning_rate": 1.5844712907429494e-05,
|
128 |
+
"loss": 0.1337,
|
129 |
+
"step": 340
|
130 |
+
},
|
131 |
+
{
|
132 |
+
"epoch": 0.6070826306913997,
|
133 |
+
"grad_norm": 3.113185167312622,
|
134 |
+
"learning_rate": 1.5470575648694442e-05,
|
135 |
+
"loss": 0.1406,
|
136 |
+
"step": 360
|
137 |
+
},
|
138 |
+
{
|
139 |
+
"epoch": 0.6408094435075885,
|
140 |
+
"grad_norm": 3.9175527095794678,
|
141 |
+
"learning_rate": 1.5096438389959387e-05,
|
142 |
+
"loss": 0.1114,
|
143 |
+
"step": 380
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"epoch": 0.6745362563237775,
|
147 |
+
"grad_norm": 7.268213272094727,
|
148 |
+
"learning_rate": 1.4741007994161085e-05,
|
149 |
+
"loss": 0.1314,
|
150 |
+
"step": 400
|
151 |
+
},
|
152 |
+
{
|
153 |
+
"epoch": 0.7082630691399663,
|
154 |
+
"grad_norm": 0.12521882355213165,
|
155 |
+
"learning_rate": 1.4366870735426034e-05,
|
156 |
+
"loss": 0.1481,
|
157 |
+
"step": 420
|
158 |
+
},
|
159 |
+
{
|
160 |
+
"epoch": 0.7419898819561551,
|
161 |
+
"grad_norm": 0.6655579805374146,
|
162 |
+
"learning_rate": 1.399273347669098e-05,
|
163 |
+
"loss": 0.1932,
|
164 |
+
"step": 440
|
165 |
+
},
|
166 |
+
{
|
167 |
+
"epoch": 0.7757166947723441,
|
168 |
+
"grad_norm": 1.8391481637954712,
|
169 |
+
"learning_rate": 1.3618596217955929e-05,
|
170 |
+
"loss": 0.1568,
|
171 |
+
"step": 460
|
172 |
+
},
|
173 |
+
{
|
174 |
+
"epoch": 0.8094435075885329,
|
175 |
+
"grad_norm": 2.549755573272705,
|
176 |
+
"learning_rate": 1.3244458959220876e-05,
|
177 |
+
"loss": 0.1319,
|
178 |
+
"step": 480
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"epoch": 0.8431703204047217,
|
182 |
+
"grad_norm": 5.393273830413818,
|
183 |
+
"learning_rate": 1.287032170048582e-05,
|
184 |
+
"loss": 0.1536,
|
185 |
+
"step": 500
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 0.8768971332209107,
|
189 |
+
"grad_norm": 6.554528713226318,
|
190 |
+
"learning_rate": 1.2496184441750769e-05,
|
191 |
+
"loss": 0.1462,
|
192 |
+
"step": 520
|
193 |
+
},
|
194 |
+
{
|
195 |
+
"epoch": 0.9106239460370995,
|
196 |
+
"grad_norm": 1.6136741638183594,
|
197 |
+
"learning_rate": 1.2140754045952469e-05,
|
198 |
+
"loss": 0.1336,
|
199 |
+
"step": 540
|
200 |
+
},
|
201 |
+
{
|
202 |
+
"epoch": 0.9443507588532883,
|
203 |
+
"grad_norm": 5.212509632110596,
|
204 |
+
"learning_rate": 1.1766616787217416e-05,
|
205 |
+
"loss": 0.1453,
|
206 |
+
"step": 560
|
207 |
+
},
|
208 |
+
{
|
209 |
+
"epoch": 0.9780775716694773,
|
210 |
+
"grad_norm": 3.5280606746673584,
|
211 |
+
"learning_rate": 1.1392479528482364e-05,
|
212 |
+
"loss": 0.2005,
|
213 |
+
"step": 580
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"epoch": 1.0118043844856661,
|
217 |
+
"grad_norm": 1.6883734464645386,
|
218 |
+
"learning_rate": 1.101834226974731e-05,
|
219 |
+
"loss": 0.1265,
|
220 |
+
"step": 600
|
221 |
+
},
|
222 |
+
{
|
223 |
+
"epoch": 1.045531197301855,
|
224 |
+
"grad_norm": 3.4844117164611816,
|
225 |
+
"learning_rate": 1.0644205011012256e-05,
|
226 |
+
"loss": 0.0702,
|
227 |
+
"step": 620
|
228 |
+
},
|
229 |
+
{
|
230 |
+
"epoch": 1.0792580101180438,
|
231 |
+
"grad_norm": 3.2391409873962402,
|
232 |
+
"learning_rate": 1.0270067752277204e-05,
|
233 |
+
"loss": 0.0739,
|
234 |
+
"step": 640
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"epoch": 1.1129848229342327,
|
238 |
+
"grad_norm": 0.9840973019599915,
|
239 |
+
"learning_rate": 9.895930493542151e-06,
|
240 |
+
"loss": 0.049,
|
241 |
+
"step": 660
|
242 |
+
},
|
243 |
+
{
|
244 |
+
"epoch": 1.1467116357504217,
|
245 |
+
"grad_norm": 1.558282494544983,
|
246 |
+
"learning_rate": 9.521793234807098e-06,
|
247 |
+
"loss": 0.0613,
|
248 |
+
"step": 680
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"epoch": 1.1804384485666104,
|
252 |
+
"grad_norm": 4.577453136444092,
|
253 |
+
"learning_rate": 9.147655976072046e-06,
|
254 |
+
"loss": 0.0663,
|
255 |
+
"step": 700
|
256 |
+
},
|
257 |
+
{
|
258 |
+
"epoch": 1.2141652613827993,
|
259 |
+
"grad_norm": 3.983466386795044,
|
260 |
+
"learning_rate": 8.773518717336993e-06,
|
261 |
+
"loss": 0.0726,
|
262 |
+
"step": 720
|
263 |
+
},
|
264 |
+
{
|
265 |
+
"epoch": 1.2478920741989883,
|
266 |
+
"grad_norm": 1.6742738485336304,
|
267 |
+
"learning_rate": 8.399381458601938e-06,
|
268 |
+
"loss": 0.0822,
|
269 |
+
"step": 740
|
270 |
+
},
|
271 |
+
{
|
272 |
+
"epoch": 1.281618887015177,
|
273 |
+
"grad_norm": 3.7029430866241455,
|
274 |
+
"learning_rate": 8.025244199866886e-06,
|
275 |
+
"loss": 0.0651,
|
276 |
+
"step": 760
|
277 |
+
},
|
278 |
+
{
|
279 |
+
"epoch": 1.315345699831366,
|
280 |
+
"grad_norm": 2.690622329711914,
|
281 |
+
"learning_rate": 7.651106941131833e-06,
|
282 |
+
"loss": 0.0603,
|
283 |
+
"step": 780
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"epoch": 1.3490725126475547,
|
287 |
+
"grad_norm": 2.1681394577026367,
|
288 |
+
"learning_rate": 7.27696968239678e-06,
|
289 |
+
"loss": 0.0468,
|
290 |
+
"step": 800
|
291 |
+
},
|
292 |
+
{
|
293 |
+
"epoch": 1.3827993254637436,
|
294 |
+
"grad_norm": 1.7206655740737915,
|
295 |
+
"learning_rate": 6.902832423661727e-06,
|
296 |
+
"loss": 0.061,
|
297 |
+
"step": 820
|
298 |
+
},
|
299 |
+
{
|
300 |
+
"epoch": 1.4165261382799326,
|
301 |
+
"grad_norm": 9.609166145324707,
|
302 |
+
"learning_rate": 6.528695164926675e-06,
|
303 |
+
"loss": 0.0891,
|
304 |
+
"step": 840
|
305 |
+
},
|
306 |
+
{
|
307 |
+
"epoch": 1.4502529510961213,
|
308 |
+
"grad_norm": 7.554985046386719,
|
309 |
+
"learning_rate": 6.154557906191622e-06,
|
310 |
+
"loss": 0.0607,
|
311 |
+
"step": 860
|
312 |
+
},
|
313 |
+
{
|
314 |
+
"epoch": 1.4839797639123102,
|
315 |
+
"grad_norm": 5.7379679679870605,
|
316 |
+
"learning_rate": 5.7804206474565675e-06,
|
317 |
+
"loss": 0.0673,
|
318 |
+
"step": 880
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"epoch": 1.5177065767284992,
|
322 |
+
"grad_norm": 0.8277637958526611,
|
323 |
+
"learning_rate": 5.406283388721515e-06,
|
324 |
+
"loss": 0.0728,
|
325 |
+
"step": 900
|
326 |
+
},
|
327 |
+
{
|
328 |
+
"epoch": 1.551433389544688,
|
329 |
+
"grad_norm": 8.901878356933594,
|
330 |
+
"learning_rate": 5.032146129986462e-06,
|
331 |
+
"loss": 0.065,
|
332 |
+
"step": 920
|
333 |
+
},
|
334 |
+
{
|
335 |
+
"epoch": 1.5851602023608768,
|
336 |
+
"grad_norm": 4.0218729972839355,
|
337 |
+
"learning_rate": 4.658008871251409e-06,
|
338 |
+
"loss": 0.0824,
|
339 |
+
"step": 940
|
340 |
+
},
|
341 |
+
{
|
342 |
+
"epoch": 1.6188870151770658,
|
343 |
+
"grad_norm": 3.5292980670928955,
|
344 |
+
"learning_rate": 4.283871612516357e-06,
|
345 |
+
"loss": 0.0695,
|
346 |
+
"step": 960
|
347 |
+
},
|
348 |
+
{
|
349 |
+
"epoch": 1.6526138279932545,
|
350 |
+
"grad_norm": 5.086415767669678,
|
351 |
+
"learning_rate": 3.909734353781304e-06,
|
352 |
+
"loss": 0.0626,
|
353 |
+
"step": 980
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"epoch": 1.6863406408094435,
|
357 |
+
"grad_norm": 4.6788811683654785,
|
358 |
+
"learning_rate": 3.5355970950462504e-06,
|
359 |
+
"loss": 0.0525,
|
360 |
+
"step": 1000
|
361 |
+
},
|
362 |
+
{
|
363 |
+
"epoch": 1.7200674536256324,
|
364 |
+
"grad_norm": 2.9604878425598145,
|
365 |
+
"learning_rate": 3.1614598363111975e-06,
|
366 |
+
"loss": 0.0482,
|
367 |
+
"step": 1020
|
368 |
+
},
|
369 |
+
{
|
370 |
+
"epoch": 1.7537942664418211,
|
371 |
+
"grad_norm": 6.82230281829834,
|
372 |
+
"learning_rate": 2.7873225775761446e-06,
|
373 |
+
"loss": 0.0968,
|
374 |
+
"step": 1040
|
375 |
+
},
|
376 |
+
{
|
377 |
+
"epoch": 1.78752107925801,
|
378 |
+
"grad_norm": 3.8208751678466797,
|
379 |
+
"learning_rate": 2.4131853188410918e-06,
|
380 |
+
"loss": 0.0717,
|
381 |
+
"step": 1060
|
382 |
+
},
|
383 |
+
{
|
384 |
+
"epoch": 1.821247892074199,
|
385 |
+
"grad_norm": 1.3548328876495361,
|
386 |
+
"learning_rate": 2.0390480601060385e-06,
|
387 |
+
"loss": 0.0704,
|
388 |
+
"step": 1080
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"epoch": 1.8549747048903877,
|
392 |
+
"grad_norm": 5.133670806884766,
|
393 |
+
"learning_rate": 1.6649108013709859e-06,
|
394 |
+
"loss": 0.0666,
|
395 |
+
"step": 1100
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"epoch": 1.8887015177065767,
|
399 |
+
"grad_norm": 2.3805644512176514,
|
400 |
+
"learning_rate": 1.3094804055726854e-06,
|
401 |
+
"loss": 0.0841,
|
402 |
+
"step": 1120
|
403 |
+
},
|
404 |
+
{
|
405 |
+
"epoch": 1.9224283305227656,
|
406 |
+
"grad_norm": 6.70649528503418,
|
407 |
+
"learning_rate": 9.353431468376325e-07,
|
408 |
+
"loss": 0.0682,
|
409 |
+
"step": 1140
|
410 |
+
},
|
411 |
+
{
|
412 |
+
"epoch": 1.9561551433389543,
|
413 |
+
"grad_norm": 1.9125243425369263,
|
414 |
+
"learning_rate": 5.612058881025794e-07,
|
415 |
+
"loss": 0.0584,
|
416 |
+
"step": 1160
|
417 |
+
},
|
418 |
+
{
|
419 |
+
"epoch": 1.9898819561551433,
|
420 |
+
"grad_norm": 3.1292877197265625,
|
421 |
+
"learning_rate": 1.8706862936752648e-07,
|
422 |
+
"loss": 0.0423,
|
423 |
+
"step": 1180
|
424 |
+
}
|
425 |
+
],
|
426 |
+
"logging_steps": 20,
|
427 |
+
"max_steps": 1186,
|
428 |
+
"num_input_tokens_seen": 0,
|
429 |
+
"num_train_epochs": 2,
|
430 |
+
"save_steps": 500,
|
431 |
+
"stateful_callbacks": {
|
432 |
+
"TrainerControl": {
|
433 |
+
"args": {
|
434 |
+
"should_epoch_stop": false,
|
435 |
+
"should_evaluate": false,
|
436 |
+
"should_log": false,
|
437 |
+
"should_save": true,
|
438 |
+
"should_training_stop": true
|
439 |
+
},
|
440 |
+
"attributes": {}
|
441 |
+
}
|
442 |
+
},
|
443 |
+
"total_flos": 0.0,
|
444 |
+
"train_batch_size": 32,
|
445 |
+
"trial_name": null,
|
446 |
+
"trial_params": null
|
447 |
+
}
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2c97e4b3dd5bd84b086862dab3a5e4a2f8651ea1f526abc26541842490fd600c
|
3 |
+
size 5624
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|