RichardErkhov commited on
Commit
2ca7804
·
verified ·
1 Parent(s): 1ee43ff

uploaded readme

Browse files
Files changed (1) hide show
  1. README.md +136 -0
README.md ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Quantization made by Richard Erkhov.
2
+
3
+ [Github](https://github.com/RichardErkhov)
4
+
5
+ [Discord](https://discord.gg/pvy7H8DZMG)
6
+
7
+ [Request more models](https://github.com/RichardErkhov/quant_request)
8
+
9
+
10
+ mojo-coder-1B - GGUF
11
+ - Model creator: https://huggingface.co/mcysqrd/
12
+ - Original model: https://huggingface.co/mcysqrd/mojo-coder-1B/
13
+
14
+
15
+ | Name | Quant method | Size |
16
+ | ---- | ---- | ---- |
17
+ | [mojo-coder-1B.Q2_K.gguf](https://huggingface.co/RichardErkhov/mcysqrd_-_mojo-coder-1B-gguf/blob/main/mojo-coder-1B.Q2_K.gguf) | Q2_K | 0.52GB |
18
+ | [mojo-coder-1B.Q3_K_S.gguf](https://huggingface.co/RichardErkhov/mcysqrd_-_mojo-coder-1B-gguf/blob/main/mojo-coder-1B.Q3_K_S.gguf) | Q3_K_S | 0.6GB |
19
+ | [mojo-coder-1B.Q3_K.gguf](https://huggingface.co/RichardErkhov/mcysqrd_-_mojo-coder-1B-gguf/blob/main/mojo-coder-1B.Q3_K.gguf) | Q3_K | 0.66GB |
20
+ | [mojo-coder-1B.Q3_K_M.gguf](https://huggingface.co/RichardErkhov/mcysqrd_-_mojo-coder-1B-gguf/blob/main/mojo-coder-1B.Q3_K_M.gguf) | Q3_K_M | 0.66GB |
21
+ | [mojo-coder-1B.Q3_K_L.gguf](https://huggingface.co/RichardErkhov/mcysqrd_-_mojo-coder-1B-gguf/blob/main/mojo-coder-1B.Q3_K_L.gguf) | Q3_K_L | 0.69GB |
22
+ | [mojo-coder-1B.IQ4_XS.gguf](https://huggingface.co/RichardErkhov/mcysqrd_-_mojo-coder-1B-gguf/blob/main/mojo-coder-1B.IQ4_XS.gguf) | IQ4_XS | 0.7GB |
23
+ | [mojo-coder-1B.Q4_0.gguf](https://huggingface.co/RichardErkhov/mcysqrd_-_mojo-coder-1B-gguf/blob/main/mojo-coder-1B.Q4_0.gguf) | Q4_0 | 0.72GB |
24
+ | [mojo-coder-1B.IQ4_NL.gguf](https://huggingface.co/RichardErkhov/mcysqrd_-_mojo-coder-1B-gguf/blob/main/mojo-coder-1B.IQ4_NL.gguf) | IQ4_NL | 0.73GB |
25
+ | [mojo-coder-1B.Q4_K_S.gguf](https://huggingface.co/RichardErkhov/mcysqrd_-_mojo-coder-1B-gguf/blob/main/mojo-coder-1B.Q4_K_S.gguf) | Q4_K_S | 0.76GB |
26
+ | [mojo-coder-1B.Q4_K.gguf](https://huggingface.co/RichardErkhov/mcysqrd_-_mojo-coder-1B-gguf/blob/main/mojo-coder-1B.Q4_K.gguf) | Q4_K | 0.81GB |
27
+ | [mojo-coder-1B.Q4_K_M.gguf](https://huggingface.co/RichardErkhov/mcysqrd_-_mojo-coder-1B-gguf/blob/main/mojo-coder-1B.Q4_K_M.gguf) | Q4_K_M | 0.81GB |
28
+ | [mojo-coder-1B.Q4_1.gguf](https://huggingface.co/RichardErkhov/mcysqrd_-_mojo-coder-1B-gguf/blob/main/mojo-coder-1B.Q4_1.gguf) | Q4_1 | 0.8GB |
29
+ | [mojo-coder-1B.Q5_0.gguf](https://huggingface.co/RichardErkhov/mcysqrd_-_mojo-coder-1B-gguf/blob/main/mojo-coder-1B.Q5_0.gguf) | Q5_0 | 0.87GB |
30
+ | [mojo-coder-1B.Q5_K_S.gguf](https://huggingface.co/RichardErkhov/mcysqrd_-_mojo-coder-1B-gguf/blob/main/mojo-coder-1B.Q5_K_S.gguf) | Q5_K_S | 0.89GB |
31
+ | [mojo-coder-1B.Q5_K.gguf](https://huggingface.co/RichardErkhov/mcysqrd_-_mojo-coder-1B-gguf/blob/main/mojo-coder-1B.Q5_K.gguf) | Q5_K | 0.93GB |
32
+ | [mojo-coder-1B.Q5_K_M.gguf](https://huggingface.co/RichardErkhov/mcysqrd_-_mojo-coder-1B-gguf/blob/main/mojo-coder-1B.Q5_K_M.gguf) | Q5_K_M | 0.93GB |
33
+ | [mojo-coder-1B.Q5_1.gguf](https://huggingface.co/RichardErkhov/mcysqrd_-_mojo-coder-1B-gguf/blob/main/mojo-coder-1B.Q5_1.gguf) | Q5_1 | 0.95GB |
34
+ | [mojo-coder-1B.Q6_K.gguf](https://huggingface.co/RichardErkhov/mcysqrd_-_mojo-coder-1B-gguf/blob/main/mojo-coder-1B.Q6_K.gguf) | Q6_K | 1.09GB |
35
+ | [mojo-coder-1B.Q8_0.gguf](https://huggingface.co/RichardErkhov/mcysqrd_-_mojo-coder-1B-gguf/blob/main/mojo-coder-1B.Q8_0.gguf) | Q8_0 | 1.33GB |
36
+
37
+
38
+
39
+
40
+ Original model description:
41
+ ---
42
+ license: apache-2.0
43
+ datasets:
44
+ - mcysqrd/mojo_code
45
+ ---
46
+
47
+ FIM training over deepseek-coder-1.3B using a mojo-code dataset.
48
+ This is an alpha version. It is trained only for FIM co-pilot style usage.
49
+ later versions should have Q&A added as well as better performance. please leave your comments to help improve it.
50
+ the recipe for this was based on this template from https://huggingface.co/blog/personal-copilot
51
+
52
+ ```
53
+ tokenizer = AutoTokenizer.from_pretrained(merged_model_path,trust_remote_code=True,use_fast=True)
54
+ model = AutoModelForCausalLM.from_pretrained(
55
+ merged_model_path,
56
+ device_map={"": 0},
57
+ use_cache=True,
58
+ trust_remote_code=True,
59
+ attn_implementation="flash_attention_2",
60
+ torch_dtype=torch.bfloat16
61
+ )
62
+
63
+ input_text = """<|fim▁begin|>
64
+ from algorithm import parallelize, vectorize
65
+ from benchmark import Benchmark
66
+ from complex import ComplexSIMD, ComplexFloat64
67
+ from math import iota
68
+ from os import env
69
+ from python import Python
70
+ from python.object import PythonObject
71
+ from runtime.llcl import num_cores, Runtime
72
+ from tensor import Tensor
73
+ from utils.index import Index
74
+
75
+
76
+ alias float_type = DType.float64
77
+ alias simd_width = simdwidthof[float_type]()
78
+
79
+ alias width = 960
80
+ alias height = 960
81
+ alias MAX_ITERS = 200
82
+
83
+ alias min_x = -2.0
84
+ alias max_x = 0.6
85
+ alias min_y = -1.5
86
+ alias max_y = 1.5
87
+
88
+ fn mandelbrot_kernel_SIMD[
89
+ simd_width: Int
90
+ ](c: ComplexSIMD[float_type, simd_width]) -> SIMD[float_type, simd_width]:
91
+ let cx = c.re
92
+ let cy = c.im
93
+ var x = SIMD[float_type, simd_width](0)
94
+ var y = SIMD[float_type, simd_width](0)
95
+ var y2 = SIMD[float_type, simd_width](0)
96
+ var iters = SIMD[float_type, simd_width](0)
97
+
98
+ var t: SIMD[DType.bool, simd_width] = True
99
+ for i in range(MAX_ITERS):
100
+ if not t.reduce_or():
101
+ break
102
+ y2 = y*y
103
+ y = x.fma(y + y, cy)
104
+ t = x.fma(x, y2) <= 4
105
+ x = x.fma(x, cx - y2)
106
+ iters = t.select(iters + 1, iters)
107
+ return iters
108
+
109
+ fn compare():
110
+ let t = Tensor[float_type](height, width)
111
+
112
+ @parameter
113
+ fn worker(row: Int):
114
+ let scale_x = (max_x - min_x) / width
115
+ let scale_y = (max_y - min_y) / height
116
+ <|fim▁hole|>
117
+ fn main():
118
+ compare()
119
+ <|fim▁end|>"""
120
+
121
+ inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
122
+ outputs = model.generate(**inputs, max_length=547+200)
123
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True)[len(input_text):])
124
+
125
+ def stream(user_prompt):
126
+ runtimeFlag = "cuda:0"
127
+ inputs = tokenizer([user_prompt], return_tensors="pt").to(runtimeFlag)
128
+ streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
129
+ _ = model.generate(**inputs, streamer=streamer, max_new_tokens=200)
130
+
131
+ stream(input_text)
132
+ ```
133
+
134
+ also try to use an inference endpoint and use a VS-Code extension
135
+
136
+