{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x785b1aa8a5c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x785b1aa8a660>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x785b1aa8a700>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x785b1aa8a7a0>", "_build": "<function ActorCriticPolicy._build at 0x785b1aa8a840>", "forward": "<function ActorCriticPolicy.forward at 0x785b1aa8a8e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x785b1aa8a980>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x785b1aa8aa20>", "_predict": "<function ActorCriticPolicy._predict at 0x785b1aa8aac0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x785b1aa8ab60>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x785b1aa8ac00>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x785b1aa8aca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x785b1aa09900>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1739874502378456111, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANqktD2b/YW8Chc9vPJrAT1j2u09luvKvQAAgD8AAIA/Jp3rPfcB9D6wLWy+rQiavijlwL3n9D++AAAAAAAAAAAzLAu9ewnbPtGLPD1r3cu+YasGvZoicL0AAAAAAAAAAADger2PhBO8ZpTEPXHVO75t5wa7du9PPgAAgD8AAIA/pjWIvYXzqLmSjTk8+sk+tuYs3jrWhT+1AAAAAAAAAADmJZ+9enRzP5qsz73Efgi/r+oGvnWt1rwAAAAAAAAAAFNOJz4/T5k/N5g0PmPqEL/zIIg+uRoMvAAAAAAAAAAAMJmAPvM5Ij/Z1bW+W/mtvhrCUT5M2Lq+AAAAAAAAAACNXVi+sPKUPlUweD602Km+qMp1vY3ZZD0AAAAAAAAAAJpbBT02Yli816A5PYE0nTwWar29Lf9+PQAAgD8AAIA/mhmeOtJD4LuoG4E96mj+vWzAjbwqhxO+AACAPwAAgD/Njcq8Ba+Iu6qtFzyJhpM8B5THvAbHez0AAIA/AACAPya5xb2zCBs/iGKgvfWa2L48o9e9g8o+uQAAAAAAAAAAzexkOwPVpz+GZIA82TYSv6CYmT3zOl08AAAAAAAAAABN5XM+WpoXvRu+P7rii9U5mq2Evi2sVzkAAIA/AACAP007Kj0uEJ07LsA+PTFPib7fWY89rp8JPAAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV8wsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHDMgYYR/VmMAWyUS/WMAXSUR0ChhMcRtgrpdX2UKGgGR0BxUAB2fTTfaAdL7WgIR0ChhT/4ZdfLdX2UKGgGR0Bxk9wvQF9saAdNEgFoCEdAoYVCIacZtXV9lChoBkdAcPu5NXYDkmgHS/5oCEdAoYVVKRMewXV9lChoBkdAcIfhH9WIXWgHTQEBaAhHQKGFh3Zf2K51fZQoaAZHQHJNO3Ytg8doB00VAWgIR0ChhaDcM3IddX2UKGgGR0BxQMP+XJHRaAdNFAFoCEdAoYX+qLjxTnV9lChoBkdAcB10tyxRmGgHS99oCEdAoYYDVawD/3V9lChoBkdAcCuWX1J172gHTQsBaAhHQKGGHJZGKAJ1fZQoaAZHQHIZDej2zv9oB0vgaAhHQKGGWMnZ00Z1fZQoaAZHQHOxsYMvysloB00kAWgIR0Chhnid8RcvdX2UKGgGR0BxI8LNOdoWaAdNDQFoCEdAoYa8awUxmHV9lChoBkdAc4KDUmUnomgHS9VoCEdAoYbQwsXiznV9lChoBkdAcb0RGMGX5WgHS/toCEdAoYbtsDW9UXV9lChoBkdATf8W0qpcX2gHS8JoCEdAoYb0iB5HE3V9lChoBkdAc4KZL7Gec2gHS+poCEdAoYcHtUn5SHV9lChoBkdAcANYeT3Zf2gHS+hoCEdAoYdRUT+NtXV9lChoBkdAcWc6ol2NemgHS/doCEdAoYf3YHxBmnV9lChoBkdAcc0c3l0YCWgHS/JoCEdAoYf7SZ0CBHV9lChoBkdAcbOAMUh3aGgHS/5oCEdAoYgLtw71ZnV9lChoBkdAcj8mcvugH2gHTQUBaAhHQKGIjMfRu0l1fZQoaAZHQG7qKzRhMJxoB0voaAhHQKGImV7hNud1fZQoaAZHQHBN8z/IbOxoB0voaAhHQKGInv1lGw11fZQoaAZHQHF7580DU3JoB0veaAhHQKGJC5xR2r51fZQoaAZHQG/kpL/S6UdoB0vwaAhHQKGJIAavRqp1fZQoaAZHQG9EozFdcB5oB0vcaAhHQKGJWXN1QqJ1fZQoaAZHQHN6EZaV2RtoB0vraAhHQKGJz4KQaJh1fZQoaAZHQG3jgSOBDohoB0vraAhHQKGJ2fms/6h1fZQoaAZHQHNd7PD50r9oB0vlaAhHQKGJ4I7/4qR1fZQoaAZHQG6JAQg9vCNoB00YAWgIR0ChikRBmf5DdX2UKGgGR0Byufz19ORDaAdLzmgIR0ChirZGax5cdX2UKGgGR0BwjeLWI42kaAdL4mgIR0ChiwHTiKixdX2UKGgGR0Byr2EIw/PgaAdNHAFoCEdAoYsJOSGJvnV9lChoBkdAcnH34bjtHGgHS99oCEdAoYugc/+sHXV9lChoBkdAbZztKqXF+GgHS+JoCEdAoYue01IiDHV9lChoBkdAcQEz/ZM+NmgHTRcBaAhHQKGL0SamXPZ1fZQoaAZHQHKaVb3XZoRoB0v0aAhHQKGL8A9V3ll1fZQoaAZHQHGRbRa5f+loB0vcaAhHQKGMDX8wYch1fZQoaAZHQHN4k47zTWpoB0v6aAhHQKGV/7MPjGV1fZQoaAZHQHIGgCjk+5hoB0vRaAhHQKGWKptrKvF1fZQoaAZHQG5yHf/FR51oB0v6aAhHQKGWUom5UcZ1fZQoaAZHQG/pwj2SMcZoB0v2aAhHQKGW+CEpRXR1fZQoaAZHQHB3log3cYZoB0vYaAhHQKGW/CuU2UB1fZQoaAZHQFIVEAYHgP5oB0ulaAhHQKGXnpItlI51fZQoaAZHQHBWV1SwW31oB0vwaAhHQKGXwIUrTYx1fZQoaAZHQG8sI+W4Vh1oB0vkaAhHQKGX5/BFd9l1fZQoaAZHQHCwY02tMf1oB0v8aAhHQKGYM92X9it1fZQoaAZHQHIAy3ocJdBoB0vjaAhHQKGYdE9dNWV1fZQoaAZHQG9FhQemvW9oB0vzaAhHQKGY39Dx9Xt1fZQoaAZHQHInwPNFBppoB0voaAhHQKGY/DhLoOh1fZQoaAZHQHA7u+AVfu1oB0vXaAhHQKGZYrbxmTV1fZQoaAZHQHOd3ogV45doB00QAWgIR0ChmW3gtOEedX2UKGgGR0BxU7p3X7LuaAdL8WgIR0ChmaBRQ79ydX2UKGgGR0Bymk6DGtITaAdL+WgIR0ChmfXC9AX3dX2UKGgGR0ByYqjzqbBoaAdNzwFoCEdAoZn9jgAIY3V9lChoBkdAcilvgWJrL2gHS+FoCEdAoZoUophF3XV9lChoBkdAc/itzjm0V2gHS/xoCEdAoZppvNu+AXV9lChoBkdAclS3974SH2gHS+9oCEdAoZsw9vCMxXV9lChoBkdAcXZWHk92YGgHTQgBaAhHQKGbQukDZDl1fZQoaAZHQHFSWjbi6xxoB0vuaAhHQKGbfmQr+YN1fZQoaAZHQHHNajN6gNBoB0vtaAhHQKGbvv8ZUDN1fZQoaAZHQHJ26b4Ju2toB0vfaAhHQKGb99roGIN1fZQoaAZHQGHcBE8aGYdoB03oA2gIR0ChnE1+AmRedX2UKGgGR0ByW2lhw2l3aAdL8mgIR0ChnFU2UB4mdX2UKGgGR0BxCuYBvJiiaAdL42gIR0ChnIiRfWtmdX2UKGgGR0Bw8BHqeK8+aAdL82gIR0ChnLEfT1CgdX2UKGgGR0By0TOgQHzIaAdL8mgIR0ChnN/BFd9ldX2UKGgGR0BisE7yQPqcaAdN6ANoCEdAoZzylgtvoHV9lChoBkdAcVbqpLmITGgHS+VoCEdAoZ0Pn6l+E3V9lChoBkdAcq7vAGjbjGgHS+RoCEdAoZ0gd+5OJ3V9lChoBkdAclR4YaYNRWgHS/BoCEdAoZ0nJHRTj3V9lChoBkdAcUY7rcCYC2gHS+loCEdAoZ1t4NZvDXV9lChoBkdAcrMLIxQBP2gHS9poCEdAoZ3ngrH2iHV9lChoBkdAcqQdLQHAymgHS9JoCEdAoZ3+UfPom3V9lChoBkdAcx09srNGE2gHS/FoCEdAoZ4ZSJj2BnV9lChoBkdAcRq7PY4ACGgHS9xoCEdAoZ5NnqVyFXV9lChoBkdAS8pUNrj5sWgHS5FoCEdAoZ5/eP7vX3V9lChoBkdAcoomelKsdWgHS+JoCEdAoZ6MifQKKHV9lChoBkdAcMfYxtYSx2gHS+1oCEdAoZ71ytFKCnV9lChoBkdAcJ8Gj9GZu2gHS/VoCEdAoZ8K02LpA3V9lChoBkdAcHwc8kleGGgHS+RoCEdAoZ83qgRK6HV9lChoBkdAcoFx95QgtGgHS/doCEdAoZ9Iod+5OXV9lChoBkdAci2XmeUY9GgHS+VoCEdAoZ+NoQFs6HV9lChoBkdAbcdBnjABUGgHS+BoCEdAoZ+ZLsa86HV9lChoBkdAc4dsunMt9WgHS/5oCEdAoZ+tVJcxCnV9lChoBkdAcZp/hESdv2gHS95oCEdAoZ/ie/YapHV9lChoBkdAcYutqpLmIWgHS+toCEdAoaDLlA/s3XV9lChoBkdAcvqqc3EQ5GgHTQMBaAhHQKGg3zLfUF11fZQoaAZHQHHbPZVXFLpoB00CAWgIR0ChoPlKTSssdX2UKGgGR0BwU+1G9YfXaAdL6mgIR0ChoQYx1xKhdX2UKGgGR0Bvnvu/k/8maAdL32gIR0ChoSDIaLn+dX2UKGgGR0Bvw9Zs9B8haAdL4mgIR0ChoTkhA4XGdX2UKGgGR0ByEobiqABlaAdL4GgIR0ChoaYj8k2QdX2UKGgGR0Bu71Hc1wYMaAdL1WgIR0ChodonKGL2dX2UKGgGR0BwmOskpqh2aAdL52gIR0ChogJnYg7pdX2UKGgGR0BxzWWTot+TaAdNAQFoCEdAoaIoC8vmHXV9lChoBkdAcRGuRcNYsGgHS9FoCEdAoaJA35vcanV9lChoBkdAcTIfAKv3amgHS+poCEdAoaJuiJwbVHV9lChoBkdAcS98xbjcVWgHS9loCEdAoaKW25QP7XV9lChoBkdAcE5nVXmvGWgHS/xoCEdAoaKwWvbGm3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 500, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjExL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4RDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTEvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCF9lH2UKGgYjARmdW5jlIwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.11.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu124", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |