Delete tokenizer_wrapper.py
Browse files- tokenizer_wrapper.py +0 -1426
tokenizer_wrapper.py
DELETED
|
@@ -1,1426 +0,0 @@
|
|
| 1 |
-
# Licensed under the TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT (the "License");
|
| 2 |
-
# you may not use this file except in compliance with the License.
|
| 3 |
-
# You may obtain a copy of the License at
|
| 4 |
-
#
|
| 5 |
-
# https://github.com/Tencent-Hunyuan/HunyuanImage-3.0/blob/main/LICENSE
|
| 6 |
-
#
|
| 7 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 8 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 9 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 10 |
-
# See the License for the specific language governing permissions and
|
| 11 |
-
# limitations under the License.
|
| 12 |
-
# ==============================================================================
|
| 13 |
-
|
| 14 |
-
import warnings
|
| 15 |
-
import random
|
| 16 |
-
from typing import List, Optional, Union, Dict, Any
|
| 17 |
-
from collections import defaultdict
|
| 18 |
-
from copy import deepcopy
|
| 19 |
-
|
| 20 |
-
import numpy as np
|
| 21 |
-
import torch
|
| 22 |
-
import torch.nn.functional as F
|
| 23 |
-
from transformers import AutoTokenizer
|
| 24 |
-
from diffusers.utils import BaseOutput
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
def default(value, default_value):
|
| 28 |
-
return value if value is not None else default_value
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
def ensure_list(value):
|
| 32 |
-
if value is None:
|
| 33 |
-
return []
|
| 34 |
-
if isinstance(value, (list, tuple)):
|
| 35 |
-
return list(value)
|
| 36 |
-
return [value]
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
class Resolution(object):
|
| 40 |
-
def __init__(self, size, *args):
|
| 41 |
-
if isinstance(size, str):
|
| 42 |
-
if 'x' in size:
|
| 43 |
-
size = size.split('x')
|
| 44 |
-
size = (int(size[0]), int(size[1]))
|
| 45 |
-
else:
|
| 46 |
-
size = int(size)
|
| 47 |
-
if len(args) > 0:
|
| 48 |
-
size = (size, args[0])
|
| 49 |
-
if isinstance(size, int):
|
| 50 |
-
size = (size, size)
|
| 51 |
-
|
| 52 |
-
self.h = self.height = size[0]
|
| 53 |
-
self.w = self.width = size[1]
|
| 54 |
-
self.r = self.ratio = self.height / self.width
|
| 55 |
-
|
| 56 |
-
def __getitem__(self, idx):
|
| 57 |
-
if idx == 0:
|
| 58 |
-
return self.h
|
| 59 |
-
elif idx == 1:
|
| 60 |
-
return self.w
|
| 61 |
-
else:
|
| 62 |
-
raise IndexError(f'Index {idx} out of range')
|
| 63 |
-
|
| 64 |
-
def __str__(self):
|
| 65 |
-
return f'{self.h}x{self.w}'
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
class ResolutionGroup(object):
|
| 69 |
-
def __init__(self, base_size=None, step=None, align=1):
|
| 70 |
-
self.align = align
|
| 71 |
-
self.base_size = base_size
|
| 72 |
-
assert base_size % align == 0, f'base_size {base_size} is not divisible by align {align}'
|
| 73 |
-
if base_size is not None and not isinstance(base_size, int):
|
| 74 |
-
raise ValueError(f'base_size must be None or int, but got {type(base_size)}')
|
| 75 |
-
if step is None:
|
| 76 |
-
step = base_size // 16
|
| 77 |
-
if step is not None and step > base_size // 2:
|
| 78 |
-
raise ValueError(f'step must be smaller than base_size // 2, but got {step} > {base_size // 2}')
|
| 79 |
-
|
| 80 |
-
self.step = step
|
| 81 |
-
self.data = self._calc_by_step()
|
| 82 |
-
|
| 83 |
-
self.ratio = np.array([x.ratio for x in self.data])
|
| 84 |
-
self.attr = ['' for _ in range(len(self.data))]
|
| 85 |
-
self.prefix_space = 0
|
| 86 |
-
|
| 87 |
-
def __len__(self):
|
| 88 |
-
return len(self.data)
|
| 89 |
-
|
| 90 |
-
def __getitem__(self, idx):
|
| 91 |
-
return self.data[idx]
|
| 92 |
-
|
| 93 |
-
def __repr__(self):
|
| 94 |
-
prefix = self.prefix_space * ' '
|
| 95 |
-
prefix_close = (self.prefix_space - 4) * ' '
|
| 96 |
-
res_str = f'ResolutionGroup(base_size={self.base_size}, step={self.step}, data='
|
| 97 |
-
attr_maxlen = max([len(x) for x in self.attr] + [5])
|
| 98 |
-
res_str += \
|
| 99 |
-
f'\n{prefix}ID: height width ratio {" " * max(0, attr_maxlen - 4)}count h/16 w/16 tokens\n{prefix}'
|
| 100 |
-
res_str += \
|
| 101 |
-
('\n' + prefix).join([f'{i:2d}: ({x.h:4d}, {x.w:4d}) {self.ratio[i]:.4f} {self.attr[i]:>{attr_maxlen}s} '
|
| 102 |
-
f'({x.h // 16:3d}, {x.w // 16:3d}) {x.h // 16 * x.w // 16:6d}'
|
| 103 |
-
for i, x in enumerate(self.data)])
|
| 104 |
-
res_str += f'\n{prefix_close})'
|
| 105 |
-
return res_str
|
| 106 |
-
|
| 107 |
-
def _calc_by_step(self):
|
| 108 |
-
assert self.align <= self.step, f'align {self.align} must be smaller than step {self.step}'
|
| 109 |
-
|
| 110 |
-
min_height = self.base_size // 2
|
| 111 |
-
min_width = self.base_size // 2
|
| 112 |
-
max_height = self.base_size * 2
|
| 113 |
-
max_width = self.base_size * 2
|
| 114 |
-
|
| 115 |
-
resolutions = [Resolution(self.base_size, self.base_size)]
|
| 116 |
-
|
| 117 |
-
cur_height, cur_width = self.base_size, self.base_size
|
| 118 |
-
while True:
|
| 119 |
-
if cur_height >= max_height and cur_width <= min_width:
|
| 120 |
-
break
|
| 121 |
-
|
| 122 |
-
cur_height = min(cur_height + self.step, max_height)
|
| 123 |
-
cur_width = max(cur_width - self.step, min_width)
|
| 124 |
-
resolutions.append(Resolution(cur_height // self.align * self.align, cur_width // self.align * self.align))
|
| 125 |
-
|
| 126 |
-
cur_height, cur_width = self.base_size, self.base_size
|
| 127 |
-
while True:
|
| 128 |
-
if cur_height <= min_height and cur_width >= max_width:
|
| 129 |
-
break
|
| 130 |
-
|
| 131 |
-
cur_height = max(cur_height - self.step, min_height)
|
| 132 |
-
cur_width = min(cur_width + self.step, max_width)
|
| 133 |
-
resolutions.append(Resolution(cur_height // self.align * self.align, cur_width // self.align * self.align))
|
| 134 |
-
|
| 135 |
-
resolutions = sorted(resolutions, key=lambda x: x.ratio)
|
| 136 |
-
|
| 137 |
-
return resolutions
|
| 138 |
-
|
| 139 |
-
def get_target_size(self, width, height):
|
| 140 |
-
ratio = height / width
|
| 141 |
-
idx = np.argmin(np.abs(self.ratio - ratio))
|
| 142 |
-
reso = self.data[idx]
|
| 143 |
-
return reso.w, reso.h
|
| 144 |
-
|
| 145 |
-
def get_base_size_and_ratio_index(self, width, height):
|
| 146 |
-
ratio = height / width
|
| 147 |
-
idx = np.argmin(np.abs(self.ratio - ratio))
|
| 148 |
-
return self.base_size, idx
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
class ImageInfo:
|
| 152 |
-
""" Class to store image information for processing and generation. """
|
| 153 |
-
|
| 154 |
-
def __init__(
|
| 155 |
-
self,
|
| 156 |
-
image_type: str = None,
|
| 157 |
-
image_tensor: torch.Tensor = None,
|
| 158 |
-
image_width: int = None,
|
| 159 |
-
image_height: int = None,
|
| 160 |
-
token_width: int = None,
|
| 161 |
-
token_height: int = None,
|
| 162 |
-
image_token_length: int = None,
|
| 163 |
-
base_size: int = None,
|
| 164 |
-
ratio_index: int = None,
|
| 165 |
-
**kwargs,
|
| 166 |
-
):
|
| 167 |
-
self.image_type = image_type
|
| 168 |
-
self.image_tensor = image_tensor
|
| 169 |
-
self.image_width = image_width
|
| 170 |
-
self.w = image_width
|
| 171 |
-
self.image_height = image_height
|
| 172 |
-
self.h = image_height
|
| 173 |
-
self.token_width = token_width
|
| 174 |
-
self.tk_w = token_width
|
| 175 |
-
self.token_height = token_height
|
| 176 |
-
self.tk_h = token_height
|
| 177 |
-
self.image_token_length = default(
|
| 178 |
-
image_token_length,
|
| 179 |
-
token_width * token_height if token_width is not None and token_height is not None else None
|
| 180 |
-
)
|
| 181 |
-
self.base_size = base_size
|
| 182 |
-
self.ratio_index = ratio_index
|
| 183 |
-
|
| 184 |
-
self.add_timestep_token = kwargs.get("add_timestep_token", True)
|
| 185 |
-
self.add_guidance_token = kwargs.get("add_guidance_token", False)
|
| 186 |
-
self.use_front_boi_token = kwargs.get("use_front_boi_token", True)
|
| 187 |
-
self.add_image_shape_token = kwargs.get("add_image_shape_token", True)
|
| 188 |
-
|
| 189 |
-
def __getitem__(self, key: str) -> Any:
|
| 190 |
-
"""Allow dictionary-like access to attributes."""
|
| 191 |
-
if hasattr(self, key):
|
| 192 |
-
return getattr(self, key)
|
| 193 |
-
raise KeyError(f"Key '{key}' not found in ImageInfo")
|
| 194 |
-
|
| 195 |
-
def __setitem__(self, key: str, value: Any) -> None:
|
| 196 |
-
"""Allow dictionary-like assignment to attributes."""
|
| 197 |
-
if hasattr(self, key):
|
| 198 |
-
setattr(self, key, value)
|
| 199 |
-
else:
|
| 200 |
-
raise KeyError(f"Key '{key}' not found in ImageInfo")
|
| 201 |
-
|
| 202 |
-
def __contains__(self, key: str) -> bool:
|
| 203 |
-
"""Check if the key exists in the ImageInfo object."""
|
| 204 |
-
return hasattr(self, key)
|
| 205 |
-
|
| 206 |
-
def __repr__(self):
|
| 207 |
-
return (f"ImageInfo(image_type={self.image_type}, image_tensor={self.image_tensor}, "
|
| 208 |
-
f"image_width={self.image_width}, image_height={self.image_height}, "
|
| 209 |
-
f"token_width={self.token_width}, token_height={self.token_height}, "
|
| 210 |
-
f"image_token_length={self.image_token_length}, "
|
| 211 |
-
f"base_size={self.base_size}, ratio_index={self.ratio_index}")
|
| 212 |
-
|
| 213 |
-
@property
|
| 214 |
-
def meta_info(self):
|
| 215 |
-
# Used for image sections of tkwrapper.encode_general()
|
| 216 |
-
if self.image_type in ["vae", "gen_image"]:
|
| 217 |
-
return dict(
|
| 218 |
-
token_length=self.image_token_length,
|
| 219 |
-
add_timestep_token=self.add_timestep_token,
|
| 220 |
-
add_guidance_token=self.add_guidance_token,
|
| 221 |
-
use_front_boi_token=self.use_front_boi_token,
|
| 222 |
-
add_image_shape_token=self.add_image_shape_token,
|
| 223 |
-
base_size=self.base_size,
|
| 224 |
-
ratio_idx=self.ratio_index,
|
| 225 |
-
# for rope 2d
|
| 226 |
-
token_height=self.token_height,
|
| 227 |
-
token_width=self.token_width,
|
| 228 |
-
# for bc
|
| 229 |
-
image_height=self.image_height,
|
| 230 |
-
image_width=self.image_width,
|
| 231 |
-
)
|
| 232 |
-
elif self.image_type in ["vit"]:
|
| 233 |
-
return dict(
|
| 234 |
-
token_length=self.image_token_length,
|
| 235 |
-
use_front_boi_token=self.use_front_boi_token,
|
| 236 |
-
add_image_shape_token=self.add_image_shape_token,
|
| 237 |
-
# for rope 2d
|
| 238 |
-
token_height=self.token_height,
|
| 239 |
-
token_width=self.token_width,
|
| 240 |
-
# for bc
|
| 241 |
-
image_height=self.image_height,
|
| 242 |
-
image_width=self.image_width,
|
| 243 |
-
)
|
| 244 |
-
else:
|
| 245 |
-
raise ValueError(f"Unknown image type '{self.image_type}'")
|
| 246 |
-
|
| 247 |
-
@property
|
| 248 |
-
def num_special_tokens(self):
|
| 249 |
-
if self.args is None:
|
| 250 |
-
raise ValueError("meta_info requires `args` attribute to be set.")
|
| 251 |
-
if self.image_type in ["vae", "src_image", "gen_image"]:
|
| 252 |
-
count = (
|
| 253 |
-
2 + # <boi> + <eoi> or <src_boi> + <src_eoi>
|
| 254 |
-
(1 if self.add_timestep_token else 0) +
|
| 255 |
-
(1 if self.add_guidance_token else 0) +
|
| 256 |
-
(2 if self.add_image_shape_token else 0)
|
| 257 |
-
)
|
| 258 |
-
else:
|
| 259 |
-
raise ValueError(f"Unknown image_type: {self.image_type}")
|
| 260 |
-
return count
|
| 261 |
-
|
| 262 |
-
def copy(self, copy_image_tensor=True):
|
| 263 |
-
if copy_image_tensor and self.image_tensor is None:
|
| 264 |
-
raise ValueError("image_tensor is None, cannot copy")
|
| 265 |
-
return ImageInfo(
|
| 266 |
-
image_type=self.image_type,
|
| 267 |
-
image_tensor=self.image_tensor.clone() if copy_image_tensor else None,
|
| 268 |
-
image_width=self.image_width,
|
| 269 |
-
image_height=self.image_height,
|
| 270 |
-
token_width=self.token_width,
|
| 271 |
-
token_height=self.token_height,
|
| 272 |
-
image_token_length=self.image_token_length,
|
| 273 |
-
base_size=self.base_size,
|
| 274 |
-
ratio_index=self.ratio_index,
|
| 275 |
-
)
|
| 276 |
-
|
| 277 |
-
def zeros_(self):
|
| 278 |
-
self.image_tensor = torch.zeros_like(self.image_tensor)
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
class ImageTensor(torch.Tensor):
|
| 282 |
-
# This class is just for type hinting purposes. Attribute `i` should be defined
|
| 283 |
-
# as an instance attribute of the torch.Tensor instance, like: tensor.i = ImageInfo(...)
|
| 284 |
-
i: ImageInfo
|
| 285 |
-
vision_encoder_kwargs: dict
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
class JointImageInfo(object):
|
| 289 |
-
def __init__(self, vae_image_info: ImageInfo, vision_image_info: ImageInfo, vision_encoder_kwargs: dict = None):
|
| 290 |
-
self.vae_image_info = vae_image_info
|
| 291 |
-
self.vision_image_info = vision_image_info
|
| 292 |
-
self.vision_encoder_kwargs = vision_encoder_kwargs
|
| 293 |
-
|
| 294 |
-
# Define key attributes to align with ImageInfo for uniformity
|
| 295 |
-
self.image_type = "joint_image"
|
| 296 |
-
self.image_token_length = vae_image_info.image_token_length + vision_image_info.image_token_length
|
| 297 |
-
|
| 298 |
-
self.add_timestep_token = vae_image_info.add_timestep_token
|
| 299 |
-
self.use_front_boi_token = vae_image_info.use_front_boi_token
|
| 300 |
-
self.add_image_shape_token = vae_image_info.add_image_shape_token
|
| 301 |
-
|
| 302 |
-
def __repr__(self):
|
| 303 |
-
return f"JointImageInfo(vae_image={self.vae_image_info}, vision_image={self.vision_image_info})"
|
| 304 |
-
|
| 305 |
-
@property
|
| 306 |
-
def meta_info(self):
|
| 307 |
-
# Used for image sections of tkwrapper.encode_general()
|
| 308 |
-
return dict(
|
| 309 |
-
token_length=[self.vae_image_info.image_token_length, self.vision_image_info.image_token_length],
|
| 310 |
-
add_timestep_token=self.add_timestep_token,
|
| 311 |
-
use_front_boi_token=self.use_front_boi_token,
|
| 312 |
-
add_image_shape_token=self.add_image_shape_token,
|
| 313 |
-
base_size=self.vae_image_info.base_size,
|
| 314 |
-
ratio_idx=self.vae_image_info.ratio_index,
|
| 315 |
-
# for rope 2d
|
| 316 |
-
token_height=[self.vae_image_info.token_height, self.vision_image_info.token_height],
|
| 317 |
-
token_width=[self.vae_image_info.token_width, self.vision_image_info.token_width],
|
| 318 |
-
# for bc
|
| 319 |
-
image_height=[self.vae_image_info.image_height, self.vision_image_info.image_height],
|
| 320 |
-
image_width=[self.vae_image_info.image_width, self.vision_image_info.image_width],
|
| 321 |
-
)
|
| 322 |
-
|
| 323 |
-
@property
|
| 324 |
-
def num_special_tokens(self):
|
| 325 |
-
return (
|
| 326 |
-
2 + # <boi> + <eoi>
|
| 327 |
-
(1 if self.add_timestep_token else 0) +
|
| 328 |
-
(2 if self.add_image_shape_token else 0) +
|
| 329 |
-
1 # <joint_image_sep>
|
| 330 |
-
)
|
| 331 |
-
|
| 332 |
-
def copy(self, copy_image_tensor=True):
|
| 333 |
-
if copy_image_tensor and (
|
| 334 |
-
self.vae_image_info.image_tensor is None or self.vision_image_info.image_tensor is None):
|
| 335 |
-
raise ValueError("image_tensor is None, cannot copy")
|
| 336 |
-
return JointImageInfo(
|
| 337 |
-
self.vae_image_info.copy(copy_image_tensor),
|
| 338 |
-
self.vision_image_info.copy(copy_image_tensor),
|
| 339 |
-
self.vision_encoder_kwargs,
|
| 340 |
-
)
|
| 341 |
-
|
| 342 |
-
def zeros_(self):
|
| 343 |
-
self.vae_image_info.zeros_()
|
| 344 |
-
self.vision_image_info.zeros_()
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
class JointImage(object):
|
| 348 |
-
def __init__(self, vae_image: ImageTensor, vision_image: ImageTensor):
|
| 349 |
-
self.vae_image = vae_image
|
| 350 |
-
self.vision_image = vision_image
|
| 351 |
-
self.i = JointImageInfo(vae_image.i, vision_image.i)
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
class TokenizerEncodeOutput(BaseOutput):
|
| 355 |
-
tokens: torch.Tensor = None
|
| 356 |
-
timestep_scatter_index: Optional[torch.Tensor] = None
|
| 357 |
-
guidance_scatter_index: Optional[torch.Tensor] = None
|
| 358 |
-
text_slices: Optional[List[slice]] = None
|
| 359 |
-
gen_image_slices: Optional[List[slice]] = None
|
| 360 |
-
joint_image_slices: Optional[List[slice]] = None
|
| 361 |
-
cond_vae_image_slices: Optional[List[slice]] = None
|
| 362 |
-
cond_vit_image_slices: Optional[List[slice]] = None
|
| 363 |
-
text_mask: Optional[torch.Tensor] = None
|
| 364 |
-
gen_image_mask: Optional[torch.Tensor] = None
|
| 365 |
-
cond_vae_image_mask: Optional[torch.Tensor] = None
|
| 366 |
-
cond_vit_image_mask: Optional[torch.Tensor] = None
|
| 367 |
-
real_pos: Optional[torch.Tensor] = None
|
| 368 |
-
all_image_slices: Optional[List[slice]] = None
|
| 369 |
-
cond_timestep_scatter_index: Optional[torch.Tensor] = None
|
| 370 |
-
gen_timestep_scatter_index: Optional[torch.Tensor] = None
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
class Conversation:
|
| 374 |
-
roles: List[str] = ["User", "Assistant"]
|
| 375 |
-
sep: str = "\n\n"
|
| 376 |
-
|
| 377 |
-
|
| 378 |
-
class TokenizerWrapper(object):
|
| 379 |
-
def __init__(self, tokenizer):
|
| 380 |
-
if isinstance(tokenizer, str):
|
| 381 |
-
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer)
|
| 382 |
-
else:
|
| 383 |
-
self.tokenizer = tokenizer
|
| 384 |
-
|
| 385 |
-
# Define short names
|
| 386 |
-
self.bos_token_id = self.tokenizer.bos_token_id
|
| 387 |
-
self.eos_token_id = self.tokenizer.eos_token_id
|
| 388 |
-
self.pad_token_id = self.tokenizer.pad_token_id
|
| 389 |
-
self.boi_token_id = self.tokenizer.convert_tokens_to_ids("<boi>")
|
| 390 |
-
self.eoi_token_id = self.tokenizer.convert_tokens_to_ids("<eoi>")
|
| 391 |
-
self.img_token_id = self.tokenizer.convert_tokens_to_ids("<img>")
|
| 392 |
-
self.cfg_token_id = self.tokenizer.convert_tokens_to_ids("<cfg>")
|
| 393 |
-
self.end_answer_token_id = self.tokenizer.convert_tokens_to_ids("</answer>")
|
| 394 |
-
self.end_recaption_token_id = self.tokenizer.convert_tokens_to_ids("</recaption>")
|
| 395 |
-
self.ratio_token_offset = self.tokenizer.convert_tokens_to_ids("<img_ratio_0>")
|
| 396 |
-
self.special_token_map = self.tokenizer.added_tokens_encoder
|
| 397 |
-
|
| 398 |
-
def pad(self, tensor_list, dim=0, pad_val=None):
|
| 399 |
-
if pad_val is None:
|
| 400 |
-
pad_val = self.pad_token_id
|
| 401 |
-
max_len = max([t.shape[dim] for t in tensor_list])
|
| 402 |
-
padded_tensor_list = []
|
| 403 |
-
for t in tensor_list:
|
| 404 |
-
if t.shape[dim] < max_len:
|
| 405 |
-
assert pad_val is not False, "Not allowed pad."
|
| 406 |
-
t = F.pad(t, (0, max_len - t.shape[dim]), value=pad_val)
|
| 407 |
-
padded_tensor_list.append(t)
|
| 408 |
-
return padded_tensor_list
|
| 409 |
-
|
| 410 |
-
def encode(self, *args, **kwargs):
|
| 411 |
-
return self.tokenizer.encode(*args, **kwargs)
|
| 412 |
-
|
| 413 |
-
def decode(self, *args, **kwargs):
|
| 414 |
-
return self.tokenizer.decode(*args, **kwargs)
|
| 415 |
-
|
| 416 |
-
def encode_text(
|
| 417 |
-
self,
|
| 418 |
-
*texts,
|
| 419 |
-
uncond_enabled: Optional[Union[bool, List[bool]]] = None,
|
| 420 |
-
uncond_p: Optional[float] = None,
|
| 421 |
-
max_length: Optional[int] = None,
|
| 422 |
-
pad: Optional[str] = None,
|
| 423 |
-
return_lengths: bool = False,
|
| 424 |
-
):
|
| 425 |
-
"""
|
| 426 |
-
Encode text and image for AR-like model training of the text-to-image/instruction tuning tasks.
|
| 427 |
-
Support encode multiple texts at once. Each text can be separately conditioned or unconditioned
|
| 428 |
-
based on the uncond_flags and a uniform uncond_p.
|
| 429 |
-
**<bos> token is always prepended to the text tokens.**
|
| 430 |
-
|
| 431 |
-
Parameters
|
| 432 |
-
----------
|
| 433 |
-
texts: str or List[str]
|
| 434 |
-
List of texts to be encoded.
|
| 435 |
-
uncond_enabled: bool or List[bool]
|
| 436 |
-
List of flags to indicate whether the text should be unconditioned.
|
| 437 |
-
If False, the text will never be unconditioned.
|
| 438 |
-
If True, the text will be unconditioned with uncond_p.
|
| 439 |
-
uncond_p: float
|
| 440 |
-
Probability to the unconditional text. Only works when uncond_enabled is True.
|
| 441 |
-
max_length: int
|
| 442 |
-
Maximum length of the encoded text.
|
| 443 |
-
pad: Optional[str]
|
| 444 |
-
Padding method. Can be 'left' or 'right'.
|
| 445 |
-
return_lengths: bool
|
| 446 |
-
Whether to return the length of each encoded text.
|
| 447 |
-
"""
|
| 448 |
-
if pad is not None:
|
| 449 |
-
assert max_length is not None, "max_length should be provided when pad is not None."
|
| 450 |
-
|
| 451 |
-
if uncond_enabled is None:
|
| 452 |
-
uncond_enabled = [True] * len(texts)
|
| 453 |
-
elif isinstance(uncond_enabled, bool):
|
| 454 |
-
uncond_enabled = [uncond_enabled] * len(texts)
|
| 455 |
-
if len(uncond_enabled) != len(texts):
|
| 456 |
-
print(uncond_enabled, texts)
|
| 457 |
-
assert len(uncond_enabled) == len(texts), (
|
| 458 |
-
f"Length of uncond_flags should be equal to the number of texts, "
|
| 459 |
-
f"but got {len(uncond_enabled)} and {len(texts)}."
|
| 460 |
-
)
|
| 461 |
-
|
| 462 |
-
# Prepare text/uncond tokens
|
| 463 |
-
# TODO: If len(texts) > 1, such as instruction + prompt in inpainting, we need to determine how to do uncond.
|
| 464 |
-
# Now all texts will be cond or uncond at the same time.
|
| 465 |
-
do_uncond_drop = (uncond_p is not None) and (random.random() < uncond_p)
|
| 466 |
-
text_tokens, lengths = [], []
|
| 467 |
-
cum_length = 0
|
| 468 |
-
for text, uncond_flag in zip(texts, uncond_enabled):
|
| 469 |
-
# If reach the max_length and there still have unencoded texts, give a warning message and break the loop.
|
| 470 |
-
if max_length is not None and cum_length >= max_length:
|
| 471 |
-
warnings.warn(
|
| 472 |
-
f"Text length exceeds the max_length({max_length}). The remaining texts will be ignored: "
|
| 473 |
-
f"{text[:80]}..."
|
| 474 |
-
)
|
| 475 |
-
break
|
| 476 |
-
# Set add_special_tokens=False to avoid adding <bos> token in some LLMs.
|
| 477 |
-
if isinstance(text, str):
|
| 478 |
-
text_token = self.tokenizer.encode(text, add_special_tokens=False)
|
| 479 |
-
else:
|
| 480 |
-
text_token = text
|
| 481 |
-
if uncond_flag and do_uncond_drop:
|
| 482 |
-
text_token = [self.cfg_token_id] * len(text_token)
|
| 483 |
-
# Cutoff the text by max_length if necessary
|
| 484 |
-
if max_length is not None and (cum_length + len(text_token)) > max_length:
|
| 485 |
-
text_token = text_token[:max_length - cum_length]
|
| 486 |
-
text_tokens.extend(text_token)
|
| 487 |
-
lengths.append(len(text_token))
|
| 488 |
-
cum_length += len(text_token)
|
| 489 |
-
|
| 490 |
-
# Prepend/Append <pad> tokens if applicable
|
| 491 |
-
if pad is not None and (pad_length := max_length - len(text_tokens)) > 0:
|
| 492 |
-
if pad == 'left':
|
| 493 |
-
text_tokens = [self.pad_token_id] * pad_length + text_tokens
|
| 494 |
-
elif pad == 'right':
|
| 495 |
-
text_tokens = text_tokens + [self.pad_token_id] * pad_length
|
| 496 |
-
else:
|
| 497 |
-
raise ValueError(f"Unsupported padding method: {pad}.")
|
| 498 |
-
|
| 499 |
-
if return_lengths:
|
| 500 |
-
return text_tokens, lengths
|
| 501 |
-
return text_tokens
|
| 502 |
-
|
| 503 |
-
@staticmethod
|
| 504 |
-
def _check_key_number_matched(keys, data):
|
| 505 |
-
# Assert keys and token_source are matched
|
| 506 |
-
assert set(keys) == set(data.keys()), (
|
| 507 |
-
f"Keys in the template and token source should be matched, but got {set(keys)} and {list(data.keys())}."
|
| 508 |
-
)
|
| 509 |
-
key_counts = {k: 0 for k in keys}
|
| 510 |
-
for key in keys:
|
| 511 |
-
key_counts[key] += 1
|
| 512 |
-
for key, count in key_counts.items():
|
| 513 |
-
assert len(data[key]) == count, (
|
| 514 |
-
f"Number of `{key}` in the token source should be matched with the template, but got "
|
| 515 |
-
f"{data[key]}({len(data[key])}) and {count}."
|
| 516 |
-
)
|
| 517 |
-
|
| 518 |
-
def _add_image_meta_info_token(self, token_seq, token_count, extra_token_pos, add_timestep_token=False,
|
| 519 |
-
add_image_shape_token=False, base_size=None, ratio_idx=None, image_type=None,
|
| 520 |
-
add_guidance_token=False):
|
| 521 |
-
if add_image_shape_token:
|
| 522 |
-
token_seq.extend([
|
| 523 |
-
self.special_token_map[f"<img_size_{base_size}>"],
|
| 524 |
-
self.special_token_map[f"<img_ratio_{ratio_idx}>"]
|
| 525 |
-
])
|
| 526 |
-
token_count += 2
|
| 527 |
-
if add_timestep_token:
|
| 528 |
-
token_seq.extend([self.special_token_map["<timestep>"]])
|
| 529 |
-
extra_token_pos['timestep'].append(token_count)
|
| 530 |
-
if image_type is not None:
|
| 531 |
-
if image_type == "gen_image":
|
| 532 |
-
extra_token_pos['gen_timestep'].append(token_count)
|
| 533 |
-
elif image_type in ["joint_image"]:
|
| 534 |
-
extra_token_pos['cond_timestep'].append(token_count)
|
| 535 |
-
else:
|
| 536 |
-
raise ValueError(f"Unsupported image type: {image_type}.")
|
| 537 |
-
token_count += 1
|
| 538 |
-
if add_guidance_token:
|
| 539 |
-
token_seq.extend([self.special_token_map["<guidance>"]])
|
| 540 |
-
extra_token_pos['guidance'].append(token_count)
|
| 541 |
-
token_count += 1
|
| 542 |
-
return token_count
|
| 543 |
-
|
| 544 |
-
@staticmethod
|
| 545 |
-
def _shorten_text(text):
|
| 546 |
-
import re
|
| 547 |
-
text = re.sub(r"(<img>)+", lambda m: f"[<img>]{{{len(m.group(0)) // 5}}}", text)
|
| 548 |
-
text = re.sub(r"(<pad>)+", lambda m: f"[<pad>]{{{len(m.group(0)) // 5}}}", text)
|
| 549 |
-
return text
|
| 550 |
-
|
| 551 |
-
def encode_sequence(
|
| 552 |
-
self,
|
| 553 |
-
template: str,
|
| 554 |
-
token_source: Dict[str, List],
|
| 555 |
-
total_length=None,
|
| 556 |
-
add_timestep_token=False,
|
| 557 |
-
add_guidance_token=False,
|
| 558 |
-
last_key_only_prefix=False,
|
| 559 |
-
add_eos=True,
|
| 560 |
-
use_front_boi_token=True,
|
| 561 |
-
add_pad=True,
|
| 562 |
-
add_bos=True,
|
| 563 |
-
drop_last: Union[str, bool] = 'auto',
|
| 564 |
-
add_image_shape_token=False,
|
| 565 |
-
):
|
| 566 |
-
"""
|
| 567 |
-
Encode a sequence based on the template (e.g., `text-image` for t2i, `text-image-image` for instruction tuning)
|
| 568 |
-
and token source.
|
| 569 |
-
|
| 570 |
-
Parameters
|
| 571 |
-
----------
|
| 572 |
-
template: str
|
| 573 |
-
Template of the sequence. E.g., "text-gen_image" means the sequence is composed of text and an image.
|
| 574 |
-
"text-text-gen_image" means the sequence is composed of two sections of text and an image.
|
| 575 |
-
token_source: Dict[str, List]
|
| 576 |
-
Token source for each key in the template, in order.
|
| 577 |
-
- text: List[Dict].
|
| 578 |
-
- gen_image: List[Dict].
|
| 579 |
-
- joint_image: List[Dict].
|
| 580 |
-
total_length: int
|
| 581 |
-
Total length of the encoded sequence, include padding tokens.
|
| 582 |
-
add_timestep_token: bool
|
| 583 |
-
Whether to add timestep token before the image tokens.
|
| 584 |
-
(Right after the <img_ratio_*><img_size_*> tokens)
|
| 585 |
-
add_guidance_token: bool
|
| 586 |
-
Whether to add guidance token before the image tokens.
|
| 587 |
-
last_key_only_prefix: bool
|
| 588 |
-
Whether to only use the modal prefix in the last key.
|
| 589 |
-
add_eos: bool or 'auto'
|
| 590 |
-
Whether to add eos token at the end of the sequence. If True, always add eos token. If 'auto',
|
| 591 |
-
add eos token only when the total_length is not reached and the last token is not <eos>.
|
| 592 |
-
use_front_boi_token: bool:
|
| 593 |
-
Whether to put the <boi> token at the front of iw, ih and timestep tokens.
|
| 594 |
-
add_pad: bool or 'auto'
|
| 595 |
-
Whether to add padding tokens to the sequence. If True and total_length is not reached, add padding tokens.
|
| 596 |
-
add_bos: bool
|
| 597 |
-
Whether to add bos token at the beginning of the sequence.
|
| 598 |
-
drop_last: bool or 'auto'
|
| 599 |
-
- If auto, drop last tokens exceeding the total_length if the total_length is provided. If cut point is
|
| 600 |
-
in the middle of the image tokens, an error will raised.
|
| 601 |
-
- If True, drop last tokens exceeding the total_length. If cut point is in the middle of the image tokens,
|
| 602 |
-
all the successive image tokens will be dropped.
|
| 603 |
-
- If False, keep the last tokens exceeding the total_length, even if the total_length is reached.
|
| 604 |
-
add_image_shape_token: bool
|
| 605 |
-
Whether to add image shape token before the image tokens. (Right before the <timestep> token)
|
| 606 |
-
|
| 607 |
-
Returns
|
| 608 |
-
-------
|
| 609 |
-
token_seq: list
|
| 610 |
-
Encoded token sequence.
|
| 611 |
-
extra_token_pos: dict
|
| 612 |
-
Positions of extra tokens.
|
| 613 |
-
"""
|
| 614 |
-
if last_key_only_prefix:
|
| 615 |
-
assert add_eos is not True, "add_eos should not be True when last_key_only_prefix is True."
|
| 616 |
-
if drop_last is True and total_length is None:
|
| 617 |
-
raise ValueError("total_length should be provided when drop_last is True.")
|
| 618 |
-
|
| 619 |
-
keys = template.split('-')
|
| 620 |
-
modal_length = len(keys)
|
| 621 |
-
index_indicator = {k: 0 for k in token_source}
|
| 622 |
-
for k, v in token_source.items():
|
| 623 |
-
assert isinstance(v, (list, tuple)), (
|
| 624 |
-
f"Value of `{k}` in the token source should be a list or tuple, but got {type(v)}."
|
| 625 |
-
)
|
| 626 |
-
self._check_key_number_matched(keys, token_source)
|
| 627 |
-
|
| 628 |
-
token_seq = []
|
| 629 |
-
token_count = 0
|
| 630 |
-
extra_token_pos = defaultdict(list)
|
| 631 |
-
if add_bos:
|
| 632 |
-
token_seq.append(self.bos_token_id)
|
| 633 |
-
token_count += 1
|
| 634 |
-
# If drop_last is True, we check the token_count on the fly and exit the loop if the total_length is reached.
|
| 635 |
-
# This check is only applied to the block tokens. Block tokens mean the tokens that are unsplittable, like
|
| 636 |
-
# image tokens. Text tokens are splittable, so we don't need to check the token_count for text.
|
| 637 |
-
# If the loop is broken by drop_last, we don't add the eos token at the end because the sequence is not
|
| 638 |
-
# complete.
|
| 639 |
-
drop_last_break = False
|
| 640 |
-
for i, key in enumerate(keys):
|
| 641 |
-
source = token_source[key][index_indicator[key]]
|
| 642 |
-
if key == "text":
|
| 643 |
-
token_seq.extend(source) # text token sequence
|
| 644 |
-
extra_token_pos["<text>_start"].append(token_count)
|
| 645 |
-
token_count += len(source)
|
| 646 |
-
extra_token_pos["<text>_end"].append(token_count - 1)
|
| 647 |
-
|
| 648 |
-
elif key == "gen_image":
|
| 649 |
-
if isinstance(source, int):
|
| 650 |
-
source = {'length': source}
|
| 651 |
-
extra_count = 2 + (
|
| 652 |
-
1 if source.get('timestep', add_timestep_token) else 0) + (
|
| 653 |
-
1 if source.get('guidance', add_guidance_token) else 0) + (
|
| 654 |
-
2 if source.get('image_shape', add_image_shape_token) else 0
|
| 655 |
-
)
|
| 656 |
-
if drop_last is True and token_count + extra_count + source['length'] > total_length:
|
| 657 |
-
drop_last_break = True
|
| 658 |
-
break
|
| 659 |
-
if source.get('front_boi', use_front_boi_token):
|
| 660 |
-
token_seq.append(self.boi_token_id)
|
| 661 |
-
extra_token_pos["boi"].append(token_count)
|
| 662 |
-
token_count += 1
|
| 663 |
-
token_count = self._add_image_meta_info_token(
|
| 664 |
-
token_seq=token_seq,
|
| 665 |
-
token_count=token_count,
|
| 666 |
-
extra_token_pos=extra_token_pos,
|
| 667 |
-
add_timestep_token=source.get('timestep', add_timestep_token),
|
| 668 |
-
add_guidance_token=source.get('guidance', add_guidance_token),
|
| 669 |
-
add_image_shape_token=source.get('image_shape', add_image_shape_token),
|
| 670 |
-
base_size=source.get('base_size'),
|
| 671 |
-
ratio_idx=source.get('ratio_idx'),
|
| 672 |
-
image_type=key,
|
| 673 |
-
)
|
| 674 |
-
if not source.get('front_boi', use_front_boi_token):
|
| 675 |
-
token_seq.append(self.boi_token_id)
|
| 676 |
-
extra_token_pos["boi"].append(token_count)
|
| 677 |
-
token_count += 1
|
| 678 |
-
if last_key_only_prefix and i == modal_length - 1:
|
| 679 |
-
pass # for AR inference
|
| 680 |
-
else:
|
| 681 |
-
token_seq.extend(
|
| 682 |
-
[self.img_token_id] * source['length'] + # token number
|
| 683 |
-
[self.eoi_token_id]
|
| 684 |
-
)
|
| 685 |
-
extra_token_pos["<img>_start"].append(token_count)
|
| 686 |
-
extra_token_pos["<all_img>_start"].append(token_count)
|
| 687 |
-
token_count += source['length']
|
| 688 |
-
extra_token_pos["<img>_end"].append(token_count - 1)
|
| 689 |
-
extra_token_pos["<all_img>_end"].append(token_count - 1)
|
| 690 |
-
extra_token_pos["eoi"].append(token_count)
|
| 691 |
-
token_count += 1 # <eoi>
|
| 692 |
-
|
| 693 |
-
elif key == "joint_image":
|
| 694 |
-
assert isinstance(source['length'], list) and len(
|
| 695 |
-
source['length']) == 2, "joint_image length should be a list of two integers"
|
| 696 |
-
extra_count = 2 + 1 + ( # boi, eoi, joint_img_sep
|
| 697 |
-
1 if source.get('timestep', add_timestep_token) else 0) + (
|
| 698 |
-
2 if source.get('image_shape', add_image_shape_token) else 0
|
| 699 |
-
)
|
| 700 |
-
if drop_last is True and token_count + extra_count + sum(source['length']) > total_length:
|
| 701 |
-
drop_last_break = True
|
| 702 |
-
break
|
| 703 |
-
if source.get('front_boi', use_front_boi_token):
|
| 704 |
-
token_seq.append(self.boi_token_id) # Use patched boi for Janus, otherwise useing default <boi>
|
| 705 |
-
extra_token_pos["boi"].append(token_count)
|
| 706 |
-
token_count += 1
|
| 707 |
-
token_count = self._add_image_meta_info_token(
|
| 708 |
-
token_seq=token_seq,
|
| 709 |
-
token_count=token_count,
|
| 710 |
-
extra_token_pos=extra_token_pos,
|
| 711 |
-
add_timestep_token=source.get('timestep', add_timestep_token),
|
| 712 |
-
add_image_shape_token=source.get('image_shape', add_image_shape_token),
|
| 713 |
-
base_size=source.get('base_size'),
|
| 714 |
-
ratio_idx=source.get('ratio_idx'),
|
| 715 |
-
image_type=key,
|
| 716 |
-
)
|
| 717 |
-
if not source.get('front_boi', use_front_boi_token):
|
| 718 |
-
token_seq.append(self.boi_token_id)
|
| 719 |
-
extra_token_pos["boi"].append(token_count)
|
| 720 |
-
token_count += 1
|
| 721 |
-
if last_key_only_prefix and i == modal_length - 1:
|
| 722 |
-
pass # for AR inference
|
| 723 |
-
else:
|
| 724 |
-
token_seq.extend(
|
| 725 |
-
[self.img_token_id] * source['length'][0]
|
| 726 |
-
)
|
| 727 |
-
extra_token_pos["<vae_img>_start"].append(token_count)
|
| 728 |
-
extra_token_pos["<joint_img>_start"].append(token_count)
|
| 729 |
-
extra_token_pos["<all_img>_start"].append(token_count)
|
| 730 |
-
token_count += source['length'][0]
|
| 731 |
-
extra_token_pos["<vae_img>_end"].append(token_count - 1)
|
| 732 |
-
extra_token_pos["<all_img>_end"].append(token_count - 1)
|
| 733 |
-
|
| 734 |
-
token_seq.extend(
|
| 735 |
-
[self.special_token_map["<joint_img_sep>"]]
|
| 736 |
-
)
|
| 737 |
-
extra_token_pos["joint_img_sep"].append(token_count)
|
| 738 |
-
token_count += 1
|
| 739 |
-
|
| 740 |
-
token_seq.extend(
|
| 741 |
-
[self.img_token_id] * source['length'][1]
|
| 742 |
-
)
|
| 743 |
-
extra_token_pos["<vit_img>_start"].append(token_count)
|
| 744 |
-
extra_token_pos["<all_img>_start"].append(token_count)
|
| 745 |
-
token_count += source['length'][1]
|
| 746 |
-
extra_token_pos["<vit_img>_end"].append(token_count - 1)
|
| 747 |
-
extra_token_pos["<joint_img>_end"].append(token_count - 1)
|
| 748 |
-
extra_token_pos["<all_img>_end"].append(token_count - 1)
|
| 749 |
-
|
| 750 |
-
token_seq.extend(
|
| 751 |
-
[self.eoi_token_id]
|
| 752 |
-
)
|
| 753 |
-
extra_token_pos["eoi"].append(token_count)
|
| 754 |
-
token_count += 1 # <eoi>
|
| 755 |
-
|
| 756 |
-
else:
|
| 757 |
-
raise ValueError(f"Not supported key: {key}")
|
| 758 |
-
index_indicator[key] += 1
|
| 759 |
-
|
| 760 |
-
if add_eos is True and not drop_last_break:
|
| 761 |
-
# Typically used for t2i task.
|
| 762 |
-
token_seq.append(self.eos_token_id)
|
| 763 |
-
extra_token_pos["eos"].append(token_count)
|
| 764 |
-
token_count += 1
|
| 765 |
-
elif add_eos == 'auto' and not drop_last_break:
|
| 766 |
-
# Typically used for lm and mmu task.
|
| 767 |
-
if token_seq[-1] != self.eos_token_id and (total_length is None or token_count < total_length):
|
| 768 |
-
token_seq.append(self.eos_token_id)
|
| 769 |
-
extra_token_pos["eos"].append(token_count)
|
| 770 |
-
token_count += 1
|
| 771 |
-
|
| 772 |
-
if total_length:
|
| 773 |
-
# Check token count and clip sequence if necessary
|
| 774 |
-
if token_count > total_length and drop_last:
|
| 775 |
-
# Assert clip position is not in the middle of the block-wise tokens (gen_image, joint_image)
|
| 776 |
-
for start_key, end_key in [
|
| 777 |
-
("<img>_start", "<img>_end"), ("<joint_img>_start", "<joint_img>_end"),
|
| 778 |
-
("<vae_img>_start", "<vae_img>_end"), ("<vit_img>_start", "<vit_img>_end"),
|
| 779 |
-
]:
|
| 780 |
-
if start_key in extra_token_pos and end_key in extra_token_pos:
|
| 781 |
-
assert all(
|
| 782 |
-
(start > total_length or end + 1 < total_length)
|
| 783 |
-
for start, end in zip(extra_token_pos[start_key], extra_token_pos[end_key])
|
| 784 |
-
), ("Clip position should not be in the middle of the image tokens.\n"
|
| 785 |
-
f"Below is the text:\n{self._shorten_text(self.tokenizer.decode(token_seq))}")
|
| 786 |
-
token_seq = token_seq[:total_length]
|
| 787 |
-
|
| 788 |
-
# Pad the sequence if necessary
|
| 789 |
-
pad_num = max(0, total_length - len(token_seq))
|
| 790 |
-
if add_pad and pad_num:
|
| 791 |
-
token_seq.extend([self.pad_token_id] * pad_num)
|
| 792 |
-
extra_token_pos["first_pad"].append(token_count)
|
| 793 |
-
|
| 794 |
-
return token_seq, extra_token_pos
|
| 795 |
-
|
| 796 |
-
def batch_gen_infer(
|
| 797 |
-
self,
|
| 798 |
-
infer_fn,
|
| 799 |
-
prompt_list: list,
|
| 800 |
-
negative_prompt_list: list = None,
|
| 801 |
-
infer_fn_kwargs_list: List[Dict[str, int]] = None,
|
| 802 |
-
do_classifier_free_guidance=False,
|
| 803 |
-
condition_repeat_times: int = 1,
|
| 804 |
-
uncondition_repeat_times: int = 1,
|
| 805 |
-
):
|
| 806 |
-
"""
|
| 807 |
-
Batch inference for the AR-like model training of the text-to-image/instruction tuning tasks.
|
| 808 |
-
|
| 809 |
-
Parameters
|
| 810 |
-
----------
|
| 811 |
-
infer_fn: callable
|
| 812 |
-
Inference function to encode the prompt.
|
| 813 |
-
prompt_list: list
|
| 814 |
-
List of prompts. Each element can be a single prompt or a list of prompts passed to the infer_fn.
|
| 815 |
-
negative_prompt_list: list
|
| 816 |
-
List of negative prompts. Only used when do_classifier_free_guidance is True. If None, will use <cfg>
|
| 817 |
-
token sequence as negative prompt.
|
| 818 |
-
infer_fn_kwargs_list: List[Dict[str, int]]
|
| 819 |
-
List of keyword arguments for the infer_fn.
|
| 820 |
-
do_classifier_free_guidance: bool
|
| 821 |
-
Whether to do classifier-free guidance.
|
| 822 |
-
condition_repeat_times: int
|
| 823 |
-
Support multi-condition.
|
| 824 |
-
uncondition_repeat_times: int
|
| 825 |
-
Support multi-uncondition.
|
| 826 |
-
"""
|
| 827 |
-
if infer_fn_kwargs_list is None:
|
| 828 |
-
infer_fn_kwargs_list = [{} for _ in prompt_list]
|
| 829 |
-
|
| 830 |
-
# [n_output, bsz]
|
| 831 |
-
cond_results_list = None
|
| 832 |
-
uncond_results_list = None
|
| 833 |
-
output_type_list = []
|
| 834 |
-
|
| 835 |
-
for prompt_idx, (prompt, infer_fn_kwargs) in enumerate(zip(prompt_list, infer_fn_kwargs_list)):
|
| 836 |
-
if not isinstance(prompt, (list, tuple)):
|
| 837 |
-
prompt = [prompt]
|
| 838 |
-
cond_kwargs = {"uncond_p": 0.0} if do_classifier_free_guidance else {}
|
| 839 |
-
results = infer_fn(
|
| 840 |
-
*prompt,
|
| 841 |
-
**infer_fn_kwargs,
|
| 842 |
-
**cond_kwargs,
|
| 843 |
-
)
|
| 844 |
-
output_type_list.append((type(results), len(results) if isinstance(results, (list, tuple)) else 1))
|
| 845 |
-
if isinstance(results, dict):
|
| 846 |
-
raise ValueError("Make batch on dict is not supported. Please return list or tuple for infer_fn.")
|
| 847 |
-
if not isinstance(results, (list, tuple)):
|
| 848 |
-
results = (results,)
|
| 849 |
-
if cond_results_list is None:
|
| 850 |
-
cond_results_list = [[] for _ in results]
|
| 851 |
-
uncond_results_list = [[] for _ in results]
|
| 852 |
-
for i, result in enumerate(results):
|
| 853 |
-
cond_results_list[i].append(result)
|
| 854 |
-
|
| 855 |
-
if do_classifier_free_guidance:
|
| 856 |
-
if negative_prompt_list is None:
|
| 857 |
-
uncond_kwargs = {"uncond_p": 1.0}
|
| 858 |
-
uncond_results = infer_fn(
|
| 859 |
-
*prompt,
|
| 860 |
-
**infer_fn_kwargs,
|
| 861 |
-
**uncond_kwargs,
|
| 862 |
-
)
|
| 863 |
-
else:
|
| 864 |
-
negative_prompt = negative_prompt_list[prompt_idx]
|
| 865 |
-
if not isinstance(negative_prompt, (list, tuple)):
|
| 866 |
-
negative_prompt = [negative_prompt]
|
| 867 |
-
uncond_results = infer_fn(
|
| 868 |
-
*negative_prompt,
|
| 869 |
-
**infer_fn_kwargs,
|
| 870 |
-
)
|
| 871 |
-
if isinstance(uncond_results, TokenizerEncodeOutput):
|
| 872 |
-
uncond_results_list.append(uncond_results)
|
| 873 |
-
else:
|
| 874 |
-
for i, result in enumerate(uncond_results):
|
| 875 |
-
uncond_results_list[i].append(result)
|
| 876 |
-
|
| 877 |
-
assert all(output_type_list[0] == n for n in output_type_list), \
|
| 878 |
-
f"Number of outputs should be equal for all samples, but got {output_type_list}."
|
| 879 |
-
output_type, output_num = output_type_list[0]
|
| 880 |
-
|
| 881 |
-
def make_batch(batch_cond_item, batch_uncond_item):
|
| 882 |
-
# Process each output item to make batch
|
| 883 |
-
first = batch_cond_item[0] # The first element in the batch
|
| 884 |
-
if isinstance(first, torch.Tensor):
|
| 885 |
-
stacked_item = torch.stack(self.pad(
|
| 886 |
-
batch_cond_item * condition_repeat_times + batch_uncond_item * uncondition_repeat_times,
|
| 887 |
-
))
|
| 888 |
-
|
| 889 |
-
elif first is None:
|
| 890 |
-
assert all(item is None for item in batch_cond_item + batch_uncond_item), \
|
| 891 |
-
(f"The first cond item is None, but some items are not None:\n\n"
|
| 892 |
-
f"condition: {batch_cond_item}\n\n"
|
| 893 |
-
f"uncondition: {batch_uncond_item}")
|
| 894 |
-
stacked_item = None
|
| 895 |
-
|
| 896 |
-
elif isinstance(first, (list, tuple)):
|
| 897 |
-
# If the output item is a list or tuple, we treat it as a whole, and won't make nested batch any more.
|
| 898 |
-
stacked_item = batch_cond_item * condition_repeat_times + batch_uncond_item * uncondition_repeat_times
|
| 899 |
-
|
| 900 |
-
elif isinstance(first, TokenizerEncodeOutput):
|
| 901 |
-
stacked_item = {}
|
| 902 |
-
# Traverse not-None attributes
|
| 903 |
-
for key in list(first.keys()):
|
| 904 |
-
merged_list = [cond_item[key] for cond_item in batch_cond_item] * condition_repeat_times + \
|
| 905 |
-
[uncond_item[key] for uncond_item in batch_uncond_item] * uncondition_repeat_times
|
| 906 |
-
if isinstance(first[key], torch.Tensor):
|
| 907 |
-
if 'mask' in key:
|
| 908 |
-
pad_val = 0.0
|
| 909 |
-
elif key == 'tokens':
|
| 910 |
-
pad_val = self.special_token_map["<pad>"]
|
| 911 |
-
else:
|
| 912 |
-
pad_val = False # Should not pad for other tensors
|
| 913 |
-
stacked_item[key] = torch.stack(self.pad(merged_list, pad_val=pad_val), dim=0)
|
| 914 |
-
elif isinstance(first[key], list):
|
| 915 |
-
stacked_item[key] = merged_list
|
| 916 |
-
elif first[key] is None:
|
| 917 |
-
pass
|
| 918 |
-
else:
|
| 919 |
-
raise ValueError(f"Unsupported type of {key}: {type(first[key])}.")
|
| 920 |
-
stacked_item = TokenizerEncodeOutput(stacked_item)
|
| 921 |
-
|
| 922 |
-
else:
|
| 923 |
-
raise TypeError(f"Making batch on type {type(first)} is not supported.")
|
| 924 |
-
|
| 925 |
-
return stacked_item
|
| 926 |
-
|
| 927 |
-
stacked_outputs = []
|
| 928 |
-
for cond_results, uncond_results in zip(cond_results_list, uncond_results_list):
|
| 929 |
-
stacked_outputs.append(make_batch(cond_results, uncond_results))
|
| 930 |
-
|
| 931 |
-
if output_type == list:
|
| 932 |
-
return stacked_outputs
|
| 933 |
-
elif output_type == tuple:
|
| 934 |
-
return tuple(stacked_outputs)
|
| 935 |
-
elif output_num == 1:
|
| 936 |
-
return stacked_outputs[0]
|
| 937 |
-
else:
|
| 938 |
-
raise ValueError(f"Unsupported output type: {output_type}.")
|
| 939 |
-
|
| 940 |
-
@staticmethod
|
| 941 |
-
def parse_extra_token_pos(extra_token_pos, prefix, tokens, rng=None):
|
| 942 |
-
if rng is None:
|
| 943 |
-
rng = slice(None)
|
| 944 |
-
image_slices = [
|
| 945 |
-
slice(start, end + 1)
|
| 946 |
-
for start, end in zip(extra_token_pos[f'<{prefix}>_start'][rng], extra_token_pos[f'<{prefix}>_end'][rng])
|
| 947 |
-
] if f'<{prefix}>_start' in extra_token_pos and f'<{prefix}>_end' in extra_token_pos else []
|
| 948 |
-
if image_slices:
|
| 949 |
-
image_mask = torch.zeros_like(tokens, dtype=torch.bool)
|
| 950 |
-
for image_slice in image_slices:
|
| 951 |
-
image_mask[image_slice] = True
|
| 952 |
-
else:
|
| 953 |
-
image_mask = None
|
| 954 |
-
return image_slices, image_mask
|
| 955 |
-
|
| 956 |
-
def encode_general(
|
| 957 |
-
self,
|
| 958 |
-
sections: Optional[List[Dict[str, Any]]] = None,
|
| 959 |
-
max_token_length: Optional[int] = None,
|
| 960 |
-
add_eos='auto',
|
| 961 |
-
use_text_mask=True,
|
| 962 |
-
add_pad='auto',
|
| 963 |
-
add_bos=True,
|
| 964 |
-
drop_last='auto',
|
| 965 |
-
):
|
| 966 |
-
"""
|
| 967 |
-
General encode function to encode a sequence with multiple sections of text and images.
|
| 968 |
-
Each section is a dict with a `type` key and other keys depending on the type.
|
| 969 |
-
Supported section types:
|
| 970 |
-
- text: dict with keys:
|
| 971 |
-
- text: str or List[int], text to be encoded. Either `text` or `tokens` should be provided.
|
| 972 |
-
- tokens: List[int], pre-encoded text tokens. Either `text` or `tokens` should be provided.
|
| 973 |
-
- uncond_enabled: bool, whether to enable uncondition for this text section.
|
| 974 |
-
- uncond_p: float, probability to drop the text section for uncondition.
|
| 975 |
-
- max_length: int, maximum length of the text section.
|
| 976 |
-
- ignore: bool, whether to ignore this text section in the text mask.
|
| 977 |
-
- start_offset: int, start offset of the text mask.
|
| 978 |
-
- end_offset: int, end offset of the text mask.
|
| 979 |
-
- gen_image: dict with keys:
|
| 980 |
-
- token_length: int, number of image tokens.
|
| 981 |
-
- add_timestep_token: bool, whether to add timestep token before the image tokens.
|
| 982 |
-
- add_guidance_token: bool, whether to add guidance token before the image tokens.
|
| 983 |
-
- use_front_boi_token: bool, whether to put the <boi> token at the front of size, ratio and timestep tokens.
|
| 984 |
-
- add_image_shape_token: bool, whether to add image shape token before the image tokens.
|
| 985 |
-
- base_size: int, base size of the image.
|
| 986 |
-
- ratio_idx: int, ratio index of the image.
|
| 987 |
-
- joint_image: dict with keys:
|
| 988 |
-
- token_length: List[int], number of image tokens for the two images.
|
| 989 |
-
- add_timestep_token: bool, whether to add timestep token before the image tokens.
|
| 990 |
-
- use_front_boi_token: bool, whether to put the <boi> token at the front of size, ratio and timestep tokens.
|
| 991 |
-
- add_image_shape_token: bool, whether to add image shape token before the image tokens.
|
| 992 |
-
- base_size: int, base size of the image.
|
| 993 |
-
- ratio_idx: int, ratio index of the image.
|
| 994 |
-
|
| 995 |
-
Parameters
|
| 996 |
-
----------
|
| 997 |
-
sections: List[Dict[str, Any]]
|
| 998 |
-
List of sections to be encoded.
|
| 999 |
-
max_token_length: int
|
| 1000 |
-
Maximum length of the encoded token sequence.
|
| 1001 |
-
add_eos: bool or 'auto'
|
| 1002 |
-
Whether to add eos token at the end of the sequence. If True, always add eos
|
| 1003 |
-
token. If 'auto', add eos token only when the total_length is not reached and the last token is not <eos>.
|
| 1004 |
-
use_text_mask: bool
|
| 1005 |
-
Whether to generate text mask.
|
| 1006 |
-
add_pad: bool or 'auto'
|
| 1007 |
-
Whether to add padding tokens to the sequence. If True and total_length is not reached,
|
| 1008 |
-
add padding tokens.
|
| 1009 |
-
add_bos: bool
|
| 1010 |
-
Whether to add bos token at the beginning of the sequence.
|
| 1011 |
-
drop_last: bool or 'auto'
|
| 1012 |
-
- If auto, drop last tokens exceeding the total_length if the total_length is provided.
|
| 1013 |
-
If cut point is in the middle of the image tokens, an error will raised.
|
| 1014 |
-
- If True, drop last tokens exceeding the total_length. If cut point is in the
|
| 1015 |
-
middle of the image tokens, all the successive image tokens will be dropped.
|
| 1016 |
-
- If False, keep the last tokens exceeding the total_length, even if the total_length
|
| 1017 |
-
is reached.
|
| 1018 |
-
|
| 1019 |
-
Returns
|
| 1020 |
-
-------
|
| 1021 |
-
TokenizerEncodeOutput
|
| 1022 |
-
Encoded token sequence and extra information.
|
| 1023 |
-
"""
|
| 1024 |
-
if sections is None:
|
| 1025 |
-
raise ValueError("sections must be provided.")
|
| 1026 |
-
template = '-'.join([section['type'] for section in sections])
|
| 1027 |
-
|
| 1028 |
-
sections = deepcopy(sections)
|
| 1029 |
-
token_source = defaultdict(list)
|
| 1030 |
-
text_mask_specs = []
|
| 1031 |
-
for section in sections:
|
| 1032 |
-
if section['type'] == 'text':
|
| 1033 |
-
text = self.encode_text(
|
| 1034 |
-
section['text'] if 'text' in section else section['tokens'],
|
| 1035 |
-
uncond_enabled=section.get('uncond_enabled'),
|
| 1036 |
-
uncond_p=section.get('uncond_p'),
|
| 1037 |
-
max_length=section.get('max_length'),
|
| 1038 |
-
)
|
| 1039 |
-
token_source['text'].append(text)
|
| 1040 |
-
text_mask_specs.append(dict(
|
| 1041 |
-
ignore=section.get('ignore', False),
|
| 1042 |
-
start_offset=section.get('start_offset', 0),
|
| 1043 |
-
end_offset=section.get('end_offset', 0),
|
| 1044 |
-
))
|
| 1045 |
-
elif section['type'] == 'gen_image':
|
| 1046 |
-
token_source['gen_image'].append(dict(
|
| 1047 |
-
length=section['token_length'],
|
| 1048 |
-
timestep=section.get('add_timestep_token', False),
|
| 1049 |
-
guidance=section.get('add_guidance_token', False),
|
| 1050 |
-
front_boi=section.get('use_front_boi_token', False),
|
| 1051 |
-
image_shape=section.get('add_image_shape_token', False),
|
| 1052 |
-
base_size=section.get('base_size'),
|
| 1053 |
-
ratio_idx=section.get('ratio_idx'),
|
| 1054 |
-
))
|
| 1055 |
-
elif section['type'] == 'joint_image':
|
| 1056 |
-
token_source['joint_image'].append(dict(
|
| 1057 |
-
length=section['token_length'],
|
| 1058 |
-
timestep=section.get('add_timestep_token', False),
|
| 1059 |
-
front_boi=section.get('use_front_boi_token', False),
|
| 1060 |
-
image_shape=section.get('add_image_shape_token', False),
|
| 1061 |
-
base_size=section.get('base_size'),
|
| 1062 |
-
ratio_idx=section.get('ratio_idx'),
|
| 1063 |
-
))
|
| 1064 |
-
else:
|
| 1065 |
-
raise ValueError(f"Invalid section type: {section['type']}")
|
| 1066 |
-
|
| 1067 |
-
# Combine text and image tokens
|
| 1068 |
-
full_token_seq, extra_token_pos = self.encode_sequence(
|
| 1069 |
-
template=template,
|
| 1070 |
-
token_source=dict(token_source),
|
| 1071 |
-
total_length=max_token_length,
|
| 1072 |
-
add_eos=add_eos,
|
| 1073 |
-
add_pad=add_pad,
|
| 1074 |
-
add_bos=add_bos,
|
| 1075 |
-
drop_last=drop_last,
|
| 1076 |
-
)
|
| 1077 |
-
full_seq_token_tensor = torch.tensor(full_token_seq, dtype=torch.long)
|
| 1078 |
-
|
| 1079 |
-
timestep_scatter_index = torch.tensor(extra_token_pos['timestep'], dtype=torch.long) \
|
| 1080 |
-
if 'timestep' in extra_token_pos else None
|
| 1081 |
-
guidance_scatter_index = torch.tensor(extra_token_pos['guidance'], dtype=torch.long) \
|
| 1082 |
-
if 'guidance' in extra_token_pos else None
|
| 1083 |
-
cond_timestep_scatter_index = torch.tensor(extra_token_pos['cond_timestep'], dtype=torch.long) \
|
| 1084 |
-
if 'cond_timestep' in extra_token_pos else None
|
| 1085 |
-
gen_timestep_scatter_index = torch.tensor(extra_token_pos['gen_timestep'], dtype=torch.long) \
|
| 1086 |
-
if 'gen_timestep' in extra_token_pos else None
|
| 1087 |
-
|
| 1088 |
-
# Gen image mask
|
| 1089 |
-
gen_image_slices, gen_image_mask = self.parse_extra_token_pos(extra_token_pos, 'img', full_seq_token_tensor)
|
| 1090 |
-
# Joint image
|
| 1091 |
-
joint_image_slices, _ = self.parse_extra_token_pos(extra_token_pos, 'joint_img', full_seq_token_tensor)
|
| 1092 |
-
# Conditional vae image
|
| 1093 |
-
cond_vae_image_slices, cond_vae_image_mask = self.parse_extra_token_pos(
|
| 1094 |
-
extra_token_pos, 'vae_img', full_seq_token_tensor)
|
| 1095 |
-
# Conditional vit image
|
| 1096 |
-
cond_vit_image_slices, cond_vit_image_mask = self.parse_extra_token_pos(
|
| 1097 |
-
extra_token_pos, 'vit_img', full_seq_token_tensor)
|
| 1098 |
-
# All image slices (gen_image, joint_image)
|
| 1099 |
-
all_image_slices = [
|
| 1100 |
-
slice(start, end + 1)
|
| 1101 |
-
for start, end in zip(extra_token_pos['<all_img>_start'], extra_token_pos['<all_img>_end'])
|
| 1102 |
-
] if '<all_img>_start' in extra_token_pos and '<all_img>_end' in extra_token_pos else []
|
| 1103 |
-
|
| 1104 |
-
# Text mask
|
| 1105 |
-
text_slices = [
|
| 1106 |
-
slice(start, end + 1)
|
| 1107 |
-
for start, end in zip(extra_token_pos['<text>_start'], extra_token_pos['<text>_end'])
|
| 1108 |
-
] if '<text>_start' in extra_token_pos and '<text>_end' in extra_token_pos else []
|
| 1109 |
-
assert len(text_slices) <= len(text_mask_specs), \
|
| 1110 |
-
(f"Number of text slices ({len(text_slices)}) should be less than or equal to "
|
| 1111 |
-
f"number of text mask specs ({len(text_mask_specs)})")
|
| 1112 |
-
if use_text_mask:
|
| 1113 |
-
text_mask = torch.zeros_like(full_seq_token_tensor, dtype=torch.float32)
|
| 1114 |
-
for text_slice, mask_spec in zip(text_slices, text_mask_specs):
|
| 1115 |
-
if not mask_spec['ignore']:
|
| 1116 |
-
real_slice = slice(
|
| 1117 |
-
text_slice.start + mask_spec['start_offset'],
|
| 1118 |
-
text_slice.stop + mask_spec['end_offset']
|
| 1119 |
-
)
|
| 1120 |
-
text_mask[real_slice] = 1.0
|
| 1121 |
-
else:
|
| 1122 |
-
text_mask = None
|
| 1123 |
-
|
| 1124 |
-
# real_pos is the first position of the <pad> token
|
| 1125 |
-
real_pos = torch.tensor(extra_token_pos.get('first_pad', [full_seq_token_tensor.shape[0]]), dtype=torch.long)
|
| 1126 |
-
|
| 1127 |
-
return TokenizerEncodeOutput(
|
| 1128 |
-
tokens=full_seq_token_tensor,
|
| 1129 |
-
timestep_scatter_index=timestep_scatter_index,
|
| 1130 |
-
guidance_scatter_index=guidance_scatter_index,
|
| 1131 |
-
text_slices=text_slices,
|
| 1132 |
-
gen_image_slices=gen_image_slices,
|
| 1133 |
-
joint_image_slices=joint_image_slices,
|
| 1134 |
-
cond_vae_image_slices=cond_vae_image_slices,
|
| 1135 |
-
cond_vit_image_slices=cond_vit_image_slices,
|
| 1136 |
-
text_mask=text_mask,
|
| 1137 |
-
gen_image_mask=gen_image_mask,
|
| 1138 |
-
cond_vae_image_mask=cond_vae_image_mask,
|
| 1139 |
-
cond_vit_image_mask=cond_vit_image_mask,
|
| 1140 |
-
real_pos=real_pos,
|
| 1141 |
-
all_image_slices=all_image_slices,
|
| 1142 |
-
cond_timestep_scatter_index=cond_timestep_scatter_index,
|
| 1143 |
-
gen_timestep_scatter_index=gen_timestep_scatter_index,
|
| 1144 |
-
)
|
| 1145 |
-
|
| 1146 |
-
def get_cot_sections(self, cot_text, uncond_kwargs, cot_max_length=None, drop_think=False):
|
| 1147 |
-
if not cot_text: # None or empty
|
| 1148 |
-
return []
|
| 1149 |
-
if '<think>' in cot_text and '</think>' in cot_text:
|
| 1150 |
-
before_think_sec = cot_text.split('<think>')[0]
|
| 1151 |
-
after_think_sec = cot_text.split('</think>')[1]
|
| 1152 |
-
think_sec = cot_text.split('<think>')[1].split('</think>')[0]
|
| 1153 |
-
return self.get_cot_sections(before_think_sec, uncond_kwargs, drop_think=drop_think) + \
|
| 1154 |
-
([
|
| 1155 |
-
dict(type="text", text="<think>"),
|
| 1156 |
-
dict(type="text", text=think_sec, max_length=cot_max_length, **uncond_kwargs),
|
| 1157 |
-
dict(type="text", text="</think>")
|
| 1158 |
-
] if not drop_think else []) + \
|
| 1159 |
-
self.get_cot_sections(after_think_sec, uncond_kwargs, drop_think=drop_think)
|
| 1160 |
-
|
| 1161 |
-
if '<recaption>' in cot_text and '</recaption>' in cot_text:
|
| 1162 |
-
before_recaption_sec = cot_text.split('<recaption>')[0]
|
| 1163 |
-
after_recaption_sec = cot_text.split('</recaption>')[1]
|
| 1164 |
-
recaption_sec = cot_text.split('<recaption>')[1].split('</recaption>')[0]
|
| 1165 |
-
return self.get_cot_sections(before_recaption_sec, uncond_kwargs, drop_think=drop_think) + \
|
| 1166 |
-
[
|
| 1167 |
-
dict(type="text", text="<recaption>"),
|
| 1168 |
-
dict(type="text", text=recaption_sec, max_length=cot_max_length, **uncond_kwargs),
|
| 1169 |
-
dict(type="text", text="</recaption>")
|
| 1170 |
-
] + \
|
| 1171 |
-
self.get_cot_sections(after_recaption_sec, uncond_kwargs, drop_think=drop_think)
|
| 1172 |
-
|
| 1173 |
-
return [
|
| 1174 |
-
dict(type="text", text=cot_text, **uncond_kwargs),
|
| 1175 |
-
]
|
| 1176 |
-
|
| 1177 |
-
def apply_general_template(
|
| 1178 |
-
self,
|
| 1179 |
-
message_list,
|
| 1180 |
-
max_length=None,
|
| 1181 |
-
add_assistant_prefix=False,
|
| 1182 |
-
answer="auto",
|
| 1183 |
-
bot_task="auto",
|
| 1184 |
-
sequence_template="instruct",
|
| 1185 |
-
uncond_p=0.0,
|
| 1186 |
-
cfg_factor=1,
|
| 1187 |
-
batchify=False,
|
| 1188 |
-
image_base_size=1024,
|
| 1189 |
-
drop_think=False,
|
| 1190 |
-
):
|
| 1191 |
-
# If cfg_factor > 1, we need to repeat the unconditioned part
|
| 1192 |
-
if batchify:
|
| 1193 |
-
assert isinstance(message_list[0], list), \
|
| 1194 |
-
f"When batchify is True, message_list should be a list of list, but got [{type(message_list[0])}, ...]."
|
| 1195 |
-
return self.batch_gen_infer(
|
| 1196 |
-
infer_fn=self.apply_general_template,
|
| 1197 |
-
prompt_list=[[]],
|
| 1198 |
-
infer_fn_kwargs_list=[dict(
|
| 1199 |
-
message_list=message_list_i,
|
| 1200 |
-
max_length=max_length,
|
| 1201 |
-
add_assistant_prefix=add_assistant_prefix,
|
| 1202 |
-
answer=answer,
|
| 1203 |
-
bot_task=bot_task,
|
| 1204 |
-
sequence_template=sequence_template,
|
| 1205 |
-
image_base_size=image_base_size,
|
| 1206 |
-
drop_think=drop_think,
|
| 1207 |
-
) for message_list_i in message_list],
|
| 1208 |
-
do_classifier_free_guidance=cfg_factor > 1,
|
| 1209 |
-
condition_repeat_times=1,
|
| 1210 |
-
uncondition_repeat_times=cfg_factor - 1,
|
| 1211 |
-
)
|
| 1212 |
-
|
| 1213 |
-
conv = Conversation()
|
| 1214 |
-
uncond_kwargs = dict(uncond_enabled=uncond_p == 1.0, uncond_p=uncond_p)
|
| 1215 |
-
|
| 1216 |
-
def process_successive_message(_message_list, _cur_message_idx, role, prefix, suffix,
|
| 1217 |
-
answer_prefix="", answer_suffix=""):
|
| 1218 |
-
_sub_sections = []
|
| 1219 |
-
while _cur_message_idx < len(message_list) and _message_list[_cur_message_idx]['role'] == role:
|
| 1220 |
-
message = _message_list[_cur_message_idx]
|
| 1221 |
-
if message['type'] == 'text':
|
| 1222 |
-
text = message['content']
|
| 1223 |
-
if role == "system":
|
| 1224 |
-
_sub_sections.append(dict(type="text", text=text))
|
| 1225 |
-
elif role == "assistant":
|
| 1226 |
-
if ("<recaption>" in text and "</recaption>" in text) or (
|
| 1227 |
-
"<think>" in text and "</think>" in text):
|
| 1228 |
-
_sub_sections.extend(self.get_cot_sections(text, uncond_kwargs, drop_think=drop_think))
|
| 1229 |
-
else:
|
| 1230 |
-
_sub_sections.append(dict(type="text", text=text, **uncond_kwargs))
|
| 1231 |
-
else:
|
| 1232 |
-
_sub_sections.append(dict(
|
| 1233 |
-
type="text", text=f"{answer_prefix}{text}{answer_suffix}", **uncond_kwargs))
|
| 1234 |
-
elif message['type'] == 'gen_image':
|
| 1235 |
-
info = message['content']
|
| 1236 |
-
assert isinstance(info, ImageInfo), f"Expected ImageInfo, but got {type(info)}"
|
| 1237 |
-
if role == "assistant":
|
| 1238 |
-
_sub_sections.append(dict(type="text", text=answer_prefix))
|
| 1239 |
-
_sub_sections.append(dict(type=message['type'], **info.meta_info))
|
| 1240 |
-
if role == "assistant":
|
| 1241 |
-
_sub_sections.append(dict(type="text", text=answer_suffix))
|
| 1242 |
-
elif message['type'] == 'joint_image':
|
| 1243 |
-
info = message['content']
|
| 1244 |
-
assert isinstance(info, JointImageInfo), f"Expected JointImageInfo, but got {type(info)}"
|
| 1245 |
-
_sub_sections.append(dict(type=message['type'], **info.meta_info))
|
| 1246 |
-
else:
|
| 1247 |
-
raise ValueError(f"Unknown message type: {message['type']}")
|
| 1248 |
-
_cur_message_idx += 1
|
| 1249 |
-
if len(_sub_sections) > 0:
|
| 1250 |
-
# Add role prefix and suffix
|
| 1251 |
-
_sub_sections.insert(0, dict(type='text', text=prefix))
|
| 1252 |
-
_sub_sections.append(dict(type='text', text=suffix))
|
| 1253 |
-
return _sub_sections, _cur_message_idx
|
| 1254 |
-
|
| 1255 |
-
# Define assistant prefix and suffix
|
| 1256 |
-
if (answer == "auto" and sequence_template == "instruct") or answer is True:
|
| 1257 |
-
answer_prefix, answer_suffix = "<answer>", "</answer>"
|
| 1258 |
-
else:
|
| 1259 |
-
answer_prefix, answer_suffix = "", ""
|
| 1260 |
-
if sequence_template == "pretrain":
|
| 1261 |
-
system_suffix = ""
|
| 1262 |
-
user_prefix = ""
|
| 1263 |
-
user_suffix = ""
|
| 1264 |
-
bot_prefix = ""
|
| 1265 |
-
bot_suffix = ""
|
| 1266 |
-
else:
|
| 1267 |
-
system_suffix = f"{conv.sep}"
|
| 1268 |
-
user_prefix = f"{conv.roles[0]}: "
|
| 1269 |
-
user_suffix = f"{conv.sep}"
|
| 1270 |
-
bot_prefix = f"{conv.roles[1]}: "
|
| 1271 |
-
bot_suffix = f"{conv.sep}"
|
| 1272 |
-
|
| 1273 |
-
# Process successive user and assistant messages
|
| 1274 |
-
sections = []
|
| 1275 |
-
cur_message_idx = 0
|
| 1276 |
-
final_role = None
|
| 1277 |
-
while cur_message_idx < len(message_list):
|
| 1278 |
-
# Process successive system messages
|
| 1279 |
-
sub_sections, cur_message_idx = process_successive_message(
|
| 1280 |
-
message_list, cur_message_idx, role="system", prefix="", suffix=system_suffix)
|
| 1281 |
-
# Add to the template and sections
|
| 1282 |
-
sections.extend(sub_sections)
|
| 1283 |
-
if len(sub_sections) > 0:
|
| 1284 |
-
final_role = "system"
|
| 1285 |
-
|
| 1286 |
-
# Process successive user messages
|
| 1287 |
-
sub_sections, cur_message_idx = process_successive_message(
|
| 1288 |
-
message_list, cur_message_idx, role="user", prefix=user_prefix, suffix=user_suffix)
|
| 1289 |
-
# Add to the template and sections
|
| 1290 |
-
sections.extend(sub_sections)
|
| 1291 |
-
if len(sub_sections) > 0:
|
| 1292 |
-
final_role = "user"
|
| 1293 |
-
|
| 1294 |
-
# Process successive assistant messages
|
| 1295 |
-
sub_sections, cur_message_idx = process_successive_message(
|
| 1296 |
-
message_list, cur_message_idx, role="assistant", prefix=bot_prefix, suffix=bot_suffix,
|
| 1297 |
-
answer_prefix=answer_prefix, answer_suffix=answer_suffix,
|
| 1298 |
-
)
|
| 1299 |
-
# Add to the template and sections
|
| 1300 |
-
sections.extend(sub_sections)
|
| 1301 |
-
if len(sub_sections) > 0:
|
| 1302 |
-
final_role = "assistant"
|
| 1303 |
-
|
| 1304 |
-
if add_assistant_prefix:
|
| 1305 |
-
if final_role == "assistant":
|
| 1306 |
-
# Avoid adding prefix twice
|
| 1307 |
-
_bot_prefix = ""
|
| 1308 |
-
# Remove the final bot_suffix
|
| 1309 |
-
if len(sections) > 0 and sections[-1]['type'] == 'text' and sections[-1]['text'] == bot_suffix:
|
| 1310 |
-
sections = sections[:-1]
|
| 1311 |
-
else:
|
| 1312 |
-
_bot_prefix = bot_prefix
|
| 1313 |
-
# We can add special tokens for the bot lastest message according to different tasks
|
| 1314 |
-
bot_response_prefix = dict(
|
| 1315 |
-
auto=_bot_prefix,
|
| 1316 |
-
image="",
|
| 1317 |
-
think=f"{_bot_prefix}<think>",
|
| 1318 |
-
recaption=f"{_bot_prefix}<recaption>",
|
| 1319 |
-
img_ratio=f"{_bot_prefix}{answer_prefix}<boi><img_size_{image_base_size}>",
|
| 1320 |
-
)[bot_task]
|
| 1321 |
-
sections.append(dict(type='text', text=bot_response_prefix))
|
| 1322 |
-
|
| 1323 |
-
output = self.encode_general(
|
| 1324 |
-
sections=sections,
|
| 1325 |
-
use_text_mask=False,
|
| 1326 |
-
add_eos=False,
|
| 1327 |
-
add_pad=False,
|
| 1328 |
-
)
|
| 1329 |
-
|
| 1330 |
-
if max_length is not None:
|
| 1331 |
-
if output.tokens.shape[-1] > max_length:
|
| 1332 |
-
raise ValueError(
|
| 1333 |
-
f"Encoded token length {output.tokens.shape[-1]} exceeds max_length {max_length}.\n"
|
| 1334 |
-
f"Please set a larger max_length or check the input messages:\n{message_list}"
|
| 1335 |
-
)
|
| 1336 |
-
|
| 1337 |
-
return output, sections
|
| 1338 |
-
|
| 1339 |
-
def apply_chat_template(
|
| 1340 |
-
self,
|
| 1341 |
-
batch_prompt: Optional[List[str]] = None,
|
| 1342 |
-
batch_message_list: Optional[List[List[Dict[str, Any]]]] = None,
|
| 1343 |
-
mode: str = "gen_text",
|
| 1344 |
-
batch_gen_image_info: Optional[List[ImageInfo]] = None,
|
| 1345 |
-
batch_cond_image_info: Optional[Union[List[JointImageInfo], List[List[JointImageInfo]]]] = None,
|
| 1346 |
-
batch_system_prompt: Optional[List[str]] = None,
|
| 1347 |
-
batch_cot_text: Optional[List[str]] = None,
|
| 1348 |
-
max_length: Optional[int] = None,
|
| 1349 |
-
bot_task: str = "auto", # auto/image/think/recaption/img_ratio
|
| 1350 |
-
image_base_size: int = 1024,
|
| 1351 |
-
sequence_template: str = "pretrain",
|
| 1352 |
-
cfg_factor: int = 1,
|
| 1353 |
-
add_assistant_prefix: Optional[bool] = None,
|
| 1354 |
-
drop_think: bool = False,
|
| 1355 |
-
) -> Dict[str, Any]:
|
| 1356 |
-
assert bot_task in ["image", "auto", "think", "recaption", "img_ratio"], \
|
| 1357 |
-
f"bot_task should be one of ['image', 'auto', 'think', 'recaption', 'img_ratio'], but got {bot_task}."
|
| 1358 |
-
|
| 1359 |
-
if batch_message_list is None:
|
| 1360 |
-
# Simple text-to-image or text-cot-to-image task
|
| 1361 |
-
batch_size = len(batch_prompt)
|
| 1362 |
-
|
| 1363 |
-
# Batchify inputs
|
| 1364 |
-
if not isinstance(batch_system_prompt, list):
|
| 1365 |
-
batch_system_prompt = [batch_system_prompt] * batch_size
|
| 1366 |
-
if not isinstance(batch_gen_image_info, list):
|
| 1367 |
-
batch_gen_image_info = [batch_gen_image_info] * batch_size
|
| 1368 |
-
if batch_cot_text is not None:
|
| 1369 |
-
assert len(batch_cot_text) == batch_size, \
|
| 1370 |
-
(f"batch_cot_text should have the same length as batch_size ({batch_size}), "
|
| 1371 |
-
f"but got {len(batch_cot_text)}.")
|
| 1372 |
-
else:
|
| 1373 |
-
batch_cot_text = [None] * batch_size
|
| 1374 |
-
if batch_cond_image_info is not None:
|
| 1375 |
-
assert len(batch_cond_image_info) == batch_size, \
|
| 1376 |
-
(f"batch_cond_image_info should have the same length as batch_size ({batch_size}), "
|
| 1377 |
-
f"but got {len(batch_cond_image_info)}.")
|
| 1378 |
-
batch_cond_image_info = [
|
| 1379 |
-
cond_image_info if isinstance(cond_image_info, list) else [cond_image_info]
|
| 1380 |
-
for cond_image_info in batch_cond_image_info
|
| 1381 |
-
]
|
| 1382 |
-
else:
|
| 1383 |
-
batch_cond_image_info = [[] for _ in range(batch_size)]
|
| 1384 |
-
|
| 1385 |
-
# Convert single round materials into standard message list
|
| 1386 |
-
batch_message_list = []
|
| 1387 |
-
for prompt, system_prompt, cot_text, gen_image_info, cond_image_info_list in zip(
|
| 1388 |
-
batch_prompt, batch_system_prompt, batch_cot_text, batch_gen_image_info,
|
| 1389 |
-
batch_cond_image_info,
|
| 1390 |
-
):
|
| 1391 |
-
message_list = []
|
| 1392 |
-
# 1. system prompt section
|
| 1393 |
-
if system_prompt:
|
| 1394 |
-
message_list.append(dict(
|
| 1395 |
-
role="system", type="text", content=system_prompt, context_type="str"))
|
| 1396 |
-
# 2. user inputs sections
|
| 1397 |
-
# 2.1 image inputs
|
| 1398 |
-
if len(cond_image_info_list) > 0:
|
| 1399 |
-
message_list.extend([
|
| 1400 |
-
dict(role="user", type="joint_image", content=cond_image_info, context_type="image_info")
|
| 1401 |
-
for cond_image_info in cond_image_info_list
|
| 1402 |
-
])
|
| 1403 |
-
# 2.2 text inputs
|
| 1404 |
-
message_list.append(dict(
|
| 1405 |
-
role="user", type="text", content=prompt, context_type="str"))
|
| 1406 |
-
# 3. assistant answer sections
|
| 1407 |
-
if cot_text is not None:
|
| 1408 |
-
message_list.append(dict(role="assistant", type="text", content=cot_text, context_type="str"))
|
| 1409 |
-
if mode == "gen_image":
|
| 1410 |
-
message_list.append(dict(
|
| 1411 |
-
role="assistant", type="gen_image", content=gen_image_info, context_type="image_info"))
|
| 1412 |
-
# ---
|
| 1413 |
-
batch_message_list.append(message_list)
|
| 1414 |
-
|
| 1415 |
-
output, sections = self.apply_general_template(
|
| 1416 |
-
message_list=batch_message_list,
|
| 1417 |
-
max_length=max_length,
|
| 1418 |
-
add_assistant_prefix=default(add_assistant_prefix, mode != "gen_image"),
|
| 1419 |
-
bot_task=bot_task,
|
| 1420 |
-
sequence_template=sequence_template,
|
| 1421 |
-
cfg_factor=cfg_factor,
|
| 1422 |
-
batchify=True,
|
| 1423 |
-
image_base_size=image_base_size,
|
| 1424 |
-
drop_think=drop_think,
|
| 1425 |
-
)
|
| 1426 |
-
return dict(output=output, sections=sections)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|