Rodrigo1771 commited on
Commit
15ed461
·
verified ·
1 Parent(s): 3bbe62f

End of training

Browse files
README.md CHANGED
@@ -3,9 +3,10 @@ library_name: transformers
3
  license: apache-2.0
4
  base_model: michiyasunaga/BioLinkBERT-base
5
  tags:
 
6
  - generated_from_trainer
7
  datasets:
8
- - drugtemist-en-fasttext-9-ner
9
  metrics:
10
  - precision
11
  - recall
@@ -18,8 +19,8 @@ model-index:
18
  name: Token Classification
19
  type: token-classification
20
  dataset:
21
- name: drugtemist-en-fasttext-9-ner
22
- type: drugtemist-en-fasttext-9-ner
23
  config: DrugTEMIST English NER
24
  split: validation
25
  args: DrugTEMIST English NER
@@ -43,7 +44,7 @@ should probably proofread and complete it, then remove this comment. -->
43
 
44
  # output
45
 
46
- This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-base](https://huggingface.co/michiyasunaga/BioLinkBERT-base) on the drugtemist-en-fasttext-9-ner dataset.
47
  It achieves the following results on the evaluation set:
48
  - Loss: 0.0071
49
  - Precision: 0.9312
 
3
  license: apache-2.0
4
  base_model: michiyasunaga/BioLinkBERT-base
5
  tags:
6
+ - token-classification
7
  - generated_from_trainer
8
  datasets:
9
+ - Rodrigo1771/drugtemist-en-fasttext-9-ner
10
  metrics:
11
  - precision
12
  - recall
 
19
  name: Token Classification
20
  type: token-classification
21
  dataset:
22
+ name: Rodrigo1771/drugtemist-en-fasttext-9-ner
23
+ type: Rodrigo1771/drugtemist-en-fasttext-9-ner
24
  config: DrugTEMIST English NER
25
  split: validation
26
  args: DrugTEMIST English NER
 
44
 
45
  # output
46
 
47
+ This model is a fine-tuned version of [michiyasunaga/BioLinkBERT-base](https://huggingface.co/michiyasunaga/BioLinkBERT-base) on the Rodrigo1771/drugtemist-en-fasttext-9-ner dataset.
48
  It achieves the following results on the evaluation set:
49
  - Loss: 0.0071
50
  - Precision: 0.9312
all_results.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 9.988518943742825,
3
+ "eval_accuracy": 0.998772081600759,
4
+ "eval_f1": 0.9320297951582869,
5
+ "eval_loss": 0.007080046460032463,
6
+ "eval_precision": 0.9311627906976744,
7
+ "eval_recall": 0.9328984156570364,
8
+ "eval_runtime": 15.1487,
9
+ "eval_samples": 6946,
10
+ "eval_samples_per_second": 458.52,
11
+ "eval_steps_per_second": 57.365,
12
+ "predict_accuracy": 0.9986133871171058,
13
+ "predict_f1": 0.9153020892151327,
14
+ "predict_loss": 0.00810017716139555,
15
+ "predict_precision": 0.8906593406593407,
16
+ "predict_recall": 0.9413472706155633,
17
+ "predict_runtime": 28.412,
18
+ "predict_samples_per_second": 517.915,
19
+ "predict_steps_per_second": 64.761,
20
+ "total_flos": 1.1084127968547612e+16,
21
+ "train_loss": 0.003044272955806776,
22
+ "train_runtime": 1809.5975,
23
+ "train_samples": 27841,
24
+ "train_samples_per_second": 153.852,
25
+ "train_steps_per_second": 2.404
26
+ }
eval_results.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 9.988518943742825,
3
+ "eval_accuracy": 0.998772081600759,
4
+ "eval_f1": 0.9320297951582869,
5
+ "eval_loss": 0.007080046460032463,
6
+ "eval_precision": 0.9311627906976744,
7
+ "eval_recall": 0.9328984156570364,
8
+ "eval_runtime": 15.1487,
9
+ "eval_samples": 6946,
10
+ "eval_samples_per_second": 458.52,
11
+ "eval_steps_per_second": 57.365
12
+ }
predict_results.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "predict_accuracy": 0.9986133871171058,
3
+ "predict_f1": 0.9153020892151327,
4
+ "predict_loss": 0.00810017716139555,
5
+ "predict_precision": 0.8906593406593407,
6
+ "predict_recall": 0.9413472706155633,
7
+ "predict_runtime": 28.412,
8
+ "predict_samples_per_second": 517.915,
9
+ "predict_steps_per_second": 64.761
10
+ }
predictions.txt ADDED
The diff for this file is too large to render. See raw diff
 
tb/events.out.tfevents.1725909805.3d77e24b7860.2139.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e35af360d87d0f987e4188a8e1ebe9527ad33825e2c4b1bb1e23c5899011a7d
3
+ size 560
train.log CHANGED
@@ -1426,3 +1426,51 @@ Training completed. Do not forget to share your model on huggingface.co/models =
1426
  {'eval_loss': 0.007080046460032463, 'eval_precision': 0.9311627906976744, 'eval_recall': 0.9328984156570364, 'eval_f1': 0.9320297951582869, 'eval_accuracy': 0.998772081600759, 'eval_runtime': 15.2679, 'eval_samples_per_second': 454.941, 'eval_steps_per_second': 56.917, 'epoch': 9.99}
1427
  {'train_runtime': 1809.5975, 'train_samples_per_second': 153.852, 'train_steps_per_second': 2.404, 'train_loss': 0.003044272955806776, 'epoch': 9.99}
1428
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1429
  0%| | 0/869 [00:00<?, ?it/s]
1430
  1%| | 10/869 [00:00<00:09, 94.10it/s]
1431
  2%|▏ | 20/869 [00:00<00:10, 83.01it/s]
1432
  3%|▎ | 29/869 [00:00<00:10, 79.56it/s]
1433
  4%|▍ | 37/869 [00:00<00:10, 76.78it/s]
1434
  5%|▌ | 46/869 [00:00<00:10, 79.76it/s]
1435
  6%|▋ | 55/869 [00:00<00:09, 82.40it/s]
1436
  7%|▋ | 64/869 [00:00<00:10, 77.32it/s]
1437
  8%|▊ | 72/869 [00:00<00:10, 77.44it/s]
1438
  9%|▉ | 80/869 [00:01<00:10, 77.62it/s]
1439
  10%|█ | 88/869 [00:01<00:09, 78.12it/s]
1440
  11%|█▏ | 98/869 [00:01<00:09, 83.69it/s]
1441
  12%|█▏ | 107/869 [00:01<00:09, 80.75it/s]
1442
  13%|█▎ | 116/869 [00:01<00:09, 81.64it/s]
1443
  14%|█▍ | 125/869 [00:01<00:09, 80.95it/s]
1444
  15%|█▌ | 134/869 [00:01<00:09, 80.41it/s]
1445
  16%|█▋ | 143/869 [00:01<00:09, 78.86it/s]
1446
  17%|█▋ | 152/869 [00:01<00:09, 79.46it/s]
1447
  19%|█▊ | 161/869 [00:02<00:08, 80.10it/s]
1448
  20%|█▉ | 170/869 [00:02<00:08, 77.72it/s]
1449
  20%|██ | 178/869 [00:02<00:08, 77.28it/s]
1450
  22%|██▏ | 187/869 [00:02<00:08, 79.76it/s]
1451
  22%|██▏ | 195/869 [00:02<00:08, 76.27it/s]
1452
  23%|██▎ | 204/869 [00:02<00:08, 79.92it/s]
1453
  25%|██▍ | 213/869 [00:02<00:08, 80.46it/s]
1454
  26%|██▌ | 222/869 [00:02<00:07, 81.61it/s]
1455
  27%|██▋ | 231/869 [00:02<00:07, 81.87it/s]
1456
  28%|██▊ | 240/869 [00:03<00:08, 77.24it/s]
1457
  29%|██▊ | 248/869 [00:03<00:08, 72.53it/s]
1458
  30%|██▉ | 257/869 [00:03<00:08, 75.26it/s]
1459
  30%|███ | 265/869 [00:03<00:08, 74.90it/s]
1460
  31%|███▏ | 273/869 [00:03<00:07, 75.54it/s]
1461
  32%|███▏ | 281/869 [00:03<00:07, 75.08it/s]
1462
  33%|███▎ | 289/869 [00:03<00:07, 73.93it/s]
1463
  34%|███▍ | 297/869 [00:03<00:07, 74.72it/s]
1464
  35%|███▌ | 305/869 [00:03<00:07, 71.50it/s]
1465
  36%|███▌ | 313/869 [00:04<00:07, 73.21it/s]
1466
  37%|███▋ | 321/869 [00:04<00:07, 72.48it/s]
1467
  38%|███▊ | 330/869 [00:04<00:07, 76.70it/s]
1468
  39%|███▉ | 339/869 [00:04<00:06, 78.31it/s]
1469
  40%|███▉ | 347/869 [00:04<00:07, 73.92it/s]
1470
  41%|████ | 355/869 [00:04<00:06, 74.54it/s]
1471
  42%|████▏ | 364/869 [00:04<00:06, 78.43it/s]
1472
  43%|████▎ | 373/869 [00:04<00:06, 76.11it/s]
1473
  44%|████▍ | 381/869 [00:04<00:06, 76.52it/s]
1474
  45%|████▍ | 389/869 [00:05<00:06, 71.07it/s]
1475
  46%|████▌ | 397/869 [00:05<00:06, 71.76it/s]
1476
  47%|████▋ | 405/869 [00:05<00:06, 72.36it/s]
1477
  48%|████▊ | 413/869 [00:05<00:06, 74.25it/s]
1478
  48%|████▊ | 421/869 [00:05<00:05, 74.81it/s]
1479
  49%|████▉ | 430/869 [00:05<00:05, 78.44it/s]
1480
  50%|█████ | 438/869 [00:05<00:05, 75.78it/s]
1481
  51%|█████▏ | 446/869 [00:05<00:05, 74.63it/s]
1482
  52%|█████▏ | 455/869 [00:05<00:05, 76.79it/s]
1483
  53%|█████▎ | 463/869 [00:06<00:05, 75.65it/s]
1484
  54%|█████▍ | 472/869 [00:06<00:05, 77.12it/s]
1485
  55%|█████▌ | 480/869 [00:06<00:05, 77.29it/s]
1486
  56%|█████▌ | 488/869 [00:06<00:04, 78.02it/s]
1487
  57%|█████▋ | 496/869 [00:06<00:05, 72.92it/s]
1488
  58%|█████▊ | 504/869 [00:06<00:05, 72.36it/s]
1489
  59%|█████▉ | 513/869 [00:06<00:04, 74.95it/s]
1490
  60%|██████ | 522/869 [00:06<00:04, 71.72it/s]
1491
  61%|██████ | 531/869 [00:06<00:04, 74.36it/s]
1492
  62%|██████▏ | 539/869 [00:07<00:04, 73.45it/s]
1493
  63%|██████▎ | 547/869 [00:07<00:04, 74.32it/s]
1494
  64%|██████▍ | 556/869 [00:07<00:04, 76.91it/s]
1495
  65%|██████▍ | 564/869 [00:07<00:03, 77.31it/s]
1496
  66%|██████▌ | 572/869 [00:07<00:03, 75.84it/s]
1497
  67%|██████▋ | 580/869 [00:07<00:03, 76.22it/s]
1498
  68%|██████▊ | 588/869 [00:07<00:03, 75.50it/s]
1499
  69%|██████▊ | 596/869 [00:07<00:03, 76.68it/s]
1500
  70%|██████▉ | 605/869 [00:07<00:03, 79.26it/s]
1501
  71%|███████ | 613/869 [00:07<00:03, 78.94it/s]
1502
  71%|███████▏ | 621/869 [00:08<00:03, 78.64it/s]
1503
  72%|███████▏ | 629/869 [00:08<00:03, 76.57it/s]
1504
  73%|███████▎ | 637/869 [00:08<00:03, 75.64it/s]
1505
  74%|███████▍ | 646/869 [00:08<00:02, 79.36it/s]
1506
  75%|███████▌ | 655/869 [00:08<00:02, 81.22it/s]
1507
  76%|███████▋ | 664/869 [00:08<00:02, 80.28it/s]
1508
  77%|███████▋ | 673/869 [00:08<00:02, 82.38it/s]
1509
  78%|███████▊ | 682/869 [00:08<00:02, 72.26it/s]
1510
  79%|███████▉ | 690/869 [00:08<00:02, 73.87it/s]
1511
  80%|████████ | 698/869 [00:09<00:02, 73.82it/s]
1512
  81%|████████ | 706/869 [00:09<00:02, 72.81it/s]
1513
  82%|████████▏ | 714/869 [00:09<00:02, 74.34it/s]
1514
  83%|████████▎ | 722/869 [00:09<00:01, 73.70it/s]
1515
  84%|████████▍ | 730/869 [00:09<00:01, 74.32it/s]
1516
  85%|████████▍ | 738/869 [00:09<00:01, 73.45it/s]
1517
  86%|████████▌ | 746/869 [00:09<00:01, 74.40it/s]
1518
  87%|████████▋ | 754/869 [00:09<00:01, 73.20it/s]
1519
  88%|████████▊ | 763/869 [00:09<00:01, 77.32it/s]
1520
  89%|████████▊ | 771/869 [00:10<00:01, 72.15it/s]
1521
  90%|████████▉ | 779/869 [00:10<00:01, 63.75it/s]
1522
  91%|█████████ | 787/869 [00:10<00:01, 66.85it/s]
1523
  91%|█████████▏| 795/869 [00:10<00:01, 69.28it/s]
1524
  92%|█████████▏| 803/869 [00:10<00:00, 71.32it/s]
1525
  93%|█████████▎| 811/869 [00:10<00:00, 71.64it/s]
1526
  94%|█████████▍| 819/869 [00:10<00:00, 73.07it/s]
1527
  95%|█████████▌| 827/869 [00:10<00:00, 74.95it/s]
1528
  96%|█████████▌| 835/869 [00:10<00:00, 75.58it/s]
1529
  97%|█████████▋| 844/869 [00:11<00:00, 77.61it/s]
1530
  98%|█████████▊| 852/869 [00:11<00:00, 77.29it/s]
1531
  99%|█████████▉| 860/869 [00:11<00:00, 73.23it/s]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1532
  0%| | 0/1840 [00:00<?, ?it/s]
1533
  1%| | 11/1840 [00:00<00:17, 102.91it/s]
1534
  1%| | 22/1840 [00:00<00:22, 82.28it/s]
1535
  2%|▏ | 31/1840 [00:00<00:21, 82.86it/s]
1536
  2%|▏ | 40/1840 [00:00<00:21, 83.47it/s]
1537
  3%|▎ | 49/1840 [00:00<00:21, 85.07it/s]
1538
  3%|▎ | 58/1840 [00:00<00:21, 83.31it/s]
1539
  4%|▎ | 67/1840 [00:00<00:22, 79.23it/s]
1540
  4%|▍ | 76/1840 [00:00<00:22, 79.82it/s]
1541
  5%|▍ | 85/1840 [00:01<00:22, 79.00it/s]
1542
  5%|▌ | 93/1840 [00:01<00:22, 77.52it/s]
1543
  6%|▌ | 102/1840 [00:01<00:22, 78.51it/s]
1544
  6%|▌ | 111/1840 [00:01<00:21, 78.98it/s]
1545
  6%|▋ | 119/1840 [00:01<00:22, 77.27it/s]
1546
  7%|▋ | 127/1840 [00:01<00:23, 74.32it/s]
1547
  7%|▋ | 135/1840 [00:01<00:22, 75.85it/s]
1548
  8%|▊ | 143/1840 [00:01<00:22, 76.52it/s]
1549
  8%|▊ | 151/1840 [00:01<00:21, 77.26it/s]
1550
  9%|▊ | 159/1840 [00:02<00:23, 70.93it/s]
1551
  9%|▉ | 167/1840 [00:02<00:23, 72.64it/s]
1552
  10%|▉ | 175/1840 [00:02<00:22, 74.51it/s]
1553
  10%|█ | 184/1840 [00:02<00:21, 76.20it/s]
1554
  10%|█ | 192/1840 [00:02<00:21, 77.15it/s]
1555
  11%|█ | 200/1840 [00:02<00:21, 76.31it/s]
1556
  11%|█▏ | 208/1840 [00:02<00:21, 75.16it/s]
1557
  12%|█▏ | 217/1840 [00:02<00:20, 77.93it/s]
1558
  12%|█▏ | 226/1840 [00:02<00:19, 80.94it/s]
1559
  13%|█▎ | 235/1840 [00:03<00:21, 76.28it/s]
1560
  13%|█▎ | 243/1840 [00:03<00:21, 73.88it/s]
1561
  14%|█▎ | 251/1840 [00:03<00:21, 74.66it/s]
1562
  14%|█▍ | 260/1840 [00:03<00:20, 77.45it/s]
1563
  15%|█▍ | 268/1840 [00:03<00:20, 77.81it/s]
1564
  15%|█▌ | 278/1840 [00:03<00:18, 83.55it/s]
1565
  16%|█▌ | 288/1840 [00:03<00:18, 85.54it/s]
1566
  16%|█▌ | 297/1840 [00:03<00:18, 83.42it/s]
1567
  17%|█▋ | 306/1840 [00:03<00:18, 83.94it/s]
1568
  17%|█▋ | 315/1840 [00:03<00:17, 84.88it/s]
1569
  18%|█▊ | 324/1840 [00:04<00:17, 85.09it/s]
1570
  18%|█▊ | 333/1840 [00:04<00:17, 84.73it/s]
1571
  19%|█▊ | 342/1840 [00:04<00:17, 85.63it/s]
1572
  19%|█▉ | 351/1840 [00:04<00:17, 83.86it/s]
1573
  20%|█▉ | 360/1840 [00:04<00:18, 81.29it/s]
1574
  20%|██ | 369/1840 [00:04<00:17, 82.99it/s]
1575
  21%|██ | 378/1840 [00:04<00:17, 84.14it/s]
1576
  21%|██ | 387/1840 [00:04<00:17, 84.49it/s]
1577
  22%|██▏ | 396/1840 [00:04<00:17, 81.78it/s]
1578
  22%|██▏ | 405/1840 [00:05<00:17, 84.06it/s]
1579
  22%|██▎ | 414/1840 [00:05<00:17, 83.48it/s]
1580
  23%|██▎ | 423/1840 [00:05<00:17, 81.79it/s]
1581
  23%|██▎ | 432/1840 [00:05<00:17, 79.20it/s]
1582
  24%|██▍ | 441/1840 [00:05<00:17, 80.57it/s]
1583
  24%|██▍ | 450/1840 [00:05<00:17, 79.30it/s]
1584
  25%|██▌ | 460/1840 [00:05<00:16, 82.63it/s]
1585
  26%|██▌ | 470/1840 [00:05<00:15, 86.49it/s]
1586
  26%|██▌ | 479/1840 [00:05<00:17, 79.64it/s]
1587
  27%|██▋ | 488/1840 [00:06<00:17, 79.47it/s]
1588
  27%|██▋ | 497/1840 [00:06<00:17, 77.18it/s]
1589
  28%|██▊ | 506/1840 [00:06<00:16, 80.18it/s]
1590
  28%|██▊ | 515/1840 [00:06<00:16, 82.39it/s]
1591
  28%|██▊ | 524/1840 [00:06<00:15, 82.86it/s]
1592
  29%|██▉ | 534/1840 [00:06<00:15, 85.67it/s]
1593
  30%|██▉ | 543/1840 [00:06<00:15, 83.84it/s]
1594
  30%|███ | 552/1840 [00:06<00:15, 83.65it/s]
1595
  30%|███ | 561/1840 [00:06<00:15, 80.37it/s]
1596
  31%|███ | 571/1840 [00:07<00:15, 83.82it/s]
1597
  32%|███▏ | 581/1840 [00:07<00:14, 87.89it/s]
1598
  32%|███▏ | 590/1840 [00:07<00:14, 85.42it/s]
1599
  33%|███▎ | 599/1840 [00:07<00:14, 84.12it/s]
1600
  33%|███▎ | 608/1840 [00:07<00:14, 84.31it/s]
1601
  34%|███▎ | 617/1840 [00:07<00:14, 81.69it/s]
1602
  34%|███▍ | 626/1840 [00:07<00:15, 79.28it/s]
1603
  35%|███▍ | 636/1840 [00:07<00:14, 83.89it/s]
1604
  35%|███▌ | 646/1840 [00:07<00:13, 86.50it/s]
1605
  36%|███▌ | 655/1840 [00:08<00:13, 86.71it/s]
1606
  36%|███▌ | 664/1840 [00:08<00:14, 80.49it/s]
1607
  37%|███▋ | 675/1840 [00:08<00:13, 86.17it/s]
1608
  37%|███▋ | 684/1840 [00:08<00:13, 84.70it/s]
1609
  38%|███▊ | 693/1840 [00:08<00:13, 84.93it/s]
1610
  38%|███▊ | 703/1840 [00:08<00:12, 87.47it/s]
1611
  39%|███▊ | 712/1840 [00:08<00:12, 87.23it/s]
1612
  39%|███▉ | 721/1840 [00:08<00:12, 87.90it/s]
1613
  40%|███▉ | 731/1840 [00:08<00:12, 90.57it/s]
1614
  40%|████ | 741/1840 [00:09<00:12, 90.64it/s]
1615
  41%|████ | 751/1840 [00:09<00:12, 88.80it/s]
1616
  41%|████▏ | 761/1840 [00:09<00:11, 91.11it/s]
1617
  42%|████▏ | 771/1840 [00:09<00:11, 90.48it/s]
1618
  42%|████▏ | 781/1840 [00:09<00:11, 90.68it/s]
1619
  43%|████▎ | 791/1840 [00:09<00:12, 86.91it/s]
1620
  43%|████▎ | 800/1840 [00:09<00:11, 87.05it/s]
1621
  44%|████▍ | 809/1840 [00:09<00:12, 82.35it/s]
1622
  44%|████▍ | 818/1840 [00:09<00:12, 83.38it/s]
1623
  45%|████▍ | 827/1840 [00:10<00:11, 85.21it/s]
1624
  45%|████▌ | 837/1840 [00:10<00:11, 88.44it/s]
1625
  46%|████▌ | 846/1840 [00:10<00:11, 83.62it/s]
1626
  47%|████▋ | 856/1840 [00:10<00:11, 86.25it/s]
1627
  47%|████▋ | 866/1840 [00:10<00:11, 87.84it/s]
1628
  48%|████▊ | 875/1840 [00:10<00:11, 86.19it/s]
1629
  48%|████▊ | 884/1840 [00:10<00:11, 81.90it/s]
1630
  49%|████▊ | 893/1840 [00:10<00:11, 83.43it/s]
1631
  49%|████▉ | 902/1840 [00:10<00:11, 82.37it/s]
1632
  50%|████▉ | 912/1840 [00:11<00:10, 86.78it/s]
1633
  50%|█████ | 922/1840 [00:11<00:10, 89.72it/s]
1634
  51%|█████ | 932/1840 [00:11<00:10, 90.66it/s]
1635
  51%|█████ | 942/1840 [00:11<00:10, 86.90it/s]
1636
  52%|█████▏ | 951/1840 [00:11<00:10, 85.40it/s]
1637
  52%|█████▏ | 960/1840 [00:11<00:10, 83.69it/s]
1638
  53%|█████▎ | 969/1840 [00:11<00:10, 85.03it/s]
1639
  53%|█████▎ | 979/1840 [00:11<00:09, 86.71it/s]
1640
  54%|█████▎ | 988/1840 [00:11<00:10, 84.07it/s]
1641
  54%|█████▍ | 998/1840 [00:12<00:09, 86.15it/s]
1642
  55%|█████▍ | 1007/1840 [00:12<00:09, 84.92it/s]
1643
  55%|█████▌ | 1016/1840 [00:12<00:09, 84.16it/s]
1644
  56%|█████▌ | 1026/1840 [00:12<00:09, 86.81it/s]
1645
  56%|█████▋ | 1036/1840 [00:12<00:08, 90.40it/s]
1646
  57%|█████▋ | 1046/1840 [00:12<00:08, 90.10it/s]
1647
  57%|█████▋ | 1056/1840 [00:12<00:09, 85.50it/s]
1648
  58%|█████▊ | 1065/1840 [00:12<00:09, 83.97it/s]
1649
  58%|█████▊ | 1074/1840 [00:12<00:09, 83.54it/s]
1650
  59%|█████▉ | 1083/1840 [00:13<00:09, 82.79it/s]
1651
  59%|█████▉ | 1092/1840 [00:13<00:09, 81.57it/s]
1652
  60%|█████▉ | 1101/1840 [00:13<00:09, 81.82it/s]
1653
  60%|██████ | 1110/1840 [00:13<00:09, 80.41it/s]
1654
  61%|██████ | 1119/1840 [00:13<00:08, 80.20it/s]
1655
  61%|██████▏ | 1128/1840 [00:13<00:08, 80.92it/s]
1656
  62%|██████▏ | 1137/1840 [00:13<00:08, 82.75it/s]
1657
  62%|██████▏ | 1146/1840 [00:13<00:08, 84.39it/s]
1658
  63%|██████▎ | 1155/1840 [00:13<00:08, 84.51it/s]
1659
  63%|██████▎ | 1165/1840 [00:14<00:07, 86.50it/s]
1660
  64%|██████▍ | 1174/1840 [00:14<00:08, 82.04it/s]
1661
  64%|██████▍ | 1183/1840 [00:14<00:07, 84.12it/s]
1662
  65%|██████▍ | 1192/1840 [00:14<00:08, 80.95it/s]
1663
  65%|██████▌ | 1202/1840 [00:14<00:07, 85.26it/s]
1664
  66%|██████▌ | 1211/1840 [00:14<00:07, 85.02it/s]
1665
  66%|██████▋ | 1220/1840 [00:14<00:07, 81.11it/s]
1666
  67%|██████▋ | 1229/1840 [00:14<00:07, 78.17it/s]
1667
  67%|██████▋ | 1239/1840 [00:14<00:07, 83.08it/s]
1668
  68%|██████▊ | 1249/1840 [00:15<00:06, 84.80it/s]
1669
  68%|██████▊ | 1259/1840 [00:15<00:06, 87.16it/s]
1670
  69%|██████▉ | 1268/1840 [00:15<00:07, 81.35it/s]
1671
  69%|██████▉ | 1277/1840 [00:15<00:06, 82.04it/s]
1672
  70%|██████▉ | 1287/1840 [00:15<00:06, 85.08it/s]
1673
  70%|███████ | 1296/1840 [00:15<00:06, 85.94it/s]
1674
  71%|███████ | 1305/1840 [00:15<00:06, 86.64it/s]
1675
  71%|███████▏ | 1315/1840 [00:15<00:05, 88.73it/s]
1676
  72%|███████▏ | 1324/1840 [00:15<00:05, 88.62it/s]
1677
  72%|███████▎ | 1334/1840 [00:16<00:05, 89.22it/s]
1678
  73%|███████▎ | 1343/1840 [00:16<00:05, 88.09it/s]
1679
  73%|███████▎ | 1352/1840 [00:16<00:05, 86.64it/s]
1680
  74%|███████▍ | 1361/1840 [00:16<00:05, 86.18it/s]
1681
  75%|███████▍ | 1371/1840 [00:16<00:05, 88.80it/s]
1682
  75%|███████▌ | 1380/1840 [00:16<00:05, 84.43it/s]
1683
  76%|███████▌ | 1390/1840 [00:16<00:05, 87.73it/s]
1684
  76%|███████▌ | 1399/1840 [00:16<00:05, 86.39it/s]
1685
  77%|███████▋ | 1409/1840 [00:16<00:04, 89.15it/s]
1686
  77%|███████▋ | 1419/1840 [00:16<00:04, 90.88it/s]
1687
  78%|███████▊ | 1429/1840 [00:17<00:04, 90.03it/s]
1688
  78%|███████▊ | 1439/1840 [00:17<00:04, 85.21it/s]
1689
  79%|███████▊ | 1448/1840 [00:17<00:04, 81.25it/s]
1690
  79%|███████▉ | 1457/1840 [00:17<00:04, 80.93it/s]
1691
  80%|███████▉ | 1467/1840 [00:17<00:04, 83.53it/s]
1692
  80%|████████ | 1476/1840 [00:17<00:04, 85.11it/s]
1693
  81%|████████ | 1485/1840 [00:17<00:04, 79.07it/s]
1694
  81%|████████ | 1494/1840 [00:17<00:04, 80.96it/s]
1695
  82%|████████▏ | 1503/1840 [00:18<00:04, 75.11it/s]
1696
  82%|████████▏ | 1511/1840 [00:18<00:04, 74.87it/s]
1697
  83%|████████▎ | 1520/1840 [00:18<00:04, 77.51it/s]
1698
  83%|████████▎ | 1529/1840 [00:18<00:03, 79.78it/s]
1699
  84%|████████▎ | 1538/1840 [00:18<00:03, 78.02it/s]
1700
  84%|████████▍ | 1547/1840 [00:18<00:03, 78.66it/s]
1701
  85%|████████▍ | 1555/1840 [00:18<00:03, 78.70it/s]
1702
  85%|████████▍ | 1563/1840 [00:18<00:03, 77.77it/s]
1703
  85%|████████▌ | 1572/1840 [00:18<00:03, 80.18it/s]
1704
  86%|████████▌ | 1581/1840 [00:19<00:03, 77.43it/s]
1705
  86%|████████▋ | 1589/1840 [00:19<00:03, 77.84it/s]
1706
  87%|████████▋ | 1598/1840 [00:19<00:03, 78.98it/s]
1707
  87%|████████▋ | 1606/1840 [00:19<00:02, 78.87it/s]
1708
  88%|████████▊ | 1614/1840 [00:19<00:02, 78.07it/s]
1709
  88%|████████▊ | 1623/1840 [00:19<00:02, 80.49it/s]
1710
  89%|████████▊ | 1632/1840 [00:19<00:02, 75.18it/s]
1711
  89%|████████▉ | 1640/1840 [00:19<00:02, 71.87it/s]
1712
  90%|████████▉ | 1649/1840 [00:19<00:02, 73.56it/s]
1713
  90%|█████████ | 1657/1840 [00:20<00:02, 75.13it/s]
1714
  91%|█████████ | 1666/1840 [00:20<00:02, 78.75it/s]
1715
  91%|█████████ | 1674/1840 [00:20<00:02, 78.67it/s]
1716
  91%|█████████▏| 1683/1840 [00:20<00:01, 79.72it/s]
1717
  92%|█████████▏| 1692/1840 [00:20<00:01, 79.81it/s]
1718
  92%|█████████▎| 1702/1840 [00:20<00:01, 84.14it/s]
1719
  93%|█████████▎| 1711/1840 [00:20<00:01, 77.98it/s]
1720
  93%|█████████▎| 1720/1840 [00:20<00:01, 79.60it/s]
1721
  94%|█████████▍| 1729/1840 [00:20<00:01, 82.24it/s]
1722
  94%|█████████▍| 1738/1840 [00:21<00:01, 79.00it/s]
1723
  95%|█████████▌| 1748/1840 [00:21<00:01, 81.90it/s]
1724
  96%|█████████▌| 1758/1840 [00:21<00:00, 85.15it/s]
1725
  96%|█████████▌| 1767/1840 [00:21<00:00, 84.58it/s]
1726
  97%|█████████▋| 1776/1840 [00:21<00:00, 82.51it/s]
1727
  97%|█████████▋| 1785/1840 [00:21<00:00, 81.76it/s]
1728
  98%|█████████▊| 1794/1840 [00:21<00:00, 81.83it/s]
1729
  98%|█████████▊| 1803/1840 [00:21<00:00, 82.32it/s]
1730
  98%|█████████▊| 1812/1840 [00:21<00:00, 75.67it/s]
1731
  99%|█████████▉| 1821/1840 [00:22<00:00, 77.64it/s]
1732
  99%|█████████▉| 1829/1840 [00:22<00:00, 76.62it/s]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1426
  {'eval_loss': 0.007080046460032463, 'eval_precision': 0.9311627906976744, 'eval_recall': 0.9328984156570364, 'eval_f1': 0.9320297951582869, 'eval_accuracy': 0.998772081600759, 'eval_runtime': 15.2679, 'eval_samples_per_second': 454.941, 'eval_steps_per_second': 56.917, 'epoch': 9.99}
1427
  {'train_runtime': 1809.5975, 'train_samples_per_second': 153.852, 'train_steps_per_second': 2.404, 'train_loss': 0.003044272955806776, 'epoch': 9.99}
1428
 
1429
+ ***** train metrics *****
1430
+ epoch = 9.9885
1431
+ total_flos = 10322898GF
1432
+ train_loss = 0.003
1433
+ train_runtime = 0:30:09.59
1434
+ train_samples = 27841
1435
+ train_samples_per_second = 153.852
1436
+ train_steps_per_second = 2.404
1437
+ 09/09/2024 19:23:10 - INFO - __main__ - *** Evaluate ***
1438
+ [INFO|trainer.py:811] 2024-09-09 19:23:10,626 >> The following columns in the evaluation set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: tokens, ner_tags, id. If tokens, ner_tags, id are not expected by `BertForTokenClassification.forward`, you can safely ignore this message.
1439
+ [INFO|trainer.py:3819] 2024-09-09 19:23:10,629 >>
1440
+ ***** Running Evaluation *****
1441
+ [INFO|trainer.py:3821] 2024-09-09 19:23:10,629 >> Num examples = 6946
1442
+ [INFO|trainer.py:3824] 2024-09-09 19:23:10,629 >> Batch size = 8
1443
+
1444
  0%| | 0/869 [00:00<?, ?it/s]
1445
  1%| | 10/869 [00:00<00:09, 94.10it/s]
1446
  2%|▏ | 20/869 [00:00<00:10, 83.01it/s]
1447
  3%|▎ | 29/869 [00:00<00:10, 79.56it/s]
1448
  4%|▍ | 37/869 [00:00<00:10, 76.78it/s]
1449
  5%|▌ | 46/869 [00:00<00:10, 79.76it/s]
1450
  6%|▋ | 55/869 [00:00<00:09, 82.40it/s]
1451
  7%|▋ | 64/869 [00:00<00:10, 77.32it/s]
1452
  8%|▊ | 72/869 [00:00<00:10, 77.44it/s]
1453
  9%|▉ | 80/869 [00:01<00:10, 77.62it/s]
1454
  10%|█ | 88/869 [00:01<00:09, 78.12it/s]
1455
  11%|█▏ | 98/869 [00:01<00:09, 83.69it/s]
1456
  12%|█▏ | 107/869 [00:01<00:09, 80.75it/s]
1457
  13%|█▎ | 116/869 [00:01<00:09, 81.64it/s]
1458
  14%|█▍ | 125/869 [00:01<00:09, 80.95it/s]
1459
  15%|█▌ | 134/869 [00:01<00:09, 80.41it/s]
1460
  16%|█▋ | 143/869 [00:01<00:09, 78.86it/s]
1461
  17%|█▋ | 152/869 [00:01<00:09, 79.46it/s]
1462
  19%|█▊ | 161/869 [00:02<00:08, 80.10it/s]
1463
  20%|█▉ | 170/869 [00:02<00:08, 77.72it/s]
1464
  20%|██ | 178/869 [00:02<00:08, 77.28it/s]
1465
  22%|██▏ | 187/869 [00:02<00:08, 79.76it/s]
1466
  22%|██▏ | 195/869 [00:02<00:08, 76.27it/s]
1467
  23%|██▎ | 204/869 [00:02<00:08, 79.92it/s]
1468
  25%|██▍ | 213/869 [00:02<00:08, 80.46it/s]
1469
  26%|██▌ | 222/869 [00:02<00:07, 81.61it/s]
1470
  27%|██▋ | 231/869 [00:02<00:07, 81.87it/s]
1471
  28%|██▊ | 240/869 [00:03<00:08, 77.24it/s]
1472
  29%|██▊ | 248/869 [00:03<00:08, 72.53it/s]
1473
  30%|██▉ | 257/869 [00:03<00:08, 75.26it/s]
1474
  30%|███ | 265/869 [00:03<00:08, 74.90it/s]
1475
  31%|███▏ | 273/869 [00:03<00:07, 75.54it/s]
1476
  32%|███▏ | 281/869 [00:03<00:07, 75.08it/s]
1477
  33%|███▎ | 289/869 [00:03<00:07, 73.93it/s]
1478
  34%|███▍ | 297/869 [00:03<00:07, 74.72it/s]
1479
  35%|███▌ | 305/869 [00:03<00:07, 71.50it/s]
1480
  36%|███▌ | 313/869 [00:04<00:07, 73.21it/s]
1481
  37%|███▋ | 321/869 [00:04<00:07, 72.48it/s]
1482
  38%|███▊ | 330/869 [00:04<00:07, 76.70it/s]
1483
  39%|███▉ | 339/869 [00:04<00:06, 78.31it/s]
1484
  40%|███▉ | 347/869 [00:04<00:07, 73.92it/s]
1485
  41%|████ | 355/869 [00:04<00:06, 74.54it/s]
1486
  42%|████▏ | 364/869 [00:04<00:06, 78.43it/s]
1487
  43%|████▎ | 373/869 [00:04<00:06, 76.11it/s]
1488
  44%|████▍ | 381/869 [00:04<00:06, 76.52it/s]
1489
  45%|████▍ | 389/869 [00:05<00:06, 71.07it/s]
1490
  46%|████▌ | 397/869 [00:05<00:06, 71.76it/s]
1491
  47%|████▋ | 405/869 [00:05<00:06, 72.36it/s]
1492
  48%|████▊ | 413/869 [00:05<00:06, 74.25it/s]
1493
  48%|████▊ | 421/869 [00:05<00:05, 74.81it/s]
1494
  49%|████▉ | 430/869 [00:05<00:05, 78.44it/s]
1495
  50%|█████ | 438/869 [00:05<00:05, 75.78it/s]
1496
  51%|█████▏ | 446/869 [00:05<00:05, 74.63it/s]
1497
  52%|█████▏ | 455/869 [00:05<00:05, 76.79it/s]
1498
  53%|█████▎ | 463/869 [00:06<00:05, 75.65it/s]
1499
  54%|█████▍ | 472/869 [00:06<00:05, 77.12it/s]
1500
  55%|█████▌ | 480/869 [00:06<00:05, 77.29it/s]
1501
  56%|█████▌ | 488/869 [00:06<00:04, 78.02it/s]
1502
  57%|█████▋ | 496/869 [00:06<00:05, 72.92it/s]
1503
  58%|█████▊ | 504/869 [00:06<00:05, 72.36it/s]
1504
  59%|█████▉ | 513/869 [00:06<00:04, 74.95it/s]
1505
  60%|██████ | 522/869 [00:06<00:04, 71.72it/s]
1506
  61%|██████ | 531/869 [00:06<00:04, 74.36it/s]
1507
  62%|██████▏ | 539/869 [00:07<00:04, 73.45it/s]
1508
  63%|██████▎ | 547/869 [00:07<00:04, 74.32it/s]
1509
  64%|██████▍ | 556/869 [00:07<00:04, 76.91it/s]
1510
  65%|██████▍ | 564/869 [00:07<00:03, 77.31it/s]
1511
  66%|██████▌ | 572/869 [00:07<00:03, 75.84it/s]
1512
  67%|██████▋ | 580/869 [00:07<00:03, 76.22it/s]
1513
  68%|██████▊ | 588/869 [00:07<00:03, 75.50it/s]
1514
  69%|██████▊ | 596/869 [00:07<00:03, 76.68it/s]
1515
  70%|██████▉ | 605/869 [00:07<00:03, 79.26it/s]
1516
  71%|███████ | 613/869 [00:07<00:03, 78.94it/s]
1517
  71%|███████▏ | 621/869 [00:08<00:03, 78.64it/s]
1518
  72%|███████▏ | 629/869 [00:08<00:03, 76.57it/s]
1519
  73%|███████▎ | 637/869 [00:08<00:03, 75.64it/s]
1520
  74%|███████▍ | 646/869 [00:08<00:02, 79.36it/s]
1521
  75%|███████▌ | 655/869 [00:08<00:02, 81.22it/s]
1522
  76%|███████▋ | 664/869 [00:08<00:02, 80.28it/s]
1523
  77%|███████▋ | 673/869 [00:08<00:02, 82.38it/s]
1524
  78%|███████▊ | 682/869 [00:08<00:02, 72.26it/s]
1525
  79%|███████▉ | 690/869 [00:08<00:02, 73.87it/s]
1526
  80%|████████ | 698/869 [00:09<00:02, 73.82it/s]
1527
  81%|████████ | 706/869 [00:09<00:02, 72.81it/s]
1528
  82%|████████▏ | 714/869 [00:09<00:02, 74.34it/s]
1529
  83%|████████▎ | 722/869 [00:09<00:01, 73.70it/s]
1530
  84%|████████▍ | 730/869 [00:09<00:01, 74.32it/s]
1531
  85%|████████▍ | 738/869 [00:09<00:01, 73.45it/s]
1532
  86%|████████▌ | 746/869 [00:09<00:01, 74.40it/s]
1533
  87%|████████▋ | 754/869 [00:09<00:01, 73.20it/s]
1534
  88%|████████▊ | 763/869 [00:09<00:01, 77.32it/s]
1535
  89%|████████▊ | 771/869 [00:10<00:01, 72.15it/s]
1536
  90%|████████▉ | 779/869 [00:10<00:01, 63.75it/s]
1537
  91%|█████████ | 787/869 [00:10<00:01, 66.85it/s]
1538
  91%|█████████▏| 795/869 [00:10<00:01, 69.28it/s]
1539
  92%|█████████▏| 803/869 [00:10<00:00, 71.32it/s]
1540
  93%|█████████▎| 811/869 [00:10<00:00, 71.64it/s]
1541
  94%|█████████▍| 819/869 [00:10<00:00, 73.07it/s]
1542
  95%|█████████▌| 827/869 [00:10<00:00, 74.95it/s]
1543
  96%|█████████▌| 835/869 [00:10<00:00, 75.58it/s]
1544
  97%|█████████▋| 844/869 [00:11<00:00, 77.61it/s]
1545
  98%|█████████▊| 852/869 [00:11<00:00, 77.29it/s]
1546
  99%|█████████▉| 860/869 [00:11<00:00, 73.23it/s]
1547
+ ***** eval metrics *****
1548
+ epoch = 9.9885
1549
+ eval_accuracy = 0.9988
1550
+ eval_f1 = 0.932
1551
+ eval_loss = 0.0071
1552
+ eval_precision = 0.9312
1553
+ eval_recall = 0.9329
1554
+ eval_runtime = 0:00:15.14
1555
+ eval_samples = 6946
1556
+ eval_samples_per_second = 458.52
1557
+ eval_steps_per_second = 57.365
1558
+ 09/09/2024 19:23:25 - INFO - __main__ - *** Predict ***
1559
+ [INFO|trainer.py:811] 2024-09-09 19:23:25,784 >> The following columns in the test set don't have a corresponding argument in `BertForTokenClassification.forward` and have been ignored: tokens, ner_tags, id. If tokens, ner_tags, id are not expected by `BertForTokenClassification.forward`, you can safely ignore this message.
1560
+ [INFO|trainer.py:3819] 2024-09-09 19:23:25,786 >>
1561
+ ***** Running Prediction *****
1562
+ [INFO|trainer.py:3821] 2024-09-09 19:23:25,786 >> Num examples = 14715
1563
+ [INFO|trainer.py:3824] 2024-09-09 19:23:25,786 >> Batch size = 8
1564
+
1565
  0%| | 0/1840 [00:00<?, ?it/s]
1566
  1%| | 11/1840 [00:00<00:17, 102.91it/s]
1567
  1%| | 22/1840 [00:00<00:22, 82.28it/s]
1568
  2%|▏ | 31/1840 [00:00<00:21, 82.86it/s]
1569
  2%|▏ | 40/1840 [00:00<00:21, 83.47it/s]
1570
  3%|▎ | 49/1840 [00:00<00:21, 85.07it/s]
1571
  3%|▎ | 58/1840 [00:00<00:21, 83.31it/s]
1572
  4%|▎ | 67/1840 [00:00<00:22, 79.23it/s]
1573
  4%|▍ | 76/1840 [00:00<00:22, 79.82it/s]
1574
  5%|▍ | 85/1840 [00:01<00:22, 79.00it/s]
1575
  5%|▌ | 93/1840 [00:01<00:22, 77.52it/s]
1576
  6%|▌ | 102/1840 [00:01<00:22, 78.51it/s]
1577
  6%|▌ | 111/1840 [00:01<00:21, 78.98it/s]
1578
  6%|▋ | 119/1840 [00:01<00:22, 77.27it/s]
1579
  7%|▋ | 127/1840 [00:01<00:23, 74.32it/s]
1580
  7%|▋ | 135/1840 [00:01<00:22, 75.85it/s]
1581
  8%|▊ | 143/1840 [00:01<00:22, 76.52it/s]
1582
  8%|▊ | 151/1840 [00:01<00:21, 77.26it/s]
1583
  9%|▊ | 159/1840 [00:02<00:23, 70.93it/s]
1584
  9%|▉ | 167/1840 [00:02<00:23, 72.64it/s]
1585
  10%|▉ | 175/1840 [00:02<00:22, 74.51it/s]
1586
  10%|█ | 184/1840 [00:02<00:21, 76.20it/s]
1587
  10%|█ | 192/1840 [00:02<00:21, 77.15it/s]
1588
  11%|█ | 200/1840 [00:02<00:21, 76.31it/s]
1589
  11%|█▏ | 208/1840 [00:02<00:21, 75.16it/s]
1590
  12%|█▏ | 217/1840 [00:02<00:20, 77.93it/s]
1591
  12%|█▏ | 226/1840 [00:02<00:19, 80.94it/s]
1592
  13%|█▎ | 235/1840 [00:03<00:21, 76.28it/s]
1593
  13%|█▎ | 243/1840 [00:03<00:21, 73.88it/s]
1594
  14%|█▎ | 251/1840 [00:03<00:21, 74.66it/s]
1595
  14%|█▍ | 260/1840 [00:03<00:20, 77.45it/s]
1596
  15%|█▍ | 268/1840 [00:03<00:20, 77.81it/s]
1597
  15%|█▌ | 278/1840 [00:03<00:18, 83.55it/s]
1598
  16%|█▌ | 288/1840 [00:03<00:18, 85.54it/s]
1599
  16%|█▌ | 297/1840 [00:03<00:18, 83.42it/s]
1600
  17%|█▋ | 306/1840 [00:03<00:18, 83.94it/s]
1601
  17%|█▋ | 315/1840 [00:03<00:17, 84.88it/s]
1602
  18%|█▊ | 324/1840 [00:04<00:17, 85.09it/s]
1603
  18%|█▊ | 333/1840 [00:04<00:17, 84.73it/s]
1604
  19%|█▊ | 342/1840 [00:04<00:17, 85.63it/s]
1605
  19%|█▉ | 351/1840 [00:04<00:17, 83.86it/s]
1606
  20%|█▉ | 360/1840 [00:04<00:18, 81.29it/s]
1607
  20%|██ | 369/1840 [00:04<00:17, 82.99it/s]
1608
  21%|██ | 378/1840 [00:04<00:17, 84.14it/s]
1609
  21%|██ | 387/1840 [00:04<00:17, 84.49it/s]
1610
  22%|██▏ | 396/1840 [00:04<00:17, 81.78it/s]
1611
  22%|██▏ | 405/1840 [00:05<00:17, 84.06it/s]
1612
  22%|██▎ | 414/1840 [00:05<00:17, 83.48it/s]
1613
  23%|██▎ | 423/1840 [00:05<00:17, 81.79it/s]
1614
  23%|██▎ | 432/1840 [00:05<00:17, 79.20it/s]
1615
  24%|██▍ | 441/1840 [00:05<00:17, 80.57it/s]
1616
  24%|██▍ | 450/1840 [00:05<00:17, 79.30it/s]
1617
  25%|██▌ | 460/1840 [00:05<00:16, 82.63it/s]
1618
  26%|██▌ | 470/1840 [00:05<00:15, 86.49it/s]
1619
  26%|██▌ | 479/1840 [00:05<00:17, 79.64it/s]
1620
  27%|██▋ | 488/1840 [00:06<00:17, 79.47it/s]
1621
  27%|██▋ | 497/1840 [00:06<00:17, 77.18it/s]
1622
  28%|██▊ | 506/1840 [00:06<00:16, 80.18it/s]
1623
  28%|██▊ | 515/1840 [00:06<00:16, 82.39it/s]
1624
  28%|██▊ | 524/1840 [00:06<00:15, 82.86it/s]
1625
  29%|██▉ | 534/1840 [00:06<00:15, 85.67it/s]
1626
  30%|██▉ | 543/1840 [00:06<00:15, 83.84it/s]
1627
  30%|███ | 552/1840 [00:06<00:15, 83.65it/s]
1628
  30%|███ | 561/1840 [00:06<00:15, 80.37it/s]
1629
  31%|███ | 571/1840 [00:07<00:15, 83.82it/s]
1630
  32%|███▏ | 581/1840 [00:07<00:14, 87.89it/s]
1631
  32%|███▏ | 590/1840 [00:07<00:14, 85.42it/s]
1632
  33%|███▎ | 599/1840 [00:07<00:14, 84.12it/s]
1633
  33%|███▎ | 608/1840 [00:07<00:14, 84.31it/s]
1634
  34%|███▎ | 617/1840 [00:07<00:14, 81.69it/s]
1635
  34%|███▍ | 626/1840 [00:07<00:15, 79.28it/s]
1636
  35%|███▍ | 636/1840 [00:07<00:14, 83.89it/s]
1637
  35%|███▌ | 646/1840 [00:07<00:13, 86.50it/s]
1638
  36%|███▌ | 655/1840 [00:08<00:13, 86.71it/s]
1639
  36%|███▌ | 664/1840 [00:08<00:14, 80.49it/s]
1640
  37%|███▋ | 675/1840 [00:08<00:13, 86.17it/s]
1641
  37%|███▋ | 684/1840 [00:08<00:13, 84.70it/s]
1642
  38%|███▊ | 693/1840 [00:08<00:13, 84.93it/s]
1643
  38%|███▊ | 703/1840 [00:08<00:12, 87.47it/s]
1644
  39%|███▊ | 712/1840 [00:08<00:12, 87.23it/s]
1645
  39%|███▉ | 721/1840 [00:08<00:12, 87.90it/s]
1646
  40%|███▉ | 731/1840 [00:08<00:12, 90.57it/s]
1647
  40%|████ | 741/1840 [00:09<00:12, 90.64it/s]
1648
  41%|████ | 751/1840 [00:09<00:12, 88.80it/s]
1649
  41%|████▏ | 761/1840 [00:09<00:11, 91.11it/s]
1650
  42%|████▏ | 771/1840 [00:09<00:11, 90.48it/s]
1651
  42%|████▏ | 781/1840 [00:09<00:11, 90.68it/s]
1652
  43%|████▎ | 791/1840 [00:09<00:12, 86.91it/s]
1653
  43%|████▎ | 800/1840 [00:09<00:11, 87.05it/s]
1654
  44%|████▍ | 809/1840 [00:09<00:12, 82.35it/s]
1655
  44%|████▍ | 818/1840 [00:09<00:12, 83.38it/s]
1656
  45%|████▍ | 827/1840 [00:10<00:11, 85.21it/s]
1657
  45%|████▌ | 837/1840 [00:10<00:11, 88.44it/s]
1658
  46%|████▌ | 846/1840 [00:10<00:11, 83.62it/s]
1659
  47%|████▋ | 856/1840 [00:10<00:11, 86.25it/s]
1660
  47%|████▋ | 866/1840 [00:10<00:11, 87.84it/s]
1661
  48%|████▊ | 875/1840 [00:10<00:11, 86.19it/s]
1662
  48%|████▊ | 884/1840 [00:10<00:11, 81.90it/s]
1663
  49%|████▊ | 893/1840 [00:10<00:11, 83.43it/s]
1664
  49%|████▉ | 902/1840 [00:10<00:11, 82.37it/s]
1665
  50%|████▉ | 912/1840 [00:11<00:10, 86.78it/s]
1666
  50%|█████ | 922/1840 [00:11<00:10, 89.72it/s]
1667
  51%|█████ | 932/1840 [00:11<00:10, 90.66it/s]
1668
  51%|█████ | 942/1840 [00:11<00:10, 86.90it/s]
1669
  52%|█████▏ | 951/1840 [00:11<00:10, 85.40it/s]
1670
  52%|█████▏ | 960/1840 [00:11<00:10, 83.69it/s]
1671
  53%|█████▎ | 969/1840 [00:11<00:10, 85.03it/s]
1672
  53%|█████▎ | 979/1840 [00:11<00:09, 86.71it/s]
1673
  54%|█████▎ | 988/1840 [00:11<00:10, 84.07it/s]
1674
  54%|█████▍ | 998/1840 [00:12<00:09, 86.15it/s]
1675
  55%|█████▍ | 1007/1840 [00:12<00:09, 84.92it/s]
1676
  55%|█████▌ | 1016/1840 [00:12<00:09, 84.16it/s]
1677
  56%|█████▌ | 1026/1840 [00:12<00:09, 86.81it/s]
1678
  56%|█████▋ | 1036/1840 [00:12<00:08, 90.40it/s]
1679
  57%|█████▋ | 1046/1840 [00:12<00:08, 90.10it/s]
1680
  57%|█████▋ | 1056/1840 [00:12<00:09, 85.50it/s]
1681
  58%|█████▊ | 1065/1840 [00:12<00:09, 83.97it/s]
1682
  58%|█████▊ | 1074/1840 [00:12<00:09, 83.54it/s]
1683
  59%|█████▉ | 1083/1840 [00:13<00:09, 82.79it/s]
1684
  59%|█████▉ | 1092/1840 [00:13<00:09, 81.57it/s]
1685
  60%|█████▉ | 1101/1840 [00:13<00:09, 81.82it/s]
1686
  60%|██████ | 1110/1840 [00:13<00:09, 80.41it/s]
1687
  61%|██████ | 1119/1840 [00:13<00:08, 80.20it/s]
1688
  61%|██████▏ | 1128/1840 [00:13<00:08, 80.92it/s]
1689
  62%|██████▏ | 1137/1840 [00:13<00:08, 82.75it/s]
1690
  62%|██████▏ | 1146/1840 [00:13<00:08, 84.39it/s]
1691
  63%|██████▎ | 1155/1840 [00:13<00:08, 84.51it/s]
1692
  63%|██████▎ | 1165/1840 [00:14<00:07, 86.50it/s]
1693
  64%|██████▍ | 1174/1840 [00:14<00:08, 82.04it/s]
1694
  64%|██████▍ | 1183/1840 [00:14<00:07, 84.12it/s]
1695
  65%|██████▍ | 1192/1840 [00:14<00:08, 80.95it/s]
1696
  65%|██████▌ | 1202/1840 [00:14<00:07, 85.26it/s]
1697
  66%|██████▌ | 1211/1840 [00:14<00:07, 85.02it/s]
1698
  66%|██████▋ | 1220/1840 [00:14<00:07, 81.11it/s]
1699
  67%|██████▋ | 1229/1840 [00:14<00:07, 78.17it/s]
1700
  67%|██████▋ | 1239/1840 [00:14<00:07, 83.08it/s]
1701
  68%|██████▊ | 1249/1840 [00:15<00:06, 84.80it/s]
1702
  68%|██████▊ | 1259/1840 [00:15<00:06, 87.16it/s]
1703
  69%|██████▉ | 1268/1840 [00:15<00:07, 81.35it/s]
1704
  69%|██████▉ | 1277/1840 [00:15<00:06, 82.04it/s]
1705
  70%|██████▉ | 1287/1840 [00:15<00:06, 85.08it/s]
1706
  70%|███████ | 1296/1840 [00:15<00:06, 85.94it/s]
1707
  71%|███████ | 1305/1840 [00:15<00:06, 86.64it/s]
1708
  71%|███████▏ | 1315/1840 [00:15<00:05, 88.73it/s]
1709
  72%|███████▏ | 1324/1840 [00:15<00:05, 88.62it/s]
1710
  72%|███████▎ | 1334/1840 [00:16<00:05, 89.22it/s]
1711
  73%|███████▎ | 1343/1840 [00:16<00:05, 88.09it/s]
1712
  73%|███████▎ | 1352/1840 [00:16<00:05, 86.64it/s]
1713
  74%|███████▍ | 1361/1840 [00:16<00:05, 86.18it/s]
1714
  75%|███████▍ | 1371/1840 [00:16<00:05, 88.80it/s]
1715
  75%|███████▌ | 1380/1840 [00:16<00:05, 84.43it/s]
1716
  76%|███████▌ | 1390/1840 [00:16<00:05, 87.73it/s]
1717
  76%|███████▌ | 1399/1840 [00:16<00:05, 86.39it/s]
1718
  77%|███████▋ | 1409/1840 [00:16<00:04, 89.15it/s]
1719
  77%|███████▋ | 1419/1840 [00:16<00:04, 90.88it/s]
1720
  78%|███████▊ | 1429/1840 [00:17<00:04, 90.03it/s]
1721
  78%|███████▊ | 1439/1840 [00:17<00:04, 85.21it/s]
1722
  79%|███████▊ | 1448/1840 [00:17<00:04, 81.25it/s]
1723
  79%|███████▉ | 1457/1840 [00:17<00:04, 80.93it/s]
1724
  80%|███████▉ | 1467/1840 [00:17<00:04, 83.53it/s]
1725
  80%|████████ | 1476/1840 [00:17<00:04, 85.11it/s]
1726
  81%|████████ | 1485/1840 [00:17<00:04, 79.07it/s]
1727
  81%|████████ | 1494/1840 [00:17<00:04, 80.96it/s]
1728
  82%|████████▏ | 1503/1840 [00:18<00:04, 75.11it/s]
1729
  82%|████████▏ | 1511/1840 [00:18<00:04, 74.87it/s]
1730
  83%|████████▎ | 1520/1840 [00:18<00:04, 77.51it/s]
1731
  83%|████████▎ | 1529/1840 [00:18<00:03, 79.78it/s]
1732
  84%|████████▎ | 1538/1840 [00:18<00:03, 78.02it/s]
1733
  84%|████████▍ | 1547/1840 [00:18<00:03, 78.66it/s]
1734
  85%|████████▍ | 1555/1840 [00:18<00:03, 78.70it/s]
1735
  85%|████████▍ | 1563/1840 [00:18<00:03, 77.77it/s]
1736
  85%|████████▌ | 1572/1840 [00:18<00:03, 80.18it/s]
1737
  86%|████████▌ | 1581/1840 [00:19<00:03, 77.43it/s]
1738
  86%|████████▋ | 1589/1840 [00:19<00:03, 77.84it/s]
1739
  87%|████████▋ | 1598/1840 [00:19<00:03, 78.98it/s]
1740
  87%|████████▋ | 1606/1840 [00:19<00:02, 78.87it/s]
1741
  88%|████████▊ | 1614/1840 [00:19<00:02, 78.07it/s]
1742
  88%|████████▊ | 1623/1840 [00:19<00:02, 80.49it/s]
1743
  89%|████████▊ | 1632/1840 [00:19<00:02, 75.18it/s]
1744
  89%|████████▉ | 1640/1840 [00:19<00:02, 71.87it/s]
1745
  90%|████████▉ | 1649/1840 [00:19<00:02, 73.56it/s]
1746
  90%|█████████ | 1657/1840 [00:20<00:02, 75.13it/s]
1747
  91%|█████████ | 1666/1840 [00:20<00:02, 78.75it/s]
1748
  91%|█████████ | 1674/1840 [00:20<00:02, 78.67it/s]
1749
  91%|█████████▏| 1683/1840 [00:20<00:01, 79.72it/s]
1750
  92%|█████████▏| 1692/1840 [00:20<00:01, 79.81it/s]
1751
  92%|█████████▎| 1702/1840 [00:20<00:01, 84.14it/s]
1752
  93%|█████████▎| 1711/1840 [00:20<00:01, 77.98it/s]
1753
  93%|█████████▎| 1720/1840 [00:20<00:01, 79.60it/s]
1754
  94%|█████████▍| 1729/1840 [00:20<00:01, 82.24it/s]
1755
  94%|█████████▍| 1738/1840 [00:21<00:01, 79.00it/s]
1756
  95%|█████████▌| 1748/1840 [00:21<00:01, 81.90it/s]
1757
  96%|█████████▌| 1758/1840 [00:21<00:00, 85.15it/s]
1758
  96%|█████████▌| 1767/1840 [00:21<00:00, 84.58it/s]
1759
  97%|█████████▋| 1776/1840 [00:21<00:00, 82.51it/s]
1760
  97%|█████████▋| 1785/1840 [00:21<00:00, 81.76it/s]
1761
  98%|█████████▊| 1794/1840 [00:21<00:00, 81.83it/s]
1762
  98%|█████████▊| 1803/1840 [00:21<00:00, 82.32it/s]
1763
  98%|█████████▊| 1812/1840 [00:21<00:00, 75.67it/s]
1764
  99%|█████████▉| 1821/1840 [00:22<00:00, 77.64it/s]
1765
  99%|█████████▉| 1829/1840 [00:22<00:00, 76.62it/s]
1766
+ [INFO|trainer.py:3503] 2024-09-09 19:23:54,954 >> Saving model checkpoint to /content/dissertation/scripts/ner/output
1767
+ [INFO|configuration_utils.py:472] 2024-09-09 19:23:54,956 >> Configuration saved in /content/dissertation/scripts/ner/output/config.json
1768
+ [INFO|modeling_utils.py:2799] 2024-09-09 19:23:56,214 >> Model weights saved in /content/dissertation/scripts/ner/output/model.safetensors
1769
+ [INFO|tokenization_utils_base.py:2684] 2024-09-09 19:23:56,215 >> tokenizer config file saved in /content/dissertation/scripts/ner/output/tokenizer_config.json
1770
+ [INFO|tokenization_utils_base.py:2693] 2024-09-09 19:23:56,216 >> Special tokens file saved in /content/dissertation/scripts/ner/output/special_tokens_map.json
1771
+ ***** predict metrics *****
1772
+ predict_accuracy = 0.9986
1773
+ predict_f1 = 0.9153
1774
+ predict_loss = 0.0081
1775
+ predict_precision = 0.8907
1776
+ predict_recall = 0.9413
1777
+ predict_runtime = 0:00:28.41
1778
+ predict_samples_per_second = 517.915
1779
+ predict_steps_per_second = 64.761
1780
+
train_results.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 9.988518943742825,
3
+ "total_flos": 1.1084127968547612e+16,
4
+ "train_loss": 0.003044272955806776,
5
+ "train_runtime": 1809.5975,
6
+ "train_samples": 27841,
7
+ "train_samples_per_second": 153.852,
8
+ "train_steps_per_second": 2.404
9
+ }
trainer_state.json ADDED
@@ -0,0 +1,218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.9320297951582869,
3
+ "best_model_checkpoint": "/content/dissertation/scripts/ner/output/checkpoint-4350",
4
+ "epoch": 9.988518943742825,
5
+ "eval_steps": 500,
6
+ "global_step": 4350,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.9988518943742825,
13
+ "eval_accuracy": 0.9981441687829654,
14
+ "eval_f1": 0.8958333333333334,
15
+ "eval_loss": 0.006047643255442381,
16
+ "eval_precision": 0.8713656387665198,
17
+ "eval_recall": 0.9217148182665424,
18
+ "eval_runtime": 14.9983,
19
+ "eval_samples_per_second": 463.12,
20
+ "eval_steps_per_second": 57.94,
21
+ "step": 435
22
+ },
23
+ {
24
+ "epoch": 1.148105625717566,
25
+ "grad_norm": 0.025908155366778374,
26
+ "learning_rate": 4.4252873563218394e-05,
27
+ "loss": 0.0156,
28
+ "step": 500
29
+ },
30
+ {
31
+ "epoch": 2.0,
32
+ "eval_accuracy": 0.9986604526553735,
33
+ "eval_f1": 0.92,
34
+ "eval_loss": 0.004434330388903618,
35
+ "eval_precision": 0.9182915506035283,
36
+ "eval_recall": 0.9217148182665424,
37
+ "eval_runtime": 15.157,
38
+ "eval_samples_per_second": 458.27,
39
+ "eval_steps_per_second": 57.333,
40
+ "step": 871
41
+ },
42
+ {
43
+ "epoch": 2.296211251435132,
44
+ "grad_norm": 0.015398409217596054,
45
+ "learning_rate": 3.850574712643678e-05,
46
+ "loss": 0.0038,
47
+ "step": 1000
48
+ },
49
+ {
50
+ "epoch": 2.9988518943742823,
51
+ "eval_accuracy": 0.9986883598917199,
52
+ "eval_f1": 0.9181073703366698,
53
+ "eval_loss": 0.0040275463834404945,
54
+ "eval_precision": 0.8968888888888888,
55
+ "eval_recall": 0.940354147250699,
56
+ "eval_runtime": 15.1362,
57
+ "eval_samples_per_second": 458.9,
58
+ "eval_steps_per_second": 57.412,
59
+ "step": 1306
60
+ },
61
+ {
62
+ "epoch": 3.444316877152698,
63
+ "grad_norm": 0.024467067793011665,
64
+ "learning_rate": 3.275862068965517e-05,
65
+ "loss": 0.0025,
66
+ "step": 1500
67
+ },
68
+ {
69
+ "epoch": 4.0,
70
+ "eval_accuracy": 0.9985837077554209,
71
+ "eval_f1": 0.9215236346948141,
72
+ "eval_loss": 0.004492571111768484,
73
+ "eval_precision": 0.9077757685352622,
74
+ "eval_recall": 0.9356943150046598,
75
+ "eval_runtime": 15.2768,
76
+ "eval_samples_per_second": 454.675,
77
+ "eval_steps_per_second": 56.884,
78
+ "step": 1742
79
+ },
80
+ {
81
+ "epoch": 4.592422502870264,
82
+ "grad_norm": 0.014663909561932087,
83
+ "learning_rate": 2.7011494252873566e-05,
84
+ "loss": 0.0016,
85
+ "step": 2000
86
+ },
87
+ {
88
+ "epoch": 4.998851894374282,
89
+ "eval_accuracy": 0.9985906845645076,
90
+ "eval_f1": 0.9138576779026217,
91
+ "eval_loss": 0.0054086255840957165,
92
+ "eval_precision": 0.9181561618062088,
93
+ "eval_recall": 0.9095992544268406,
94
+ "eval_runtime": 15.0107,
95
+ "eval_samples_per_second": 462.737,
96
+ "eval_steps_per_second": 57.892,
97
+ "step": 2177
98
+ },
99
+ {
100
+ "epoch": 5.7405281285878305,
101
+ "grad_norm": 0.002929804613813758,
102
+ "learning_rate": 2.1264367816091954e-05,
103
+ "loss": 0.0011,
104
+ "step": 2500
105
+ },
106
+ {
107
+ "epoch": 6.0,
108
+ "eval_accuracy": 0.9986395222281137,
109
+ "eval_f1": 0.9202965708989805,
110
+ "eval_loss": 0.00529602263122797,
111
+ "eval_precision": 0.9152073732718894,
112
+ "eval_recall": 0.9254426840633737,
113
+ "eval_runtime": 15.2091,
114
+ "eval_samples_per_second": 456.701,
115
+ "eval_steps_per_second": 57.137,
116
+ "step": 2613
117
+ },
118
+ {
119
+ "epoch": 6.888633754305396,
120
+ "grad_norm": 0.06796916574239731,
121
+ "learning_rate": 1.5517241379310346e-05,
122
+ "loss": 0.0009,
123
+ "step": 3000
124
+ },
125
+ {
126
+ "epoch": 6.998851894374282,
127
+ "eval_accuracy": 0.9986604526553735,
128
+ "eval_f1": 0.9314179796107507,
129
+ "eval_loss": 0.006041177082806826,
130
+ "eval_precision": 0.9262672811059908,
131
+ "eval_recall": 0.9366262814538676,
132
+ "eval_runtime": 15.0006,
133
+ "eval_samples_per_second": 463.048,
134
+ "eval_steps_per_second": 57.931,
135
+ "step": 3048
136
+ },
137
+ {
138
+ "epoch": 8.0,
139
+ "eval_accuracy": 0.9987511511734993,
140
+ "eval_f1": 0.9290976058931859,
141
+ "eval_loss": 0.005891016684472561,
142
+ "eval_precision": 0.9181073703366697,
143
+ "eval_recall": 0.940354147250699,
144
+ "eval_runtime": 15.2005,
145
+ "eval_samples_per_second": 456.957,
146
+ "eval_steps_per_second": 57.169,
147
+ "step": 3484
148
+ },
149
+ {
150
+ "epoch": 8.036739380022961,
151
+ "grad_norm": 0.0015728959115222096,
152
+ "learning_rate": 9.770114942528738e-06,
153
+ "loss": 0.0005,
154
+ "step": 3500
155
+ },
156
+ {
157
+ "epoch": 8.998851894374283,
158
+ "eval_accuracy": 0.9987581279825859,
159
+ "eval_f1": 0.9279404927940494,
160
+ "eval_loss": 0.006726197898387909,
161
+ "eval_precision": 0.9257884972170687,
162
+ "eval_recall": 0.9301025163094129,
163
+ "eval_runtime": 15.4019,
164
+ "eval_samples_per_second": 450.984,
165
+ "eval_steps_per_second": 56.422,
166
+ "step": 3919
167
+ },
168
+ {
169
+ "epoch": 9.184845005740527,
170
+ "grad_norm": 0.11025261133909225,
171
+ "learning_rate": 4.022988505747127e-06,
172
+ "loss": 0.0003,
173
+ "step": 4000
174
+ },
175
+ {
176
+ "epoch": 9.988518943742825,
177
+ "eval_accuracy": 0.998772081600759,
178
+ "eval_f1": 0.9320297951582869,
179
+ "eval_loss": 0.007080046460032463,
180
+ "eval_precision": 0.9311627906976744,
181
+ "eval_recall": 0.9328984156570364,
182
+ "eval_runtime": 15.2679,
183
+ "eval_samples_per_second": 454.941,
184
+ "eval_steps_per_second": 56.917,
185
+ "step": 4350
186
+ },
187
+ {
188
+ "epoch": 9.988518943742825,
189
+ "step": 4350,
190
+ "total_flos": 1.1084127968547612e+16,
191
+ "train_loss": 0.003044272955806776,
192
+ "train_runtime": 1809.5975,
193
+ "train_samples_per_second": 153.852,
194
+ "train_steps_per_second": 2.404
195
+ }
196
+ ],
197
+ "logging_steps": 500,
198
+ "max_steps": 4350,
199
+ "num_input_tokens_seen": 0,
200
+ "num_train_epochs": 10,
201
+ "save_steps": 500,
202
+ "stateful_callbacks": {
203
+ "TrainerControl": {
204
+ "args": {
205
+ "should_epoch_stop": false,
206
+ "should_evaluate": false,
207
+ "should_log": false,
208
+ "should_save": true,
209
+ "should_training_stop": true
210
+ },
211
+ "attributes": {}
212
+ }
213
+ },
214
+ "total_flos": 1.1084127968547612e+16,
215
+ "train_batch_size": 32,
216
+ "trial_name": null,
217
+ "trial_params": null
218
+ }