End of training
Browse files- README.md +5 -4
- all_results.json +26 -0
- eval_results.json +12 -0
- predict_results.json +10 -0
- predictions.txt +0 -0
- tb/events.out.tfevents.1725909805.3d77e24b7860.2139.1 +3 -0
- train.log +48 -0
- train_results.json +9 -0
- trainer_state.json +218 -0
README.md
CHANGED
@@ -3,9 +3,10 @@ library_name: transformers
|
|
3 |
license: apache-2.0
|
4 |
base_model: michiyasunaga/BioLinkBERT-base
|
5 |
tags:
|
|
|
6 |
- generated_from_trainer
|
7 |
datasets:
|
8 |
-
- drugtemist-en-fasttext-9-ner
|
9 |
metrics:
|
10 |
- precision
|
11 |
- recall
|
@@ -18,8 +19,8 @@ model-index:
|
|
18 |
name: Token Classification
|
19 |
type: token-classification
|
20 |
dataset:
|
21 |
-
name: drugtemist-en-fasttext-9-ner
|
22 |
-
type: drugtemist-en-fasttext-9-ner
|
23 |
config: DrugTEMIST English NER
|
24 |
split: validation
|
25 |
args: DrugTEMIST English NER
|
@@ -43,7 +44,7 @@ should probably proofread and complete it, then remove this comment. -->
|
|
43 |
|
44 |
# output
|
45 |
|
46 |
-
This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-base](https://huggingface.co/michiyasunaga/BioLinkBERT-base) on the drugtemist-en-fasttext-9-ner dataset.
|
47 |
It achieves the following results on the evaluation set:
|
48 |
- Loss: 0.0071
|
49 |
- Precision: 0.9312
|
|
|
3 |
license: apache-2.0
|
4 |
base_model: michiyasunaga/BioLinkBERT-base
|
5 |
tags:
|
6 |
+
- token-classification
|
7 |
- generated_from_trainer
|
8 |
datasets:
|
9 |
+
- Rodrigo1771/drugtemist-en-fasttext-9-ner
|
10 |
metrics:
|
11 |
- precision
|
12 |
- recall
|
|
|
19 |
name: Token Classification
|
20 |
type: token-classification
|
21 |
dataset:
|
22 |
+
name: Rodrigo1771/drugtemist-en-fasttext-9-ner
|
23 |
+
type: Rodrigo1771/drugtemist-en-fasttext-9-ner
|
24 |
config: DrugTEMIST English NER
|
25 |
split: validation
|
26 |
args: DrugTEMIST English NER
|
|
|
44 |
|
45 |
# output
|
46 |
|
47 |
+
This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-base](https://huggingface.co/michiyasunaga/BioLinkBERT-base) on the Rodrigo1771/drugtemist-en-fasttext-9-ner dataset.
|
48 |
It achieves the following results on the evaluation set:
|
49 |
- Loss: 0.0071
|
50 |
- Precision: 0.9312
|
all_results.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 9.988518943742825,
|
3 |
+
"eval_accuracy": 0.998772081600759,
|
4 |
+
"eval_f1": 0.9320297951582869,
|
5 |
+
"eval_loss": 0.007080046460032463,
|
6 |
+
"eval_precision": 0.9311627906976744,
|
7 |
+
"eval_recall": 0.9328984156570364,
|
8 |
+
"eval_runtime": 15.1487,
|
9 |
+
"eval_samples": 6946,
|
10 |
+
"eval_samples_per_second": 458.52,
|
11 |
+
"eval_steps_per_second": 57.365,
|
12 |
+
"predict_accuracy": 0.9986133871171058,
|
13 |
+
"predict_f1": 0.9153020892151327,
|
14 |
+
"predict_loss": 0.00810017716139555,
|
15 |
+
"predict_precision": 0.8906593406593407,
|
16 |
+
"predict_recall": 0.9413472706155633,
|
17 |
+
"predict_runtime": 28.412,
|
18 |
+
"predict_samples_per_second": 517.915,
|
19 |
+
"predict_steps_per_second": 64.761,
|
20 |
+
"total_flos": 1.1084127968547612e+16,
|
21 |
+
"train_loss": 0.003044272955806776,
|
22 |
+
"train_runtime": 1809.5975,
|
23 |
+
"train_samples": 27841,
|
24 |
+
"train_samples_per_second": 153.852,
|
25 |
+
"train_steps_per_second": 2.404
|
26 |
+
}
|
eval_results.json
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 9.988518943742825,
|
3 |
+
"eval_accuracy": 0.998772081600759,
|
4 |
+
"eval_f1": 0.9320297951582869,
|
5 |
+
"eval_loss": 0.007080046460032463,
|
6 |
+
"eval_precision": 0.9311627906976744,
|
7 |
+
"eval_recall": 0.9328984156570364,
|
8 |
+
"eval_runtime": 15.1487,
|
9 |
+
"eval_samples": 6946,
|
10 |
+
"eval_samples_per_second": 458.52,
|
11 |
+
"eval_steps_per_second": 57.365
|
12 |
+
}
|
predict_results.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"predict_accuracy": 0.9986133871171058,
|
3 |
+
"predict_f1": 0.9153020892151327,
|
4 |
+
"predict_loss": 0.00810017716139555,
|
5 |
+
"predict_precision": 0.8906593406593407,
|
6 |
+
"predict_recall": 0.9413472706155633,
|
7 |
+
"predict_runtime": 28.412,
|
8 |
+
"predict_samples_per_second": 517.915,
|
9 |
+
"predict_steps_per_second": 64.761
|
10 |
+
}
|
predictions.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tb/events.out.tfevents.1725909805.3d77e24b7860.2139.1
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3e35af360d87d0f987e4188a8e1ebe9527ad33825e2c4b1bb1e23c5899011a7d
|
3 |
+
size 560
|
train.log
CHANGED
@@ -1426,3 +1426,51 @@ Training completed. Do not forget to share your model on huggingface.co/models =
|
|
1426 |
{'eval_loss': 0.007080046460032463, 'eval_precision': 0.9311627906976744, 'eval_recall': 0.9328984156570364, 'eval_f1': 0.9320297951582869, 'eval_accuracy': 0.998772081600759, 'eval_runtime': 15.2679, 'eval_samples_per_second': 454.941, 'eval_steps_per_second': 56.917, 'epoch': 9.99}
|
1427 |
{'train_runtime': 1809.5975, 'train_samples_per_second': 153.852, 'train_steps_per_second': 2.404, 'train_loss': 0.003044272955806776, 'epoch': 9.99}
|
1428 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1429 |
0%| | 0/869 [00:00<?, ?it/s]
|
1430 |
1%| | 10/869 [00:00<00:09, 94.10it/s]
|
1431 |
2%|▏ | 20/869 [00:00<00:10, 83.01it/s]
|
1432 |
3%|▎ | 29/869 [00:00<00:10, 79.56it/s]
|
1433 |
4%|▍ | 37/869 [00:00<00:10, 76.78it/s]
|
1434 |
5%|▌ | 46/869 [00:00<00:10, 79.76it/s]
|
1435 |
6%|▋ | 55/869 [00:00<00:09, 82.40it/s]
|
1436 |
7%|▋ | 64/869 [00:00<00:10, 77.32it/s]
|
1437 |
8%|▊ | 72/869 [00:00<00:10, 77.44it/s]
|
1438 |
9%|▉ | 80/869 [00:01<00:10, 77.62it/s]
|
1439 |
10%|█ | 88/869 [00:01<00:09, 78.12it/s]
|
1440 |
11%|█▏ | 98/869 [00:01<00:09, 83.69it/s]
|
1441 |
12%|█▏ | 107/869 [00:01<00:09, 80.75it/s]
|
1442 |
13%|█▎ | 116/869 [00:01<00:09, 81.64it/s]
|
1443 |
14%|█▍ | 125/869 [00:01<00:09, 80.95it/s]
|
1444 |
15%|█▌ | 134/869 [00:01<00:09, 80.41it/s]
|
1445 |
16%|█▋ | 143/869 [00:01<00:09, 78.86it/s]
|
1446 |
17%|█▋ | 152/869 [00:01<00:09, 79.46it/s]
|
1447 |
19%|█▊ | 161/869 [00:02<00:08, 80.10it/s]
|
1448 |
20%|█▉ | 170/869 [00:02<00:08, 77.72it/s]
|
1449 |
20%|██ | 178/869 [00:02<00:08, 77.28it/s]
|
1450 |
22%|██▏ | 187/869 [00:02<00:08, 79.76it/s]
|
1451 |
22%|██▏ | 195/869 [00:02<00:08, 76.27it/s]
|
1452 |
23%|██▎ | 204/869 [00:02<00:08, 79.92it/s]
|
1453 |
25%|██▍ | 213/869 [00:02<00:08, 80.46it/s]
|
1454 |
26%|██▌ | 222/869 [00:02<00:07, 81.61it/s]
|
1455 |
27%|██▋ | 231/869 [00:02<00:07, 81.87it/s]
|
1456 |
28%|██▊ | 240/869 [00:03<00:08, 77.24it/s]
|
1457 |
29%|██▊ | 248/869 [00:03<00:08, 72.53it/s]
|
1458 |
30%|██▉ | 257/869 [00:03<00:08, 75.26it/s]
|
1459 |
30%|███ | 265/869 [00:03<00:08, 74.90it/s]
|
1460 |
31%|███▏ | 273/869 [00:03<00:07, 75.54it/s]
|
1461 |
32%|███▏ | 281/869 [00:03<00:07, 75.08it/s]
|
1462 |
33%|███▎ | 289/869 [00:03<00:07, 73.93it/s]
|
1463 |
34%|███▍ | 297/869 [00:03<00:07, 74.72it/s]
|
1464 |
35%|███▌ | 305/869 [00:03<00:07, 71.50it/s]
|
1465 |
36%|███▌ | 313/869 [00:04<00:07, 73.21it/s]
|
1466 |
37%|███▋ | 321/869 [00:04<00:07, 72.48it/s]
|
1467 |
38%|███▊ | 330/869 [00:04<00:07, 76.70it/s]
|
1468 |
39%|███▉ | 339/869 [00:04<00:06, 78.31it/s]
|
1469 |
40%|███▉ | 347/869 [00:04<00:07, 73.92it/s]
|
1470 |
41%|████ | 355/869 [00:04<00:06, 74.54it/s]
|
1471 |
42%|████▏ | 364/869 [00:04<00:06, 78.43it/s]
|
1472 |
43%|████▎ | 373/869 [00:04<00:06, 76.11it/s]
|
1473 |
44%|████▍ | 381/869 [00:04<00:06, 76.52it/s]
|
1474 |
45%|████▍ | 389/869 [00:05<00:06, 71.07it/s]
|
1475 |
46%|████▌ | 397/869 [00:05<00:06, 71.76it/s]
|
1476 |
47%|████▋ | 405/869 [00:05<00:06, 72.36it/s]
|
1477 |
48%|████▊ | 413/869 [00:05<00:06, 74.25it/s]
|
1478 |
48%|████▊ | 421/869 [00:05<00:05, 74.81it/s]
|
1479 |
49%|████▉ | 430/869 [00:05<00:05, 78.44it/s]
|
1480 |
50%|█████ | 438/869 [00:05<00:05, 75.78it/s]
|
1481 |
51%|█████▏ | 446/869 [00:05<00:05, 74.63it/s]
|
1482 |
52%|█████▏ | 455/869 [00:05<00:05, 76.79it/s]
|
1483 |
53%|█████▎ | 463/869 [00:06<00:05, 75.65it/s]
|
1484 |
54%|█████▍ | 472/869 [00:06<00:05, 77.12it/s]
|
1485 |
55%|█████▌ | 480/869 [00:06<00:05, 77.29it/s]
|
1486 |
56%|█████▌ | 488/869 [00:06<00:04, 78.02it/s]
|
1487 |
57%|█████▋ | 496/869 [00:06<00:05, 72.92it/s]
|
1488 |
58%|█████▊ | 504/869 [00:06<00:05, 72.36it/s]
|
1489 |
59%|█████▉ | 513/869 [00:06<00:04, 74.95it/s]
|
1490 |
60%|██████ | 522/869 [00:06<00:04, 71.72it/s]
|
1491 |
61%|██████ | 531/869 [00:06<00:04, 74.36it/s]
|
1492 |
62%|██████▏ | 539/869 [00:07<00:04, 73.45it/s]
|
1493 |
63%|██████▎ | 547/869 [00:07<00:04, 74.32it/s]
|
1494 |
64%|██████▍ | 556/869 [00:07<00:04, 76.91it/s]
|
1495 |
65%|██████▍ | 564/869 [00:07<00:03, 77.31it/s]
|
1496 |
66%|██████▌ | 572/869 [00:07<00:03, 75.84it/s]
|
1497 |
67%|██████▋ | 580/869 [00:07<00:03, 76.22it/s]
|
1498 |
68%|██████▊ | 588/869 [00:07<00:03, 75.50it/s]
|
1499 |
69%|██████▊ | 596/869 [00:07<00:03, 76.68it/s]
|
1500 |
70%|██████▉ | 605/869 [00:07<00:03, 79.26it/s]
|
1501 |
71%|███████ | 613/869 [00:07<00:03, 78.94it/s]
|
1502 |
71%|███████▏ | 621/869 [00:08<00:03, 78.64it/s]
|
1503 |
72%|███████▏ | 629/869 [00:08<00:03, 76.57it/s]
|
1504 |
73%|███████▎ | 637/869 [00:08<00:03, 75.64it/s]
|
1505 |
74%|███████▍ | 646/869 [00:08<00:02, 79.36it/s]
|
1506 |
75%|███████▌ | 655/869 [00:08<00:02, 81.22it/s]
|
1507 |
76%|███████▋ | 664/869 [00:08<00:02, 80.28it/s]
|
1508 |
77%|███████▋ | 673/869 [00:08<00:02, 82.38it/s]
|
1509 |
78%|███████▊ | 682/869 [00:08<00:02, 72.26it/s]
|
1510 |
79%|███████▉ | 690/869 [00:08<00:02, 73.87it/s]
|
1511 |
80%|████████ | 698/869 [00:09<00:02, 73.82it/s]
|
1512 |
81%|████████ | 706/869 [00:09<00:02, 72.81it/s]
|
1513 |
82%|████████▏ | 714/869 [00:09<00:02, 74.34it/s]
|
1514 |
83%|████████▎ | 722/869 [00:09<00:01, 73.70it/s]
|
1515 |
84%|████████▍ | 730/869 [00:09<00:01, 74.32it/s]
|
1516 |
85%|████████▍ | 738/869 [00:09<00:01, 73.45it/s]
|
1517 |
86%|████████▌ | 746/869 [00:09<00:01, 74.40it/s]
|
1518 |
87%|████████▋ | 754/869 [00:09<00:01, 73.20it/s]
|
1519 |
88%|████████▊ | 763/869 [00:09<00:01, 77.32it/s]
|
1520 |
89%|████████▊ | 771/869 [00:10<00:01, 72.15it/s]
|
1521 |
90%|████████▉ | 779/869 [00:10<00:01, 63.75it/s]
|
1522 |
91%|█████████ | 787/869 [00:10<00:01, 66.85it/s]
|
1523 |
91%|█████████▏| 795/869 [00:10<00:01, 69.28it/s]
|
1524 |
92%|█████████▏| 803/869 [00:10<00:00, 71.32it/s]
|
1525 |
93%|█████████▎| 811/869 [00:10<00:00, 71.64it/s]
|
1526 |
94%|█████████▍| 819/869 [00:10<00:00, 73.07it/s]
|
1527 |
95%|█████████▌| 827/869 [00:10<00:00, 74.95it/s]
|
1528 |
96%|█████████▌| 835/869 [00:10<00:00, 75.58it/s]
|
1529 |
97%|█████████▋| 844/869 [00:11<00:00, 77.61it/s]
|
1530 |
98%|█████████▊| 852/869 [00:11<00:00, 77.29it/s]
|
1531 |
99%|█████████▉| 860/869 [00:11<00:00, 73.23it/s]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1532 |
0%| | 0/1840 [00:00<?, ?it/s]
|
1533 |
1%| | 11/1840 [00:00<00:17, 102.91it/s]
|
1534 |
1%| | 22/1840 [00:00<00:22, 82.28it/s]
|
1535 |
2%|▏ | 31/1840 [00:00<00:21, 82.86it/s]
|
1536 |
2%|▏ | 40/1840 [00:00<00:21, 83.47it/s]
|
1537 |
3%|▎ | 49/1840 [00:00<00:21, 85.07it/s]
|
1538 |
3%|▎ | 58/1840 [00:00<00:21, 83.31it/s]
|
1539 |
4%|▎ | 67/1840 [00:00<00:22, 79.23it/s]
|
1540 |
4%|▍ | 76/1840 [00:00<00:22, 79.82it/s]
|
1541 |
5%|▍ | 85/1840 [00:01<00:22, 79.00it/s]
|
1542 |
5%|▌ | 93/1840 [00:01<00:22, 77.52it/s]
|
1543 |
6%|▌ | 102/1840 [00:01<00:22, 78.51it/s]
|
1544 |
6%|▌ | 111/1840 [00:01<00:21, 78.98it/s]
|
1545 |
6%|▋ | 119/1840 [00:01<00:22, 77.27it/s]
|
1546 |
7%|▋ | 127/1840 [00:01<00:23, 74.32it/s]
|
1547 |
7%|▋ | 135/1840 [00:01<00:22, 75.85it/s]
|
1548 |
8%|▊ | 143/1840 [00:01<00:22, 76.52it/s]
|
1549 |
8%|▊ | 151/1840 [00:01<00:21, 77.26it/s]
|
1550 |
9%|▊ | 159/1840 [00:02<00:23, 70.93it/s]
|
1551 |
9%|▉ | 167/1840 [00:02<00:23, 72.64it/s]
|
1552 |
10%|▉ | 175/1840 [00:02<00:22, 74.51it/s]
|
1553 |
10%|█ | 184/1840 [00:02<00:21, 76.20it/s]
|
1554 |
10%|█ | 192/1840 [00:02<00:21, 77.15it/s]
|
1555 |
11%|█ | 200/1840 [00:02<00:21, 76.31it/s]
|
1556 |
11%|█▏ | 208/1840 [00:02<00:21, 75.16it/s]
|
1557 |
12%|█▏ | 217/1840 [00:02<00:20, 77.93it/s]
|
1558 |
12%|█▏ | 226/1840 [00:02<00:19, 80.94it/s]
|
1559 |
13%|█▎ | 235/1840 [00:03<00:21, 76.28it/s]
|
1560 |
13%|█▎ | 243/1840 [00:03<00:21, 73.88it/s]
|
1561 |
14%|█▎ | 251/1840 [00:03<00:21, 74.66it/s]
|
1562 |
14%|█▍ | 260/1840 [00:03<00:20, 77.45it/s]
|
1563 |
15%|█▍ | 268/1840 [00:03<00:20, 77.81it/s]
|
1564 |
15%|█▌ | 278/1840 [00:03<00:18, 83.55it/s]
|
1565 |
16%|█▌ | 288/1840 [00:03<00:18, 85.54it/s]
|
1566 |
16%|█▌ | 297/1840 [00:03<00:18, 83.42it/s]
|
1567 |
17%|█▋ | 306/1840 [00:03<00:18, 83.94it/s]
|
1568 |
17%|█▋ | 315/1840 [00:03<00:17, 84.88it/s]
|
1569 |
18%|█▊ | 324/1840 [00:04<00:17, 85.09it/s]
|
1570 |
18%|█▊ | 333/1840 [00:04<00:17, 84.73it/s]
|
1571 |
19%|█▊ | 342/1840 [00:04<00:17, 85.63it/s]
|
1572 |
19%|█▉ | 351/1840 [00:04<00:17, 83.86it/s]
|
1573 |
20%|█▉ | 360/1840 [00:04<00:18, 81.29it/s]
|
1574 |
20%|██ | 369/1840 [00:04<00:17, 82.99it/s]
|
1575 |
21%|██ | 378/1840 [00:04<00:17, 84.14it/s]
|
1576 |
21%|██ | 387/1840 [00:04<00:17, 84.49it/s]
|
1577 |
22%|██▏ | 396/1840 [00:04<00:17, 81.78it/s]
|
1578 |
22%|██▏ | 405/1840 [00:05<00:17, 84.06it/s]
|
1579 |
22%|██▎ | 414/1840 [00:05<00:17, 83.48it/s]
|
1580 |
23%|██▎ | 423/1840 [00:05<00:17, 81.79it/s]
|
1581 |
23%|██▎ | 432/1840 [00:05<00:17, 79.20it/s]
|
1582 |
24%|██▍ | 441/1840 [00:05<00:17, 80.57it/s]
|
1583 |
24%|██▍ | 450/1840 [00:05<00:17, 79.30it/s]
|
1584 |
25%|██▌ | 460/1840 [00:05<00:16, 82.63it/s]
|
1585 |
26%|██▌ | 470/1840 [00:05<00:15, 86.49it/s]
|
1586 |
26%|██▌ | 479/1840 [00:05<00:17, 79.64it/s]
|
1587 |
27%|██▋ | 488/1840 [00:06<00:17, 79.47it/s]
|
1588 |
27%|██▋ | 497/1840 [00:06<00:17, 77.18it/s]
|
1589 |
28%|██▊ | 506/1840 [00:06<00:16, 80.18it/s]
|
1590 |
28%|██▊ | 515/1840 [00:06<00:16, 82.39it/s]
|
1591 |
28%|██▊ | 524/1840 [00:06<00:15, 82.86it/s]
|
1592 |
29%|██▉ | 534/1840 [00:06<00:15, 85.67it/s]
|
1593 |
30%|██▉ | 543/1840 [00:06<00:15, 83.84it/s]
|
1594 |
30%|███ | 552/1840 [00:06<00:15, 83.65it/s]
|
1595 |
30%|███ | 561/1840 [00:06<00:15, 80.37it/s]
|
1596 |
31%|███ | 571/1840 [00:07<00:15, 83.82it/s]
|
1597 |
32%|███▏ | 581/1840 [00:07<00:14, 87.89it/s]
|
1598 |
32%|███▏ | 590/1840 [00:07<00:14, 85.42it/s]
|
1599 |
33%|███▎ | 599/1840 [00:07<00:14, 84.12it/s]
|
1600 |
33%|███▎ | 608/1840 [00:07<00:14, 84.31it/s]
|
1601 |
34%|███▎ | 617/1840 [00:07<00:14, 81.69it/s]
|
1602 |
34%|███▍ | 626/1840 [00:07<00:15, 79.28it/s]
|
1603 |
35%|███▍ | 636/1840 [00:07<00:14, 83.89it/s]
|
1604 |
35%|███▌ | 646/1840 [00:07<00:13, 86.50it/s]
|
1605 |
36%|███▌ | 655/1840 [00:08<00:13, 86.71it/s]
|
1606 |
36%|███▌ | 664/1840 [00:08<00:14, 80.49it/s]
|
1607 |
37%|███▋ | 675/1840 [00:08<00:13, 86.17it/s]
|
1608 |
37%|███▋ | 684/1840 [00:08<00:13, 84.70it/s]
|
1609 |
38%|███▊ | 693/1840 [00:08<00:13, 84.93it/s]
|
1610 |
38%|███▊ | 703/1840 [00:08<00:12, 87.47it/s]
|
1611 |
39%|███▊ | 712/1840 [00:08<00:12, 87.23it/s]
|
1612 |
39%|███▉ | 721/1840 [00:08<00:12, 87.90it/s]
|
1613 |
40%|███▉ | 731/1840 [00:08<00:12, 90.57it/s]
|
1614 |
40%|████ | 741/1840 [00:09<00:12, 90.64it/s]
|
1615 |
41%|████ | 751/1840 [00:09<00:12, 88.80it/s]
|
1616 |
41%|████▏ | 761/1840 [00:09<00:11, 91.11it/s]
|
1617 |
42%|████▏ | 771/1840 [00:09<00:11, 90.48it/s]
|
1618 |
42%|████▏ | 781/1840 [00:09<00:11, 90.68it/s]
|
1619 |
43%|████▎ | 791/1840 [00:09<00:12, 86.91it/s]
|
1620 |
43%|████▎ | 800/1840 [00:09<00:11, 87.05it/s]
|
1621 |
44%|████▍ | 809/1840 [00:09<00:12, 82.35it/s]
|
1622 |
44%|████▍ | 818/1840 [00:09<00:12, 83.38it/s]
|
1623 |
45%|████▍ | 827/1840 [00:10<00:11, 85.21it/s]
|
1624 |
45%|████▌ | 837/1840 [00:10<00:11, 88.44it/s]
|
1625 |
46%|████▌ | 846/1840 [00:10<00:11, 83.62it/s]
|
1626 |
47%|████▋ | 856/1840 [00:10<00:11, 86.25it/s]
|
1627 |
47%|████▋ | 866/1840 [00:10<00:11, 87.84it/s]
|
1628 |
48%|████▊ | 875/1840 [00:10<00:11, 86.19it/s]
|
1629 |
48%|████▊ | 884/1840 [00:10<00:11, 81.90it/s]
|
1630 |
49%|████▊ | 893/1840 [00:10<00:11, 83.43it/s]
|
1631 |
49%|████▉ | 902/1840 [00:10<00:11, 82.37it/s]
|
1632 |
50%|████▉ | 912/1840 [00:11<00:10, 86.78it/s]
|
1633 |
50%|█████ | 922/1840 [00:11<00:10, 89.72it/s]
|
1634 |
51%|█████ | 932/1840 [00:11<00:10, 90.66it/s]
|
1635 |
51%|█████ | 942/1840 [00:11<00:10, 86.90it/s]
|
1636 |
52%|█████▏ | 951/1840 [00:11<00:10, 85.40it/s]
|
1637 |
52%|█████▏ | 960/1840 [00:11<00:10, 83.69it/s]
|
1638 |
53%|█████▎ | 969/1840 [00:11<00:10, 85.03it/s]
|
1639 |
53%|█████▎ | 979/1840 [00:11<00:09, 86.71it/s]
|
1640 |
54%|█████▎ | 988/1840 [00:11<00:10, 84.07it/s]
|
1641 |
54%|█████▍ | 998/1840 [00:12<00:09, 86.15it/s]
|
1642 |
55%|█████▍ | 1007/1840 [00:12<00:09, 84.92it/s]
|
1643 |
55%|█████▌ | 1016/1840 [00:12<00:09, 84.16it/s]
|
1644 |
56%|█████▌ | 1026/1840 [00:12<00:09, 86.81it/s]
|
1645 |
56%|█████▋ | 1036/1840 [00:12<00:08, 90.40it/s]
|
1646 |
57%|█████▋ | 1046/1840 [00:12<00:08, 90.10it/s]
|
1647 |
57%|█████▋ | 1056/1840 [00:12<00:09, 85.50it/s]
|
1648 |
58%|█████▊ | 1065/1840 [00:12<00:09, 83.97it/s]
|
1649 |
58%|█████▊ | 1074/1840 [00:12<00:09, 83.54it/s]
|
1650 |
59%|█████▉ | 1083/1840 [00:13<00:09, 82.79it/s]
|
1651 |
59%|█████▉ | 1092/1840 [00:13<00:09, 81.57it/s]
|
1652 |
60%|█████▉ | 1101/1840 [00:13<00:09, 81.82it/s]
|
1653 |
60%|██████ | 1110/1840 [00:13<00:09, 80.41it/s]
|
1654 |
61%|██████ | 1119/1840 [00:13<00:08, 80.20it/s]
|
1655 |
61%|██████▏ | 1128/1840 [00:13<00:08, 80.92it/s]
|
1656 |
62%|██████▏ | 1137/1840 [00:13<00:08, 82.75it/s]
|
1657 |
62%|██████▏ | 1146/1840 [00:13<00:08, 84.39it/s]
|
1658 |
63%|██████▎ | 1155/1840 [00:13<00:08, 84.51it/s]
|
1659 |
63%|██████▎ | 1165/1840 [00:14<00:07, 86.50it/s]
|
1660 |
64%|██████▍ | 1174/1840 [00:14<00:08, 82.04it/s]
|
1661 |
64%|██████▍ | 1183/1840 [00:14<00:07, 84.12it/s]
|
1662 |
65%|██████▍ | 1192/1840 [00:14<00:08, 80.95it/s]
|
1663 |
65%|██████▌ | 1202/1840 [00:14<00:07, 85.26it/s]
|
1664 |
66%|██████▌ | 1211/1840 [00:14<00:07, 85.02it/s]
|
1665 |
66%|██████▋ | 1220/1840 [00:14<00:07, 81.11it/s]
|
1666 |
67%|██████▋ | 1229/1840 [00:14<00:07, 78.17it/s]
|
1667 |
67%|██████▋ | 1239/1840 [00:14<00:07, 83.08it/s]
|
1668 |
68%|██████▊ | 1249/1840 [00:15<00:06, 84.80it/s]
|
1669 |
68%|██████▊ | 1259/1840 [00:15<00:06, 87.16it/s]
|
1670 |
69%|██████▉ | 1268/1840 [00:15<00:07, 81.35it/s]
|
1671 |
69%|██████▉ | 1277/1840 [00:15<00:06, 82.04it/s]
|
1672 |
70%|██████▉ | 1287/1840 [00:15<00:06, 85.08it/s]
|
1673 |
70%|███████ | 1296/1840 [00:15<00:06, 85.94it/s]
|
1674 |
71%|███████ | 1305/1840 [00:15<00:06, 86.64it/s]
|
1675 |
71%|███████▏ | 1315/1840 [00:15<00:05, 88.73it/s]
|
1676 |
72%|███████▏ | 1324/1840 [00:15<00:05, 88.62it/s]
|
1677 |
72%|███████▎ | 1334/1840 [00:16<00:05, 89.22it/s]
|
1678 |
73%|███████▎ | 1343/1840 [00:16<00:05, 88.09it/s]
|
1679 |
73%|███████▎ | 1352/1840 [00:16<00:05, 86.64it/s]
|
1680 |
74%|███████▍ | 1361/1840 [00:16<00:05, 86.18it/s]
|
1681 |
75%|███████▍ | 1371/1840 [00:16<00:05, 88.80it/s]
|
1682 |
75%|███████▌ | 1380/1840 [00:16<00:05, 84.43it/s]
|
1683 |
76%|███████▌ | 1390/1840 [00:16<00:05, 87.73it/s]
|
1684 |
76%|███████▌ | 1399/1840 [00:16<00:05, 86.39it/s]
|
1685 |
77%|███████▋ | 1409/1840 [00:16<00:04, 89.15it/s]
|
1686 |
77%|███████▋ | 1419/1840 [00:16<00:04, 90.88it/s]
|
1687 |
78%|███████▊ | 1429/1840 [00:17<00:04, 90.03it/s]
|
1688 |
78%|███████▊ | 1439/1840 [00:17<00:04, 85.21it/s]
|
1689 |
79%|███████▊ | 1448/1840 [00:17<00:04, 81.25it/s]
|
1690 |
79%|███████▉ | 1457/1840 [00:17<00:04, 80.93it/s]
|
1691 |
80%|███████▉ | 1467/1840 [00:17<00:04, 83.53it/s]
|
1692 |
80%|████████ | 1476/1840 [00:17<00:04, 85.11it/s]
|
1693 |
81%|████████ | 1485/1840 [00:17<00:04, 79.07it/s]
|
1694 |
81%|████████ | 1494/1840 [00:17<00:04, 80.96it/s]
|
1695 |
82%|████████▏ | 1503/1840 [00:18<00:04, 75.11it/s]
|
1696 |
82%|████████▏ | 1511/1840 [00:18<00:04, 74.87it/s]
|
1697 |
83%|████████▎ | 1520/1840 [00:18<00:04, 77.51it/s]
|
1698 |
83%|████████▎ | 1529/1840 [00:18<00:03, 79.78it/s]
|
1699 |
84%|████████▎ | 1538/1840 [00:18<00:03, 78.02it/s]
|
1700 |
84%|████████▍ | 1547/1840 [00:18<00:03, 78.66it/s]
|
1701 |
85%|████████▍ | 1555/1840 [00:18<00:03, 78.70it/s]
|
1702 |
85%|████████▍ | 1563/1840 [00:18<00:03, 77.77it/s]
|
1703 |
85%|████████▌ | 1572/1840 [00:18<00:03, 80.18it/s]
|
1704 |
86%|████████▌ | 1581/1840 [00:19<00:03, 77.43it/s]
|
1705 |
86%|████████▋ | 1589/1840 [00:19<00:03, 77.84it/s]
|
1706 |
87%|████████▋ | 1598/1840 [00:19<00:03, 78.98it/s]
|
1707 |
87%|████████▋ | 1606/1840 [00:19<00:02, 78.87it/s]
|
1708 |
88%|████████▊ | 1614/1840 [00:19<00:02, 78.07it/s]
|
1709 |
88%|████████▊ | 1623/1840 [00:19<00:02, 80.49it/s]
|
1710 |
89%|████████▊ | 1632/1840 [00:19<00:02, 75.18it/s]
|
1711 |
89%|████████▉ | 1640/1840 [00:19<00:02, 71.87it/s]
|
1712 |
90%|████████▉ | 1649/1840 [00:19<00:02, 73.56it/s]
|
1713 |
90%|█████████ | 1657/1840 [00:20<00:02, 75.13it/s]
|
1714 |
91%|█████████ | 1666/1840 [00:20<00:02, 78.75it/s]
|
1715 |
91%|█████████ | 1674/1840 [00:20<00:02, 78.67it/s]
|
1716 |
91%|█████████▏| 1683/1840 [00:20<00:01, 79.72it/s]
|
1717 |
92%|█████████▏| 1692/1840 [00:20<00:01, 79.81it/s]
|
1718 |
92%|█████████▎| 1702/1840 [00:20<00:01, 84.14it/s]
|
1719 |
93%|█████████▎| 1711/1840 [00:20<00:01, 77.98it/s]
|
1720 |
93%|█████████▎| 1720/1840 [00:20<00:01, 79.60it/s]
|
1721 |
94%|█████████▍| 1729/1840 [00:20<00:01, 82.24it/s]
|
1722 |
94%|█████████▍| 1738/1840 [00:21<00:01, 79.00it/s]
|
1723 |
95%|█████████▌| 1748/1840 [00:21<00:01, 81.90it/s]
|
1724 |
96%|█████████▌| 1758/1840 [00:21<00:00, 85.15it/s]
|
1725 |
96%|█████████▌| 1767/1840 [00:21<00:00, 84.58it/s]
|
1726 |
97%|█████████▋| 1776/1840 [00:21<00:00, 82.51it/s]
|
1727 |
97%|█████████▋| 1785/1840 [00:21<00:00, 81.76it/s]
|
1728 |
98%|█████████▊| 1794/1840 [00:21<00:00, 81.83it/s]
|
1729 |
98%|█████████▊| 1803/1840 [00:21<00:00, 82.32it/s]
|
1730 |
98%|█████████▊| 1812/1840 [00:21<00:00, 75.67it/s]
|
1731 |
99%|█████████▉| 1821/1840 [00:22<00:00, 77.64it/s]
|
1732 |
99%|█████████▉| 1829/1840 [00:22<00:00, 76.62it/s]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1426 |
{'eval_loss': 0.007080046460032463, 'eval_precision': 0.9311627906976744, 'eval_recall': 0.9328984156570364, 'eval_f1': 0.9320297951582869, 'eval_accuracy': 0.998772081600759, 'eval_runtime': 15.2679, 'eval_samples_per_second': 454.941, 'eval_steps_per_second': 56.917, 'epoch': 9.99}
|
1427 |
{'train_runtime': 1809.5975, 'train_samples_per_second': 153.852, 'train_steps_per_second': 2.404, 'train_loss': 0.003044272955806776, 'epoch': 9.99}
|
1428 |
|
1429 |
+
***** train metrics *****
|
1430 |
+
epoch = 9.9885
|
1431 |
+
total_flos = 10322898GF
|
1432 |
+
train_loss = 0.003
|
1433 |
+
train_runtime = 0:30:09.59
|
1434 |
+
train_samples = 27841
|
1435 |
+
train_samples_per_second = 153.852
|
1436 |
+
train_steps_per_second = 2.404
|
1437 |
+
09/09/2024 19:23:10 - INFO - __main__ - *** Evaluate ***
|
1438 |
+
[INFO|trainer.py:811] 2024-09-09 19:23:10,626 >> The following columns in the evaluation set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: tokens, ner_tags, id. If tokens, ner_tags, id are not expected by `BertForTokenClassification.forward`, you can safely ignore this message.
|
1439 |
+
[INFO|trainer.py:3819] 2024-09-09 19:23:10,629 >>
|
1440 |
+
***** Running Evaluation *****
|
1441 |
+
[INFO|trainer.py:3821] 2024-09-09 19:23:10,629 >> Num examples = 6946
|
1442 |
+
[INFO|trainer.py:3824] 2024-09-09 19:23:10,629 >> Batch size = 8
|
1443 |
+
|
1444 |
0%| | 0/869 [00:00<?, ?it/s]
|
1445 |
1%| | 10/869 [00:00<00:09, 94.10it/s]
|
1446 |
2%|▏ | 20/869 [00:00<00:10, 83.01it/s]
|
1447 |
3%|▎ | 29/869 [00:00<00:10, 79.56it/s]
|
1448 |
4%|▍ | 37/869 [00:00<00:10, 76.78it/s]
|
1449 |
5%|▌ | 46/869 [00:00<00:10, 79.76it/s]
|
1450 |
6%|▋ | 55/869 [00:00<00:09, 82.40it/s]
|
1451 |
7%|▋ | 64/869 [00:00<00:10, 77.32it/s]
|
1452 |
8%|▊ | 72/869 [00:00<00:10, 77.44it/s]
|
1453 |
9%|▉ | 80/869 [00:01<00:10, 77.62it/s]
|
1454 |
10%|█ | 88/869 [00:01<00:09, 78.12it/s]
|
1455 |
11%|█▏ | 98/869 [00:01<00:09, 83.69it/s]
|
1456 |
12%|█▏ | 107/869 [00:01<00:09, 80.75it/s]
|
1457 |
13%|█▎ | 116/869 [00:01<00:09, 81.64it/s]
|
1458 |
14%|█▍ | 125/869 [00:01<00:09, 80.95it/s]
|
1459 |
15%|█▌ | 134/869 [00:01<00:09, 80.41it/s]
|
1460 |
16%|█▋ | 143/869 [00:01<00:09, 78.86it/s]
|
1461 |
17%|█▋ | 152/869 [00:01<00:09, 79.46it/s]
|
1462 |
19%|█▊ | 161/869 [00:02<00:08, 80.10it/s]
|
1463 |
20%|█▉ | 170/869 [00:02<00:08, 77.72it/s]
|
1464 |
20%|██ | 178/869 [00:02<00:08, 77.28it/s]
|
1465 |
22%|██▏ | 187/869 [00:02<00:08, 79.76it/s]
|
1466 |
22%|██▏ | 195/869 [00:02<00:08, 76.27it/s]
|
1467 |
23%|██▎ | 204/869 [00:02<00:08, 79.92it/s]
|
1468 |
25%|██▍ | 213/869 [00:02<00:08, 80.46it/s]
|
1469 |
26%|██▌ | 222/869 [00:02<00:07, 81.61it/s]
|
1470 |
27%|██▋ | 231/869 [00:02<00:07, 81.87it/s]
|
1471 |
28%|██▊ | 240/869 [00:03<00:08, 77.24it/s]
|
1472 |
29%|██▊ | 248/869 [00:03<00:08, 72.53it/s]
|
1473 |
30%|██▉ | 257/869 [00:03<00:08, 75.26it/s]
|
1474 |
30%|███ | 265/869 [00:03<00:08, 74.90it/s]
|
1475 |
31%|███▏ | 273/869 [00:03<00:07, 75.54it/s]
|
1476 |
32%|███▏ | 281/869 [00:03<00:07, 75.08it/s]
|
1477 |
33%|███▎ | 289/869 [00:03<00:07, 73.93it/s]
|
1478 |
34%|███▍ | 297/869 [00:03<00:07, 74.72it/s]
|
1479 |
35%|███▌ | 305/869 [00:03<00:07, 71.50it/s]
|
1480 |
36%|███▌ | 313/869 [00:04<00:07, 73.21it/s]
|
1481 |
37%|███▋ | 321/869 [00:04<00:07, 72.48it/s]
|
1482 |
38%|███▊ | 330/869 [00:04<00:07, 76.70it/s]
|
1483 |
39%|███▉ | 339/869 [00:04<00:06, 78.31it/s]
|
1484 |
40%|███▉ | 347/869 [00:04<00:07, 73.92it/s]
|
1485 |
41%|████ | 355/869 [00:04<00:06, 74.54it/s]
|
1486 |
42%|████▏ | 364/869 [00:04<00:06, 78.43it/s]
|
1487 |
43%|████▎ | 373/869 [00:04<00:06, 76.11it/s]
|
1488 |
44%|████▍ | 381/869 [00:04<00:06, 76.52it/s]
|
1489 |
45%|████▍ | 389/869 [00:05<00:06, 71.07it/s]
|
1490 |
46%|████▌ | 397/869 [00:05<00:06, 71.76it/s]
|
1491 |
47%|████▋ | 405/869 [00:05<00:06, 72.36it/s]
|
1492 |
48%|████▊ | 413/869 [00:05<00:06, 74.25it/s]
|
1493 |
48%|████▊ | 421/869 [00:05<00:05, 74.81it/s]
|
1494 |
49%|████▉ | 430/869 [00:05<00:05, 78.44it/s]
|
1495 |
50%|█████ | 438/869 [00:05<00:05, 75.78it/s]
|
1496 |
51%|█████▏ | 446/869 [00:05<00:05, 74.63it/s]
|
1497 |
52%|█████▏ | 455/869 [00:05<00:05, 76.79it/s]
|
1498 |
53%|█████▎ | 463/869 [00:06<00:05, 75.65it/s]
|
1499 |
54%|█████▍ | 472/869 [00:06<00:05, 77.12it/s]
|
1500 |
55%|█████▌ | 480/869 [00:06<00:05, 77.29it/s]
|
1501 |
56%|█████▌ | 488/869 [00:06<00:04, 78.02it/s]
|
1502 |
57%|█████▋ | 496/869 [00:06<00:05, 72.92it/s]
|
1503 |
58%|█████▊ | 504/869 [00:06<00:05, 72.36it/s]
|
1504 |
59%|█████▉ | 513/869 [00:06<00:04, 74.95it/s]
|
1505 |
60%|██████ | 522/869 [00:06<00:04, 71.72it/s]
|
1506 |
61%|██████ | 531/869 [00:06<00:04, 74.36it/s]
|
1507 |
62%|██████▏ | 539/869 [00:07<00:04, 73.45it/s]
|
1508 |
63%|██████▎ | 547/869 [00:07<00:04, 74.32it/s]
|
1509 |
64%|██████▍ | 556/869 [00:07<00:04, 76.91it/s]
|
1510 |
65%|██████▍ | 564/869 [00:07<00:03, 77.31it/s]
|
1511 |
66%|██████▌ | 572/869 [00:07<00:03, 75.84it/s]
|
1512 |
67%|██████▋ | 580/869 [00:07<00:03, 76.22it/s]
|
1513 |
68%|██████▊ | 588/869 [00:07<00:03, 75.50it/s]
|
1514 |
69%|██████▊ | 596/869 [00:07<00:03, 76.68it/s]
|
1515 |
70%|██████▉ | 605/869 [00:07<00:03, 79.26it/s]
|
1516 |
71%|███████ | 613/869 [00:07<00:03, 78.94it/s]
|
1517 |
71%|███████▏ | 621/869 [00:08<00:03, 78.64it/s]
|
1518 |
72%|███████▏ | 629/869 [00:08<00:03, 76.57it/s]
|
1519 |
73%|███████▎ | 637/869 [00:08<00:03, 75.64it/s]
|
1520 |
74%|███████▍ | 646/869 [00:08<00:02, 79.36it/s]
|
1521 |
75%|███████▌ | 655/869 [00:08<00:02, 81.22it/s]
|
1522 |
76%|███████▋ | 664/869 [00:08<00:02, 80.28it/s]
|
1523 |
77%|███████▋ | 673/869 [00:08<00:02, 82.38it/s]
|
1524 |
78%|███████▊ | 682/869 [00:08<00:02, 72.26it/s]
|
1525 |
79%|███████▉ | 690/869 [00:08<00:02, 73.87it/s]
|
1526 |
80%|████████ | 698/869 [00:09<00:02, 73.82it/s]
|
1527 |
81%|████████ | 706/869 [00:09<00:02, 72.81it/s]
|
1528 |
82%|████████▏ | 714/869 [00:09<00:02, 74.34it/s]
|
1529 |
83%|████████▎ | 722/869 [00:09<00:01, 73.70it/s]
|
1530 |
84%|████████▍ | 730/869 [00:09<00:01, 74.32it/s]
|
1531 |
85%|████████▍ | 738/869 [00:09<00:01, 73.45it/s]
|
1532 |
86%|████████▌ | 746/869 [00:09<00:01, 74.40it/s]
|
1533 |
87%|████████▋ | 754/869 [00:09<00:01, 73.20it/s]
|
1534 |
88%|████████▊ | 763/869 [00:09<00:01, 77.32it/s]
|
1535 |
89%|████████▊ | 771/869 [00:10<00:01, 72.15it/s]
|
1536 |
90%|████████▉ | 779/869 [00:10<00:01, 63.75it/s]
|
1537 |
91%|█████████ | 787/869 [00:10<00:01, 66.85it/s]
|
1538 |
91%|█████████▏| 795/869 [00:10<00:01, 69.28it/s]
|
1539 |
92%|█████████▏| 803/869 [00:10<00:00, 71.32it/s]
|
1540 |
93%|█████████▎| 811/869 [00:10<00:00, 71.64it/s]
|
1541 |
94%|█████████▍| 819/869 [00:10<00:00, 73.07it/s]
|
1542 |
95%|█████████▌| 827/869 [00:10<00:00, 74.95it/s]
|
1543 |
96%|█████████▌| 835/869 [00:10<00:00, 75.58it/s]
|
1544 |
97%|█████████▋| 844/869 [00:11<00:00, 77.61it/s]
|
1545 |
98%|█████████▊| 852/869 [00:11<00:00, 77.29it/s]
|
1546 |
99%|█████████▉| 860/869 [00:11<00:00, 73.23it/s]
|
1547 |
+
***** eval metrics *****
|
1548 |
+
epoch = 9.9885
|
1549 |
+
eval_accuracy = 0.9988
|
1550 |
+
eval_f1 = 0.932
|
1551 |
+
eval_loss = 0.0071
|
1552 |
+
eval_precision = 0.9312
|
1553 |
+
eval_recall = 0.9329
|
1554 |
+
eval_runtime = 0:00:15.14
|
1555 |
+
eval_samples = 6946
|
1556 |
+
eval_samples_per_second = 458.52
|
1557 |
+
eval_steps_per_second = 57.365
|
1558 |
+
09/09/2024 19:23:25 - INFO - __main__ - *** Predict ***
|
1559 |
+
[INFO|trainer.py:811] 2024-09-09 19:23:25,784 >> The following columns in the test set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: tokens, ner_tags, id. If tokens, ner_tags, id are not expected by `BertForTokenClassification.forward`, you can safely ignore this message.
|
1560 |
+
[INFO|trainer.py:3819] 2024-09-09 19:23:25,786 >>
|
1561 |
+
***** Running Prediction *****
|
1562 |
+
[INFO|trainer.py:3821] 2024-09-09 19:23:25,786 >> Num examples = 14715
|
1563 |
+
[INFO|trainer.py:3824] 2024-09-09 19:23:25,786 >> Batch size = 8
|
1564 |
+
|
1565 |
0%| | 0/1840 [00:00<?, ?it/s]
|
1566 |
1%| | 11/1840 [00:00<00:17, 102.91it/s]
|
1567 |
1%| | 22/1840 [00:00<00:22, 82.28it/s]
|
1568 |
2%|▏ | 31/1840 [00:00<00:21, 82.86it/s]
|
1569 |
2%|▏ | 40/1840 [00:00<00:21, 83.47it/s]
|
1570 |
3%|▎ | 49/1840 [00:00<00:21, 85.07it/s]
|
1571 |
3%|▎ | 58/1840 [00:00<00:21, 83.31it/s]
|
1572 |
4%|▎ | 67/1840 [00:00<00:22, 79.23it/s]
|
1573 |
4%|▍ | 76/1840 [00:00<00:22, 79.82it/s]
|
1574 |
5%|▍ | 85/1840 [00:01<00:22, 79.00it/s]
|
1575 |
5%|▌ | 93/1840 [00:01<00:22, 77.52it/s]
|
1576 |
6%|▌ | 102/1840 [00:01<00:22, 78.51it/s]
|
1577 |
6%|▌ | 111/1840 [00:01<00:21, 78.98it/s]
|
1578 |
6%|▋ | 119/1840 [00:01<00:22, 77.27it/s]
|
1579 |
7%|▋ | 127/1840 [00:01<00:23, 74.32it/s]
|
1580 |
7%|▋ | 135/1840 [00:01<00:22, 75.85it/s]
|
1581 |
8%|▊ | 143/1840 [00:01<00:22, 76.52it/s]
|
1582 |
8%|▊ | 151/1840 [00:01<00:21, 77.26it/s]
|
1583 |
9%|▊ | 159/1840 [00:02<00:23, 70.93it/s]
|
1584 |
9%|▉ | 167/1840 [00:02<00:23, 72.64it/s]
|
1585 |
10%|▉ | 175/1840 [00:02<00:22, 74.51it/s]
|
1586 |
10%|█ | 184/1840 [00:02<00:21, 76.20it/s]
|
1587 |
10%|█ | 192/1840 [00:02<00:21, 77.15it/s]
|
1588 |
11%|█ | 200/1840 [00:02<00:21, 76.31it/s]
|
1589 |
11%|█▏ | 208/1840 [00:02<00:21, 75.16it/s]
|
1590 |
12%|█▏ | 217/1840 [00:02<00:20, 77.93it/s]
|
1591 |
12%|█▏ | 226/1840 [00:02<00:19, 80.94it/s]
|
1592 |
13%|█▎ | 235/1840 [00:03<00:21, 76.28it/s]
|
1593 |
13%|█▎ | 243/1840 [00:03<00:21, 73.88it/s]
|
1594 |
14%|█▎ | 251/1840 [00:03<00:21, 74.66it/s]
|
1595 |
14%|█▍ | 260/1840 [00:03<00:20, 77.45it/s]
|
1596 |
15%|█▍ | 268/1840 [00:03<00:20, 77.81it/s]
|
1597 |
15%|█▌ | 278/1840 [00:03<00:18, 83.55it/s]
|
1598 |
16%|█▌ | 288/1840 [00:03<00:18, 85.54it/s]
|
1599 |
16%|█▌ | 297/1840 [00:03<00:18, 83.42it/s]
|
1600 |
17%|█▋ | 306/1840 [00:03<00:18, 83.94it/s]
|
1601 |
17%|█▋ | 315/1840 [00:03<00:17, 84.88it/s]
|
1602 |
18%|█▊ | 324/1840 [00:04<00:17, 85.09it/s]
|
1603 |
18%|█▊ | 333/1840 [00:04<00:17, 84.73it/s]
|
1604 |
19%|█▊ | 342/1840 [00:04<00:17, 85.63it/s]
|
1605 |
19%|█▉ | 351/1840 [00:04<00:17, 83.86it/s]
|
1606 |
20%|█▉ | 360/1840 [00:04<00:18, 81.29it/s]
|
1607 |
20%|██ | 369/1840 [00:04<00:17, 82.99it/s]
|
1608 |
21%|██ | 378/1840 [00:04<00:17, 84.14it/s]
|
1609 |
21%|██ | 387/1840 [00:04<00:17, 84.49it/s]
|
1610 |
22%|██▏ | 396/1840 [00:04<00:17, 81.78it/s]
|
1611 |
22%|██▏ | 405/1840 [00:05<00:17, 84.06it/s]
|
1612 |
22%|██▎ | 414/1840 [00:05<00:17, 83.48it/s]
|
1613 |
23%|██▎ | 423/1840 [00:05<00:17, 81.79it/s]
|
1614 |
23%|██▎ | 432/1840 [00:05<00:17, 79.20it/s]
|
1615 |
24%|██▍ | 441/1840 [00:05<00:17, 80.57it/s]
|
1616 |
24%|██▍ | 450/1840 [00:05<00:17, 79.30it/s]
|
1617 |
25%|██▌ | 460/1840 [00:05<00:16, 82.63it/s]
|
1618 |
26%|██▌ | 470/1840 [00:05<00:15, 86.49it/s]
|
1619 |
26%|██▌ | 479/1840 [00:05<00:17, 79.64it/s]
|
1620 |
27%|██▋ | 488/1840 [00:06<00:17, 79.47it/s]
|
1621 |
27%|██▋ | 497/1840 [00:06<00:17, 77.18it/s]
|
1622 |
28%|██▊ | 506/1840 [00:06<00:16, 80.18it/s]
|
1623 |
28%|██▊ | 515/1840 [00:06<00:16, 82.39it/s]
|
1624 |
28%|██▊ | 524/1840 [00:06<00:15, 82.86it/s]
|
1625 |
29%|██▉ | 534/1840 [00:06<00:15, 85.67it/s]
|
1626 |
30%|██▉ | 543/1840 [00:06<00:15, 83.84it/s]
|
1627 |
30%|███ | 552/1840 [00:06<00:15, 83.65it/s]
|
1628 |
30%|███ | 561/1840 [00:06<00:15, 80.37it/s]
|
1629 |
31%|███ | 571/1840 [00:07<00:15, 83.82it/s]
|
1630 |
32%|███▏ | 581/1840 [00:07<00:14, 87.89it/s]
|
1631 |
32%|███▏ | 590/1840 [00:07<00:14, 85.42it/s]
|
1632 |
33%|███▎ | 599/1840 [00:07<00:14, 84.12it/s]
|
1633 |
33%|███▎ | 608/1840 [00:07<00:14, 84.31it/s]
|
1634 |
34%|███▎ | 617/1840 [00:07<00:14, 81.69it/s]
|
1635 |
34%|███▍ | 626/1840 [00:07<00:15, 79.28it/s]
|
1636 |
35%|███▍ | 636/1840 [00:07<00:14, 83.89it/s]
|
1637 |
35%|███▌ | 646/1840 [00:07<00:13, 86.50it/s]
|
1638 |
36%|███▌ | 655/1840 [00:08<00:13, 86.71it/s]
|
1639 |
36%|███▌ | 664/1840 [00:08<00:14, 80.49it/s]
|
1640 |
37%|███▋ | 675/1840 [00:08<00:13, 86.17it/s]
|
1641 |
37%|███▋ | 684/1840 [00:08<00:13, 84.70it/s]
|
1642 |
38%|███▊ | 693/1840 [00:08<00:13, 84.93it/s]
|
1643 |
38%|███▊ | 703/1840 [00:08<00:12, 87.47it/s]
|
1644 |
39%|███▊ | 712/1840 [00:08<00:12, 87.23it/s]
|
1645 |
39%|███▉ | 721/1840 [00:08<00:12, 87.90it/s]
|
1646 |
40%|███▉ | 731/1840 [00:08<00:12, 90.57it/s]
|
1647 |
40%|████ | 741/1840 [00:09<00:12, 90.64it/s]
|
1648 |
41%|████ | 751/1840 [00:09<00:12, 88.80it/s]
|
1649 |
41%|████▏ | 761/1840 [00:09<00:11, 91.11it/s]
|
1650 |
42%|████▏ | 771/1840 [00:09<00:11, 90.48it/s]
|
1651 |
42%|████▏ | 781/1840 [00:09<00:11, 90.68it/s]
|
1652 |
43%|████▎ | 791/1840 [00:09<00:12, 86.91it/s]
|
1653 |
43%|████▎ | 800/1840 [00:09<00:11, 87.05it/s]
|
1654 |
44%|████▍ | 809/1840 [00:09<00:12, 82.35it/s]
|
1655 |
44%|████▍ | 818/1840 [00:09<00:12, 83.38it/s]
|
1656 |
45%|████▍ | 827/1840 [00:10<00:11, 85.21it/s]
|
1657 |
45%|████▌ | 837/1840 [00:10<00:11, 88.44it/s]
|
1658 |
46%|████▌ | 846/1840 [00:10<00:11, 83.62it/s]
|
1659 |
47%|████▋ | 856/1840 [00:10<00:11, 86.25it/s]
|
1660 |
47%|████▋ | 866/1840 [00:10<00:11, 87.84it/s]
|
1661 |
48%|████▊ | 875/1840 [00:10<00:11, 86.19it/s]
|
1662 |
48%|████▊ | 884/1840 [00:10<00:11, 81.90it/s]
|
1663 |
49%|████▊ | 893/1840 [00:10<00:11, 83.43it/s]
|
1664 |
49%|████▉ | 902/1840 [00:10<00:11, 82.37it/s]
|
1665 |
50%|████▉ | 912/1840 [00:11<00:10, 86.78it/s]
|
1666 |
50%|█████ | 922/1840 [00:11<00:10, 89.72it/s]
|
1667 |
51%|█████ | 932/1840 [00:11<00:10, 90.66it/s]
|
1668 |
51%|█████ | 942/1840 [00:11<00:10, 86.90it/s]
|
1669 |
52%|█████▏ | 951/1840 [00:11<00:10, 85.40it/s]
|
1670 |
52%|█████▏ | 960/1840 [00:11<00:10, 83.69it/s]
|
1671 |
53%|█████▎ | 969/1840 [00:11<00:10, 85.03it/s]
|
1672 |
53%|█████▎ | 979/1840 [00:11<00:09, 86.71it/s]
|
1673 |
54%|█████▎ | 988/1840 [00:11<00:10, 84.07it/s]
|
1674 |
54%|█████▍ | 998/1840 [00:12<00:09, 86.15it/s]
|
1675 |
55%|█████▍ | 1007/1840 [00:12<00:09, 84.92it/s]
|
1676 |
55%|█████▌ | 1016/1840 [00:12<00:09, 84.16it/s]
|
1677 |
56%|█████▌ | 1026/1840 [00:12<00:09, 86.81it/s]
|
1678 |
56%|█████▋ | 1036/1840 [00:12<00:08, 90.40it/s]
|
1679 |
57%|█████▋ | 1046/1840 [00:12<00:08, 90.10it/s]
|
1680 |
57%|█████▋ | 1056/1840 [00:12<00:09, 85.50it/s]
|
1681 |
58%|█████▊ | 1065/1840 [00:12<00:09, 83.97it/s]
|
1682 |
58%|█████▊ | 1074/1840 [00:12<00:09, 83.54it/s]
|
1683 |
59%|█████▉ | 1083/1840 [00:13<00:09, 82.79it/s]
|
1684 |
59%|█████▉ | 1092/1840 [00:13<00:09, 81.57it/s]
|
1685 |
60%|█████▉ | 1101/1840 [00:13<00:09, 81.82it/s]
|
1686 |
60%|██████ | 1110/1840 [00:13<00:09, 80.41it/s]
|
1687 |
61%|██████ | 1119/1840 [00:13<00:08, 80.20it/s]
|
1688 |
61%|██████▏ | 1128/1840 [00:13<00:08, 80.92it/s]
|
1689 |
62%|██████▏ | 1137/1840 [00:13<00:08, 82.75it/s]
|
1690 |
62%|██████▏ | 1146/1840 [00:13<00:08, 84.39it/s]
|
1691 |
63%|██████▎ | 1155/1840 [00:13<00:08, 84.51it/s]
|
1692 |
63%|██████▎ | 1165/1840 [00:14<00:07, 86.50it/s]
|
1693 |
64%|██████▍ | 1174/1840 [00:14<00:08, 82.04it/s]
|
1694 |
64%|██████▍ | 1183/1840 [00:14<00:07, 84.12it/s]
|
1695 |
65%|██████▍ | 1192/1840 [00:14<00:08, 80.95it/s]
|
1696 |
65%|██████▌ | 1202/1840 [00:14<00:07, 85.26it/s]
|
1697 |
66%|██████▌ | 1211/1840 [00:14<00:07, 85.02it/s]
|
1698 |
66%|██████▋ | 1220/1840 [00:14<00:07, 81.11it/s]
|
1699 |
67%|██████▋ | 1229/1840 [00:14<00:07, 78.17it/s]
|
1700 |
67%|██████▋ | 1239/1840 [00:14<00:07, 83.08it/s]
|
1701 |
68%|██████▊ | 1249/1840 [00:15<00:06, 84.80it/s]
|
1702 |
68%|██████▊ | 1259/1840 [00:15<00:06, 87.16it/s]
|
1703 |
69%|██████▉ | 1268/1840 [00:15<00:07, 81.35it/s]
|
1704 |
69%|██████▉ | 1277/1840 [00:15<00:06, 82.04it/s]
|
1705 |
70%|██████▉ | 1287/1840 [00:15<00:06, 85.08it/s]
|
1706 |
70%|███████ | 1296/1840 [00:15<00:06, 85.94it/s]
|
1707 |
71%|███████ | 1305/1840 [00:15<00:06, 86.64it/s]
|
1708 |
71%|███████▏ | 1315/1840 [00:15<00:05, 88.73it/s]
|
1709 |
72%|███████▏ | 1324/1840 [00:15<00:05, 88.62it/s]
|
1710 |
72%|███████▎ | 1334/1840 [00:16<00:05, 89.22it/s]
|
1711 |
73%|███████▎ | 1343/1840 [00:16<00:05, 88.09it/s]
|
1712 |
73%|███████▎ | 1352/1840 [00:16<00:05, 86.64it/s]
|
1713 |
74%|███████▍ | 1361/1840 [00:16<00:05, 86.18it/s]
|
1714 |
75%|███████▍ | 1371/1840 [00:16<00:05, 88.80it/s]
|
1715 |
75%|███████▌ | 1380/1840 [00:16<00:05, 84.43it/s]
|
1716 |
76%|███████▌ | 1390/1840 [00:16<00:05, 87.73it/s]
|
1717 |
76%|███████▌ | 1399/1840 [00:16<00:05, 86.39it/s]
|
1718 |
77%|███████▋ | 1409/1840 [00:16<00:04, 89.15it/s]
|
1719 |
77%|███████▋ | 1419/1840 [00:16<00:04, 90.88it/s]
|
1720 |
78%|███████▊ | 1429/1840 [00:17<00:04, 90.03it/s]
|
1721 |
78%|███████▊ | 1439/1840 [00:17<00:04, 85.21it/s]
|
1722 |
79%|███████▊ | 1448/1840 [00:17<00:04, 81.25it/s]
|
1723 |
79%|███████▉ | 1457/1840 [00:17<00:04, 80.93it/s]
|
1724 |
80%|███████▉ | 1467/1840 [00:17<00:04, 83.53it/s]
|
1725 |
80%|████████ | 1476/1840 [00:17<00:04, 85.11it/s]
|
1726 |
81%|████████ | 1485/1840 [00:17<00:04, 79.07it/s]
|
1727 |
81%|████████ | 1494/1840 [00:17<00:04, 80.96it/s]
|
1728 |
82%|████████▏ | 1503/1840 [00:18<00:04, 75.11it/s]
|
1729 |
82%|████████▏ | 1511/1840 [00:18<00:04, 74.87it/s]
|
1730 |
83%|████████▎ | 1520/1840 [00:18<00:04, 77.51it/s]
|
1731 |
83%|████████▎ | 1529/1840 [00:18<00:03, 79.78it/s]
|
1732 |
84%|████████▎ | 1538/1840 [00:18<00:03, 78.02it/s]
|
1733 |
84%|████████▍ | 1547/1840 [00:18<00:03, 78.66it/s]
|
1734 |
85%|████████▍ | 1555/1840 [00:18<00:03, 78.70it/s]
|
1735 |
85%|████████▍ | 1563/1840 [00:18<00:03, 77.77it/s]
|
1736 |
85%|████████▌ | 1572/1840 [00:18<00:03, 80.18it/s]
|
1737 |
86%|████████▌ | 1581/1840 [00:19<00:03, 77.43it/s]
|
1738 |
86%|████████▋ | 1589/1840 [00:19<00:03, 77.84it/s]
|
1739 |
87%|████████▋ | 1598/1840 [00:19<00:03, 78.98it/s]
|
1740 |
87%|████████▋ | 1606/1840 [00:19<00:02, 78.87it/s]
|
1741 |
88%|████████▊ | 1614/1840 [00:19<00:02, 78.07it/s]
|
1742 |
88%|████████▊ | 1623/1840 [00:19<00:02, 80.49it/s]
|
1743 |
89%|████████▊ | 1632/1840 [00:19<00:02, 75.18it/s]
|
1744 |
89%|████████▉ | 1640/1840 [00:19<00:02, 71.87it/s]
|
1745 |
90%|████████▉ | 1649/1840 [00:19<00:02, 73.56it/s]
|
1746 |
90%|█████████ | 1657/1840 [00:20<00:02, 75.13it/s]
|
1747 |
91%|█████████ | 1666/1840 [00:20<00:02, 78.75it/s]
|
1748 |
91%|█████████ | 1674/1840 [00:20<00:02, 78.67it/s]
|
1749 |
91%|█████████▏| 1683/1840 [00:20<00:01, 79.72it/s]
|
1750 |
92%|█████████▏| 1692/1840 [00:20<00:01, 79.81it/s]
|
1751 |
92%|█████████▎| 1702/1840 [00:20<00:01, 84.14it/s]
|
1752 |
93%|█████████▎| 1711/1840 [00:20<00:01, 77.98it/s]
|
1753 |
93%|█████████▎| 1720/1840 [00:20<00:01, 79.60it/s]
|
1754 |
94%|█████████▍| 1729/1840 [00:20<00:01, 82.24it/s]
|
1755 |
94%|█████████▍| 1738/1840 [00:21<00:01, 79.00it/s]
|
1756 |
95%|█████████▌| 1748/1840 [00:21<00:01, 81.90it/s]
|
1757 |
96%|█████████▌| 1758/1840 [00:21<00:00, 85.15it/s]
|
1758 |
96%|█████████▌| 1767/1840 [00:21<00:00, 84.58it/s]
|
1759 |
97%|█████████▋| 1776/1840 [00:21<00:00, 82.51it/s]
|
1760 |
97%|█████████▋| 1785/1840 [00:21<00:00, 81.76it/s]
|
1761 |
98%|█████████▊| 1794/1840 [00:21<00:00, 81.83it/s]
|
1762 |
98%|█████████▊| 1803/1840 [00:21<00:00, 82.32it/s]
|
1763 |
98%|█████████▊| 1812/1840 [00:21<00:00, 75.67it/s]
|
1764 |
99%|█████████▉| 1821/1840 [00:22<00:00, 77.64it/s]
|
1765 |
99%|█████████▉| 1829/1840 [00:22<00:00, 76.62it/s]
|
1766 |
+
[INFO|trainer.py:3503] 2024-09-09 19:23:54,954 >> Saving model checkpoint to /content/dissertation/scripts/ner/output
|
1767 |
+
[INFO|configuration_utils.py:472] 2024-09-09 19:23:54,956 >> Configuration saved in /content/dissertation/scripts/ner/output/config.json
|
1768 |
+
[INFO|modeling_utils.py:2799] 2024-09-09 19:23:56,214 >> Model weights saved in /content/dissertation/scripts/ner/output/model.safetensors
|
1769 |
+
[INFO|tokenization_utils_base.py:2684] 2024-09-09 19:23:56,215 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
|
1770 |
+
[INFO|tokenization_utils_base.py:2693] 2024-09-09 19:23:56,216 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
|
1771 |
+
***** predict metrics *****
|
1772 |
+
predict_accuracy = 0.9986
|
1773 |
+
predict_f1 = 0.9153
|
1774 |
+
predict_loss = 0.0081
|
1775 |
+
predict_precision = 0.8907
|
1776 |
+
predict_recall = 0.9413
|
1777 |
+
predict_runtime = 0:00:28.41
|
1778 |
+
predict_samples_per_second = 517.915
|
1779 |
+
predict_steps_per_second = 64.761
|
1780 |
+
|
train_results.json
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"epoch": 9.988518943742825,
|
3 |
+
"total_flos": 1.1084127968547612e+16,
|
4 |
+
"train_loss": 0.003044272955806776,
|
5 |
+
"train_runtime": 1809.5975,
|
6 |
+
"train_samples": 27841,
|
7 |
+
"train_samples_per_second": 153.852,
|
8 |
+
"train_steps_per_second": 2.404
|
9 |
+
}
|
trainer_state.json
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"best_metric": 0.9320297951582869,
|
3 |
+
"best_model_checkpoint": "/content/dissertation/scripts/ner/output/checkpoint-4350",
|
4 |
+
"epoch": 9.988518943742825,
|
5 |
+
"eval_steps": 500,
|
6 |
+
"global_step": 4350,
|
7 |
+
"is_hyper_param_search": false,
|
8 |
+
"is_local_process_zero": true,
|
9 |
+
"is_world_process_zero": true,
|
10 |
+
"log_history": [
|
11 |
+
{
|
12 |
+
"epoch": 0.9988518943742825,
|
13 |
+
"eval_accuracy": 0.9981441687829654,
|
14 |
+
"eval_f1": 0.8958333333333334,
|
15 |
+
"eval_loss": 0.006047643255442381,
|
16 |
+
"eval_precision": 0.8713656387665198,
|
17 |
+
"eval_recall": 0.9217148182665424,
|
18 |
+
"eval_runtime": 14.9983,
|
19 |
+
"eval_samples_per_second": 463.12,
|
20 |
+
"eval_steps_per_second": 57.94,
|
21 |
+
"step": 435
|
22 |
+
},
|
23 |
+
{
|
24 |
+
"epoch": 1.148105625717566,
|
25 |
+
"grad_norm": 0.025908155366778374,
|
26 |
+
"learning_rate": 4.4252873563218394e-05,
|
27 |
+
"loss": 0.0156,
|
28 |
+
"step": 500
|
29 |
+
},
|
30 |
+
{
|
31 |
+
"epoch": 2.0,
|
32 |
+
"eval_accuracy": 0.9986604526553735,
|
33 |
+
"eval_f1": 0.92,
|
34 |
+
"eval_loss": 0.004434330388903618,
|
35 |
+
"eval_precision": 0.9182915506035283,
|
36 |
+
"eval_recall": 0.9217148182665424,
|
37 |
+
"eval_runtime": 15.157,
|
38 |
+
"eval_samples_per_second": 458.27,
|
39 |
+
"eval_steps_per_second": 57.333,
|
40 |
+
"step": 871
|
41 |
+
},
|
42 |
+
{
|
43 |
+
"epoch": 2.296211251435132,
|
44 |
+
"grad_norm": 0.015398409217596054,
|
45 |
+
"learning_rate": 3.850574712643678e-05,
|
46 |
+
"loss": 0.0038,
|
47 |
+
"step": 1000
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"epoch": 2.9988518943742823,
|
51 |
+
"eval_accuracy": 0.9986883598917199,
|
52 |
+
"eval_f1": 0.9181073703366698,
|
53 |
+
"eval_loss": 0.0040275463834404945,
|
54 |
+
"eval_precision": 0.8968888888888888,
|
55 |
+
"eval_recall": 0.940354147250699,
|
56 |
+
"eval_runtime": 15.1362,
|
57 |
+
"eval_samples_per_second": 458.9,
|
58 |
+
"eval_steps_per_second": 57.412,
|
59 |
+
"step": 1306
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"epoch": 3.444316877152698,
|
63 |
+
"grad_norm": 0.024467067793011665,
|
64 |
+
"learning_rate": 3.275862068965517e-05,
|
65 |
+
"loss": 0.0025,
|
66 |
+
"step": 1500
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"epoch": 4.0,
|
70 |
+
"eval_accuracy": 0.9985837077554209,
|
71 |
+
"eval_f1": 0.9215236346948141,
|
72 |
+
"eval_loss": 0.004492571111768484,
|
73 |
+
"eval_precision": 0.9077757685352622,
|
74 |
+
"eval_recall": 0.9356943150046598,
|
75 |
+
"eval_runtime": 15.2768,
|
76 |
+
"eval_samples_per_second": 454.675,
|
77 |
+
"eval_steps_per_second": 56.884,
|
78 |
+
"step": 1742
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"epoch": 4.592422502870264,
|
82 |
+
"grad_norm": 0.014663909561932087,
|
83 |
+
"learning_rate": 2.7011494252873566e-05,
|
84 |
+
"loss": 0.0016,
|
85 |
+
"step": 2000
|
86 |
+
},
|
87 |
+
{
|
88 |
+
"epoch": 4.998851894374282,
|
89 |
+
"eval_accuracy": 0.9985906845645076,
|
90 |
+
"eval_f1": 0.9138576779026217,
|
91 |
+
"eval_loss": 0.0054086255840957165,
|
92 |
+
"eval_precision": 0.9181561618062088,
|
93 |
+
"eval_recall": 0.9095992544268406,
|
94 |
+
"eval_runtime": 15.0107,
|
95 |
+
"eval_samples_per_second": 462.737,
|
96 |
+
"eval_steps_per_second": 57.892,
|
97 |
+
"step": 2177
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"epoch": 5.7405281285878305,
|
101 |
+
"grad_norm": 0.002929804613813758,
|
102 |
+
"learning_rate": 2.1264367816091954e-05,
|
103 |
+
"loss": 0.0011,
|
104 |
+
"step": 2500
|
105 |
+
},
|
106 |
+
{
|
107 |
+
"epoch": 6.0,
|
108 |
+
"eval_accuracy": 0.9986395222281137,
|
109 |
+
"eval_f1": 0.9202965708989805,
|
110 |
+
"eval_loss": 0.00529602263122797,
|
111 |
+
"eval_precision": 0.9152073732718894,
|
112 |
+
"eval_recall": 0.9254426840633737,
|
113 |
+
"eval_runtime": 15.2091,
|
114 |
+
"eval_samples_per_second": 456.701,
|
115 |
+
"eval_steps_per_second": 57.137,
|
116 |
+
"step": 2613
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"epoch": 6.888633754305396,
|
120 |
+
"grad_norm": 0.06796916574239731,
|
121 |
+
"learning_rate": 1.5517241379310346e-05,
|
122 |
+
"loss": 0.0009,
|
123 |
+
"step": 3000
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"epoch": 6.998851894374282,
|
127 |
+
"eval_accuracy": 0.9986604526553735,
|
128 |
+
"eval_f1": 0.9314179796107507,
|
129 |
+
"eval_loss": 0.006041177082806826,
|
130 |
+
"eval_precision": 0.9262672811059908,
|
131 |
+
"eval_recall": 0.9366262814538676,
|
132 |
+
"eval_runtime": 15.0006,
|
133 |
+
"eval_samples_per_second": 463.048,
|
134 |
+
"eval_steps_per_second": 57.931,
|
135 |
+
"step": 3048
|
136 |
+
},
|
137 |
+
{
|
138 |
+
"epoch": 8.0,
|
139 |
+
"eval_accuracy": 0.9987511511734993,
|
140 |
+
"eval_f1": 0.9290976058931859,
|
141 |
+
"eval_loss": 0.005891016684472561,
|
142 |
+
"eval_precision": 0.9181073703366697,
|
143 |
+
"eval_recall": 0.940354147250699,
|
144 |
+
"eval_runtime": 15.2005,
|
145 |
+
"eval_samples_per_second": 456.957,
|
146 |
+
"eval_steps_per_second": 57.169,
|
147 |
+
"step": 3484
|
148 |
+
},
|
149 |
+
{
|
150 |
+
"epoch": 8.036739380022961,
|
151 |
+
"grad_norm": 0.0015728959115222096,
|
152 |
+
"learning_rate": 9.770114942528738e-06,
|
153 |
+
"loss": 0.0005,
|
154 |
+
"step": 3500
|
155 |
+
},
|
156 |
+
{
|
157 |
+
"epoch": 8.998851894374283,
|
158 |
+
"eval_accuracy": 0.9987581279825859,
|
159 |
+
"eval_f1": 0.9279404927940494,
|
160 |
+
"eval_loss": 0.006726197898387909,
|
161 |
+
"eval_precision": 0.9257884972170687,
|
162 |
+
"eval_recall": 0.9301025163094129,
|
163 |
+
"eval_runtime": 15.4019,
|
164 |
+
"eval_samples_per_second": 450.984,
|
165 |
+
"eval_steps_per_second": 56.422,
|
166 |
+
"step": 3919
|
167 |
+
},
|
168 |
+
{
|
169 |
+
"epoch": 9.184845005740527,
|
170 |
+
"grad_norm": 0.11025261133909225,
|
171 |
+
"learning_rate": 4.022988505747127e-06,
|
172 |
+
"loss": 0.0003,
|
173 |
+
"step": 4000
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"epoch": 9.988518943742825,
|
177 |
+
"eval_accuracy": 0.998772081600759,
|
178 |
+
"eval_f1": 0.9320297951582869,
|
179 |
+
"eval_loss": 0.007080046460032463,
|
180 |
+
"eval_precision": 0.9311627906976744,
|
181 |
+
"eval_recall": 0.9328984156570364,
|
182 |
+
"eval_runtime": 15.2679,
|
183 |
+
"eval_samples_per_second": 454.941,
|
184 |
+
"eval_steps_per_second": 56.917,
|
185 |
+
"step": 4350
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"epoch": 9.988518943742825,
|
189 |
+
"step": 4350,
|
190 |
+
"total_flos": 1.1084127968547612e+16,
|
191 |
+
"train_loss": 0.003044272955806776,
|
192 |
+
"train_runtime": 1809.5975,
|
193 |
+
"train_samples_per_second": 153.852,
|
194 |
+
"train_steps_per_second": 2.404
|
195 |
+
}
|
196 |
+
],
|
197 |
+
"logging_steps": 500,
|
198 |
+
"max_steps": 4350,
|
199 |
+
"num_input_tokens_seen": 0,
|
200 |
+
"num_train_epochs": 10,
|
201 |
+
"save_steps": 500,
|
202 |
+
"stateful_callbacks": {
|
203 |
+
"TrainerControl": {
|
204 |
+
"args": {
|
205 |
+
"should_epoch_stop": false,
|
206 |
+
"should_evaluate": false,
|
207 |
+
"should_log": false,
|
208 |
+
"should_save": true,
|
209 |
+
"should_training_stop": true
|
210 |
+
},
|
211 |
+
"attributes": {}
|
212 |
+
}
|
213 |
+
},
|
214 |
+
"total_flos": 1.1084127968547612e+16,
|
215 |
+
"train_batch_size": 32,
|
216 |
+
"trial_name": null,
|
217 |
+
"trial_params": null
|
218 |
+
}
|