diff --git "a/MFDC-checkpoints/coco/10shot_ExAU-20.1/log.txt" "b/MFDC-checkpoints/coco/10shot_ExAU-20.1/log.txt" new file mode 100644--- /dev/null +++ "b/MFDC-checkpoints/coco/10shot_ExAU-20.1/log.txt" @@ -0,0 +1,4721 @@ +[01/04 16:55:08] detectron2 INFO: Rank of current process: 0. World size: 2 +[01/04 16:55:08] detectron2 INFO: Command line arguments: Namespace(config_file='configs/coco/mfdc_gfsod_novel_10shot_seed0.yaml', dist_url='tcp://127.0.0.1:50152', end_iter=-1, eval_all=False, eval_during_train=False, eval_iter=-1, eval_only=False, machine_rank=0, num_gpus=2, num_machines=1, opts=None, resume=False, start_iter=-1) +[01/04 16:55:09] detectron2 INFO: Contents of args.config_file=configs/coco/mfdc_gfsod_novel_10shot_seed0.yaml: +_BASE_: "../Base-RCNN.yaml" +MODEL: + WEIGHTS: "checkpoints/coco/base/model_reset_surgery.pth" + MASK_ON: False + BACKBONE: + FREEZE: False + RESNETS: + DEPTH: 101 + RPN: + ENABLE_DECOUPLE: True + BACKWARD_SCALE: 0.0 + FREEZE: False + ROI_HEADS: + NUM_CLASSES: 80 + FREEZE_FEAT: True + CLS_DROPOUT: True + ENABLE_DECOUPLE: True + BACKWARD_SCALE: 0.01 + NAME: "CommonalityROIHeadsKnowledgeGuidedCL" + OUTPUT_LAYER: "DoubleFastRCNNOutputLayers" + MEMORY: True + AUGMENTATION: False + SEMANTIC: True + WARMUP_DISTILL: 1000 +DATASETS: + TRAIN: ("removecoco14_trainval_all_10shot_seed0", ) + TEST: ('coco14_test_all',) + TWO_STREAM: True +SOLVER: + IMS_PER_BATCH: 32 + BASE_LR: 0.005 + STEPS: (4800,) + MAX_ITER: 5600 + CHECKPOINT_PERIOD: 200 + WARMUP_ITERS: 0 +TEST: + PCB_ENABLE: True + PCB_MODELPATH: "ImageNetPretrained/torchvision/resnet101-5d3b4d8f.pth" + EVAL_PERIOD: 200 +KGC: + SHOTS: 10 + CONTAINER: 1 + FEATURE_DIM: 128 + KNOWLEDGE_MATRIX: "KnowledgeMatrix/text_relationship/coco/coco-word-embedding.npy" + TAU: 0.2 + COEF: 0.05 +COUNTERFACTUAL: + OPERATOR: True + START_ITER: 800 + ERASE_THRESHOLD: 0.8 + VISUALIZATION: False + COUNTER_NUMBER: 4 + ERASE_RATE: 0.05 + ERASE_METHOD: "random" +OUTPUT_DIR: "checkpoints/coco/10shot_ExAU" +[01/04 16:55:09] detectron2 INFO: Full config saved to /home/visionx/EXT-2/RuoyuChen/MFDC+ours/checkpoints/coco/10shot_ExAU/config.yaml +[01/04 16:55:09] d2.utils.env INFO: Using a generated random seed 9100641 +[01/04 16:55:09] d2.modeling.backbone.resnet WARNING: ResNet.make_stage(first_stride=) is deprecated! Use 'stride_per_block' or 'stride' instead. +[01/04 16:55:12] defrcn.dataloader.build INFO: Removed 272 images with no usable annotations. 130 images left. +[01/04 16:55:12] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in training: [ResizeShortestEdge(short_edge_length=(640, 672, 704, 736, 768, 800), max_size=1333, sample_style='choice'), RandomFlip()] +[01/04 16:55:12] defrcn.dataloader.build INFO: Using training sampler TrainingSampler +[01/04 16:55:12] d2.data.common INFO: Serializing 130 elements to byte tensors and concatenating them all ... +[01/04 16:55:12] d2.data.common INFO: Serialized dataset takes 0.04 MiB +[01/04 16:55:36] defrcn.dataloader.build INFO: Removed 18805 images with no usable annotations. 98459 images left. +[01/04 16:55:36] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in training: [ResizeShortestEdge(short_edge_length=(640, 672, 704, 736, 768, 800), max_size=1333, sample_style='choice'), RandomFlip()] +[01/04 16:55:36] defrcn.dataloader.build INFO: Using training sampler TrainingSampler +[01/04 16:55:37] d2.data.common INFO: Serializing 98459 elements to byte tensors and concatenating them all ... +[01/04 16:55:38] d2.data.common INFO: Serialized dataset takes 41.47 MiB +[01/04 16:55:38] defrcn.engine.defaults INFO: Using two stream trainer...... +[01/04 16:55:38] fvcore.common.checkpoint INFO: [Checkpointer] Loading from checkpoints/coco/base/model_reset_surgery.pth ... +[01/04 16:55:40] d2.engine.train_loop INFO: Starting training from iteration 1 +[01/04 16:56:54] detectron2 INFO: Rank of current process: 0. World size: 2 +[01/04 16:56:54] detectron2 INFO: Command line arguments: Namespace(config_file='configs/coco/mfdc_gfsod_novel_10shot_seed0.yaml', dist_url='tcp://127.0.0.1:50152', end_iter=-1, eval_all=False, eval_during_train=False, eval_iter=-1, eval_only=False, machine_rank=0, num_gpus=2, num_machines=1, opts=None, resume=False, start_iter=-1) +[01/04 16:56:54] detectron2 INFO: Contents of args.config_file=configs/coco/mfdc_gfsod_novel_10shot_seed0.yaml: +_BASE_: "../Base-RCNN.yaml" +MODEL: + WEIGHTS: "checkpoints/coco/base/model_reset_surgery.pth" + MASK_ON: False + BACKBONE: + FREEZE: False + RESNETS: + DEPTH: 101 + RPN: + ENABLE_DECOUPLE: True + BACKWARD_SCALE: 0.0 + FREEZE: False + ROI_HEADS: + NUM_CLASSES: 80 + FREEZE_FEAT: True + CLS_DROPOUT: True + ENABLE_DECOUPLE: True + BACKWARD_SCALE: 0.01 + NAME: "CommonalityROIHeadsKnowledgeGuidedCL" + OUTPUT_LAYER: "DoubleFastRCNNOutputLayers" + MEMORY: True + AUGMENTATION: False + SEMANTIC: True + WARMUP_DISTILL: 1000 +DATASETS: + TRAIN: ("removecoco14_trainval_all_10shot_seed0", ) + TEST: ('coco14_test_all',) + TWO_STREAM: True +SOLVER: + IMS_PER_BATCH: 28 + BASE_LR: 0.005 + STEPS: (4800,) + MAX_ITER: 5600 + CHECKPOINT_PERIOD: 200 + WARMUP_ITERS: 0 +TEST: + PCB_ENABLE: True + PCB_MODELPATH: "ImageNetPretrained/torchvision/resnet101-5d3b4d8f.pth" + EVAL_PERIOD: 200 +KGC: + SHOTS: 10 + CONTAINER: 1 + FEATURE_DIM: 128 + KNOWLEDGE_MATRIX: "KnowledgeMatrix/text_relationship/coco/coco-word-embedding.npy" + TAU: 0.2 + COEF: 0.05 +COUNTERFACTUAL: + OPERATOR: True + START_ITER: 800 + ERASE_THRESHOLD: 0.8 + VISUALIZATION: False + COUNTER_NUMBER: 4 + ERASE_RATE: 0.05 + ERASE_METHOD: "random" +OUTPUT_DIR: "checkpoints/coco/10shot_ExAU" +[01/04 16:56:54] detectron2 INFO: Full config saved to /home/visionx/EXT-2/RuoyuChen/MFDC+ours/checkpoints/coco/10shot_ExAU/config.yaml +[01/04 16:56:54] d2.utils.env INFO: Using a generated random seed 54556191 +[01/04 16:56:55] d2.modeling.backbone.resnet WARNING: ResNet.make_stage(first_stride=) is deprecated! Use 'stride_per_block' or 'stride' instead. +[01/04 16:56:57] defrcn.dataloader.build INFO: Removed 272 images with no usable annotations. 130 images left. +[01/04 16:56:57] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in training: [ResizeShortestEdge(short_edge_length=(640, 672, 704, 736, 768, 800), max_size=1333, sample_style='choice'), RandomFlip()] +[01/04 16:56:57] defrcn.dataloader.build INFO: Using training sampler TrainingSampler +[01/04 16:56:57] d2.data.common INFO: Serializing 130 elements to byte tensors and concatenating them all ... +[01/04 16:56:57] d2.data.common INFO: Serialized dataset takes 0.04 MiB +[01/04 16:57:18] defrcn.dataloader.build INFO: Removed 18805 images with no usable annotations. 98459 images left. +[01/04 16:57:18] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in training: [ResizeShortestEdge(short_edge_length=(640, 672, 704, 736, 768, 800), max_size=1333, sample_style='choice'), RandomFlip()] +[01/04 16:57:18] defrcn.dataloader.build INFO: Using training sampler TrainingSampler +[01/04 16:57:19] d2.data.common INFO: Serializing 98459 elements to byte tensors and concatenating them all ... +[01/04 16:57:20] d2.data.common INFO: Serialized dataset takes 41.47 MiB +[01/04 16:57:21] defrcn.engine.defaults INFO: Using two stream trainer...... +[01/04 16:57:21] fvcore.common.checkpoint INFO: [Checkpointer] Loading from checkpoints/coco/base/model_reset_surgery.pth ... +[01/04 16:57:21] d2.engine.train_loop INFO: Starting training from iteration 1 +[01/04 16:57:40] d2.engine.train_loop ERROR: Exception during training: +Traceback (most recent call last): + File "/home/visionx/anaconda3/envs/defrcn/lib/python3.8/site-packages/detectron2/engine/train_loop.py", line 134, in train + self.run_step() + File "/home/visionx/EXT-2/RuoyuChen/MFDC+ours/defrcn/engine/defaults.py", line 569, in run_step + loss_dict = self.model(data) + File "/home/visionx/anaconda3/envs/defrcn/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl + result = self.forward(*input, **kwargs) + File "/home/visionx/anaconda3/envs/defrcn/lib/python3.8/site-packages/torch/nn/parallel/distributed.py", line 619, in forward + output = self.module(*inputs[0], **kwargs[0]) + File "/home/visionx/anaconda3/envs/defrcn/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl + result = self.forward(*input, **kwargs) + File "/home/visionx/EXT-2/RuoyuChen/MFDC+ours/defrcn/modeling/meta_arch/rcnn.py", line 174, in forward + proposal_losses, detector_losses, _, _ = self._forward_once_(batched_inputs, gt_instances) + File "/home/visionx/EXT-2/RuoyuChen/MFDC+ours/defrcn/modeling/meta_arch/rcnn.py", line 233, in _forward_once_ + results, detector_losses = self.roi_heads(images, features_de_rcnn, proposals, gt_instances, prototype_update) # new + File "/home/visionx/anaconda3/envs/defrcn/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl + result = self.forward(*input, **kwargs) + File "/home/visionx/EXT-2/RuoyuChen/MFDC+ours/defrcn/modeling/roi_heads/roi_heads.py", line 1232, in forward + box_features = self._shared_roi_transform( + File "/home/visionx/EXT-2/RuoyuChen/MFDC+ours/defrcn/modeling/roi_heads/roi_heads.py", line 1137, in _shared_roi_transform + x = self.res5(x) + File "/home/visionx/anaconda3/envs/defrcn/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl + result = self.forward(*input, **kwargs) + File "/home/visionx/anaconda3/envs/defrcn/lib/python3.8/site-packages/torch/nn/modules/container.py", line 117, in forward + input = module(input) + File "/home/visionx/anaconda3/envs/defrcn/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl + result = self.forward(*input, **kwargs) + File "/home/visionx/anaconda3/envs/defrcn/lib/python3.8/site-packages/detectron2/modeling/backbone/resnet.py", line 202, in forward + out = self.conv3(out) + File "/home/visionx/anaconda3/envs/defrcn/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl + result = self.forward(*input, **kwargs) + File "/home/visionx/anaconda3/envs/defrcn/lib/python3.8/site-packages/detectron2/layers/wrappers.py", line 80, in forward + x = self.norm(x) + File "/home/visionx/anaconda3/envs/defrcn/lib/python3.8/site-packages/torch/nn/modules/module.py", line 727, in _call_impl + result = self.forward(*input, **kwargs) + File "/home/visionx/anaconda3/envs/defrcn/lib/python3.8/site-packages/detectron2/layers/batch_norm.py", line 53, in forward + return x * scale + bias +RuntimeError: CUDA out of memory. Tried to allocate 1.75 GiB (GPU 0; 44.40 GiB total capacity; 37.37 GiB already allocated; 5.56 MiB free; 42.97 GiB reserved in total by PyTorch) +[01/04 16:57:40] d2.engine.hooks INFO: Total training time: 0:00:02 (0:00:00 on hooks) +[01/04 16:57:40] d2.utils.events INFO: iter: 2 total_loss: 0.7777 loss_cls: 0.4376 loss_box_reg: 0.1526 loss_contrast: 0 loss_rpn_cls: 0.1144 loss_rpn_loc: 0.0731 data_time: 10.9619 lr: 0.005 max_mem: 38270M +[01/04 16:58:26] detectron2 INFO: Rank of current process: 0. World size: 2 +[01/04 16:58:26] detectron2 INFO: Command line arguments: Namespace(config_file='configs/coco/mfdc_gfsod_novel_10shot_seed0.yaml', dist_url='tcp://127.0.0.1:50152', end_iter=-1, eval_all=False, eval_during_train=False, eval_iter=-1, eval_only=False, machine_rank=0, num_gpus=2, num_machines=1, opts=None, resume=False, start_iter=-1) +[01/04 16:58:26] detectron2 INFO: Contents of args.config_file=configs/coco/mfdc_gfsod_novel_10shot_seed0.yaml: +_BASE_: "../Base-RCNN.yaml" +MODEL: + WEIGHTS: "checkpoints/coco/base/model_reset_surgery.pth" + MASK_ON: False + BACKBONE: + FREEZE: False + RESNETS: + DEPTH: 101 + RPN: + ENABLE_DECOUPLE: True + BACKWARD_SCALE: 0.0 + FREEZE: False + ROI_HEADS: + NUM_CLASSES: 80 + FREEZE_FEAT: True + CLS_DROPOUT: True + ENABLE_DECOUPLE: True + BACKWARD_SCALE: 0.01 + NAME: "CommonalityROIHeadsKnowledgeGuidedCL" + OUTPUT_LAYER: "DoubleFastRCNNOutputLayers" + MEMORY: True + AUGMENTATION: False + SEMANTIC: True + WARMUP_DISTILL: 1000 +DATASETS: + TRAIN: ("removecoco14_trainval_all_10shot_seed0", ) + TEST: ('coco14_test_all',) + TWO_STREAM: True +SOLVER: + IMS_PER_BATCH: 16 + BASE_LR: 0.005 + STEPS: (4800,) + MAX_ITER: 5600 + CHECKPOINT_PERIOD: 200 + WARMUP_ITERS: 0 +TEST: + PCB_ENABLE: True + PCB_MODELPATH: "ImageNetPretrained/torchvision/resnet101-5d3b4d8f.pth" + EVAL_PERIOD: 200 +KGC: + SHOTS: 10 + CONTAINER: 1 + FEATURE_DIM: 128 + KNOWLEDGE_MATRIX: "KnowledgeMatrix/text_relationship/coco/coco-word-embedding.npy" + TAU: 0.2 + COEF: 0.05 +COUNTERFACTUAL: + OPERATOR: True + START_ITER: 800 + ERASE_THRESHOLD: 0.8 + VISUALIZATION: False + COUNTER_NUMBER: 4 + ERASE_RATE: 0.05 + ERASE_METHOD: "random" +OUTPUT_DIR: "checkpoints/coco/10shot_ExAU" +[01/04 16:58:26] detectron2 INFO: Full config saved to /home/visionx/EXT-2/RuoyuChen/MFDC+ours/checkpoints/coco/10shot_ExAU/config.yaml +[01/04 16:58:26] d2.utils.env INFO: Using a generated random seed 26444461 +[01/04 16:58:26] d2.modeling.backbone.resnet WARNING: ResNet.make_stage(first_stride=) is deprecated! Use 'stride_per_block' or 'stride' instead. +[01/04 16:58:29] defrcn.dataloader.build INFO: Removed 272 images with no usable annotations. 130 images left. +[01/04 16:58:29] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in training: [ResizeShortestEdge(short_edge_length=(640, 672, 704, 736, 768, 800), max_size=1333, sample_style='choice'), RandomFlip()] +[01/04 16:58:29] defrcn.dataloader.build INFO: Using training sampler TrainingSampler +[01/04 16:58:29] d2.data.common INFO: Serializing 130 elements to byte tensors and concatenating them all ... +[01/04 16:58:29] d2.data.common INFO: Serialized dataset takes 0.04 MiB +[01/04 16:58:50] defrcn.dataloader.build INFO: Removed 18805 images with no usable annotations. 98459 images left. +[01/04 16:58:50] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in training: [ResizeShortestEdge(short_edge_length=(640, 672, 704, 736, 768, 800), max_size=1333, sample_style='choice'), RandomFlip()] +[01/04 16:58:50] defrcn.dataloader.build INFO: Using training sampler TrainingSampler +[01/04 16:58:51] d2.data.common INFO: Serializing 98459 elements to byte tensors and concatenating them all ... +[01/04 16:58:52] d2.data.common INFO: Serialized dataset takes 41.47 MiB +[01/04 16:58:52] defrcn.engine.defaults INFO: Using two stream trainer...... +[01/04 16:58:52] fvcore.common.checkpoint INFO: [Checkpointer] Loading from checkpoints/coco/base/model_reset_surgery.pth ... +[01/04 16:58:52] d2.engine.train_loop INFO: Starting training from iteration 1 +[01/04 16:59:56] d2.utils.events INFO: eta: 4:16:58 iter: 19 total_loss: 0.8179 loss_cls: 0.4178 loss_box_reg: 0.1475 loss_contrast: 0.1295 loss_rpn_cls: 0.1082 loss_rpn_loc: 0.07906 time: 2.7916 data_time: 0.6818 lr: 0.005 max_mem: 28736M +[01/04 17:00:53] d2.utils.events INFO: eta: 4:16:30 iter: 39 total_loss: 0.7818 loss_cls: 0.3471 loss_box_reg: 0.1509 loss_contrast: 0.1312 loss_rpn_cls: 0.09153 loss_rpn_loc: 0.07542 time: 2.8099 data_time: 0.1246 lr: 0.005 max_mem: 28756M +[01/04 17:01:50] d2.utils.events INFO: eta: 4:17:36 iter: 59 total_loss: 0.8068 loss_cls: 0.2845 loss_box_reg: 0.1453 loss_contrast: 0.2433 loss_rpn_cls: 0.07677 loss_rpn_loc: 0.06693 time: 2.8190 data_time: 0.1436 lr: 0.005 max_mem: 28756M +[01/04 17:02:46] d2.utils.events INFO: eta: 4:16:40 iter: 79 total_loss: 0.7951 loss_cls: 0.2772 loss_box_reg: 0.1519 loss_contrast: 0.2338 loss_rpn_cls: 0.0765 loss_rpn_loc: 0.06842 time: 2.8225 data_time: 0.1343 lr: 0.005 max_mem: 29819M +[01/04 17:03:40] d2.utils.events INFO: eta: 4:09:45 iter: 99 total_loss: 0.7669 loss_cls: 0.248 loss_box_reg: 0.1485 loss_contrast: 0.23 loss_rpn_cls: 0.07065 loss_rpn_loc: 0.07285 time: 2.7936 data_time: 0.1358 lr: 0.005 max_mem: 29820M +[01/04 17:04:35] d2.utils.events INFO: eta: 4:08:50 iter: 119 total_loss: 0.7675 loss_cls: 0.2335 loss_box_reg: 0.1489 loss_contrast: 0.2278 loss_rpn_cls: 0.07541 loss_rpn_loc: 0.06968 time: 2.7819 data_time: 0.1332 lr: 0.005 max_mem: 29820M +[01/04 17:05:30] d2.utils.events INFO: eta: 4:07:56 iter: 139 total_loss: 0.7411 loss_cls: 0.2265 loss_box_reg: 0.154 loss_contrast: 0.2264 loss_rpn_cls: 0.06537 loss_rpn_loc: 0.06819 time: 2.7776 data_time: 0.1346 lr: 0.005 max_mem: 29820M +[01/04 17:06:25] d2.utils.events INFO: eta: 4:08:09 iter: 159 total_loss: 0.7342 loss_cls: 0.2175 loss_box_reg: 0.1488 loss_contrast: 0.2256 loss_rpn_cls: 0.06765 loss_rpn_loc: 0.07101 time: 2.7725 data_time: 0.1371 lr: 0.005 max_mem: 29820M +[01/04 17:07:18] d2.utils.events INFO: eta: 4:06:07 iter: 179 total_loss: 0.6987 loss_cls: 0.2126 loss_box_reg: 0.1473 loss_contrast: 0.2248 loss_rpn_cls: 0.06927 loss_rpn_loc: 0.05851 time: 2.7608 data_time: 0.1401 lr: 0.005 max_mem: 29820M +[01/04 17:08:13] fvcore.common.checkpoint INFO: Saving checkpoint to checkpoints/coco/10shot_ExAU/model_0000199.pth +[01/04 17:08:26] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 17:08:26] d2.data.common INFO: Serializing 5000 elements to byte tensors and concatenating them all ... +[01/04 17:08:26] d2.data.common INFO: Serialized dataset takes 3.00 MiB +[01/04 17:08:27] defrcn.evaluation.evaluator INFO: Start initializing PCB module, please wait a seconds... +[01/04 17:08:27] defrcn.evaluation.calibration_layer INFO: Loading ImageNet Pre-train Model from ImageNetPretrained/torchvision/resnet101-5d3b4d8f.pth +[01/04 17:08:28] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 17:08:28] d2.data.common INFO: Serializing 402 elements to byte tensors and concatenating them all ... +[01/04 17:08:28] d2.data.common INFO: Serialized dataset takes 0.08 MiB +[01/04 17:08:49] defrcn.evaluation.evaluator INFO: Start inference on 2500 images +[01/04 17:09:01] defrcn.evaluation.evaluator INFO: Inference done 50/2500. 0.0943 s / img. ETA=0:03:51 +[01/04 17:09:06] defrcn.evaluation.evaluator INFO: Inference done 100/2500. 0.0930 s / img. ETA=0:03:43 +[01/04 17:09:10] defrcn.evaluation.evaluator INFO: Inference done 150/2500. 0.0930 s / img. ETA=0:03:38 +[01/04 17:09:15] defrcn.evaluation.evaluator INFO: Inference done 200/2500. 0.0926 s / img. ETA=0:03:32 +[01/04 17:09:19] defrcn.evaluation.evaluator INFO: Inference done 250/2500. 0.0925 s / img. ETA=0:03:28 +[01/04 17:09:24] defrcn.evaluation.evaluator INFO: Inference done 300/2500. 0.0922 s / img. ETA=0:03:22 +[01/04 17:09:28] defrcn.evaluation.evaluator INFO: Inference done 350/2500. 0.0920 s / img. ETA=0:03:17 +[01/04 17:09:33] defrcn.evaluation.evaluator INFO: Inference done 400/2500. 0.0921 s / img. ETA=0:03:13 +[01/04 17:09:38] defrcn.evaluation.evaluator INFO: Inference done 450/2500. 0.0923 s / img. ETA=0:03:09 +[01/04 17:09:42] defrcn.evaluation.evaluator INFO: Inference done 500/2500. 0.0921 s / img. ETA=0:03:04 +[01/04 17:09:47] defrcn.evaluation.evaluator INFO: Inference done 550/2500. 0.0921 s / img. ETA=0:02:59 +[01/04 17:09:52] defrcn.evaluation.evaluator INFO: Inference done 600/2500. 0.0920 s / img. ETA=0:02:54 +[01/04 17:09:56] defrcn.evaluation.evaluator INFO: Inference done 650/2500. 0.0921 s / img. ETA=0:02:50 +[01/04 17:10:01] defrcn.evaluation.evaluator INFO: Inference done 700/2500. 0.0918 s / img. ETA=0:02:45 +[01/04 17:10:05] defrcn.evaluation.evaluator INFO: Inference done 750/2500. 0.0920 s / img. ETA=0:02:40 +[01/04 17:10:10] defrcn.evaluation.evaluator INFO: Inference done 800/2500. 0.0921 s / img. ETA=0:02:36 +[01/04 17:10:15] defrcn.evaluation.evaluator INFO: Inference done 850/2500. 0.0920 s / img. ETA=0:02:31 +[01/04 17:10:19] defrcn.evaluation.evaluator INFO: Inference done 900/2500. 0.0922 s / img. ETA=0:02:27 +[01/04 17:10:24] defrcn.evaluation.evaluator INFO: Inference done 950/2500. 0.0921 s / img. ETA=0:02:22 +[01/04 17:10:28] defrcn.evaluation.evaluator INFO: Inference done 1000/2500. 0.0922 s / img. ETA=0:02:18 +[01/04 17:10:33] defrcn.evaluation.evaluator INFO: Inference done 1050/2500. 0.0921 s / img. ETA=0:02:13 +[01/04 17:10:38] defrcn.evaluation.evaluator INFO: Inference done 1100/2500. 0.0922 s / img. ETA=0:02:09 +[01/04 17:10:42] defrcn.evaluation.evaluator INFO: Inference done 1150/2500. 0.0923 s / img. ETA=0:02:04 +[01/04 17:10:47] defrcn.evaluation.evaluator INFO: Inference done 1200/2500. 0.0923 s / img. ETA=0:01:59 +[01/04 17:10:52] defrcn.evaluation.evaluator INFO: Inference done 1250/2500. 0.0922 s / img. ETA=0:01:55 +[01/04 17:10:56] defrcn.evaluation.evaluator INFO: Inference done 1300/2500. 0.0924 s / img. ETA=0:01:50 +[01/04 17:11:01] defrcn.evaluation.evaluator INFO: Inference done 1350/2500. 0.0925 s / img. ETA=0:01:46 +[01/04 17:11:06] defrcn.evaluation.evaluator INFO: Inference done 1400/2500. 0.0925 s / img. ETA=0:01:41 +[01/04 17:11:11] defrcn.evaluation.evaluator INFO: Inference done 1450/2500. 0.0926 s / img. ETA=0:01:37 +[01/04 17:11:15] defrcn.evaluation.evaluator INFO: Inference done 1500/2500. 0.0926 s / img. ETA=0:01:32 +[01/04 17:11:20] defrcn.evaluation.evaluator INFO: Inference done 1550/2500. 0.0926 s / img. ETA=0:01:27 +[01/04 17:11:24] defrcn.evaluation.evaluator INFO: Inference done 1600/2500. 0.0925 s / img. ETA=0:01:23 +[01/04 17:11:29] defrcn.evaluation.evaluator INFO: Inference done 1650/2500. 0.0924 s / img. ETA=0:01:18 +[01/04 17:11:33] defrcn.evaluation.evaluator INFO: Inference done 1700/2500. 0.0924 s / img. ETA=0:01:13 +[01/04 17:11:38] defrcn.evaluation.evaluator INFO: Inference done 1750/2500. 0.0925 s / img. ETA=0:01:09 +[01/04 17:11:43] defrcn.evaluation.evaluator INFO: Inference done 1800/2500. 0.0925 s / img. ETA=0:01:04 +[01/04 17:11:47] defrcn.evaluation.evaluator INFO: Inference done 1850/2500. 0.0925 s / img. ETA=0:01:00 +[01/04 17:11:52] defrcn.evaluation.evaluator INFO: Inference done 1900/2500. 0.0925 s / img. ETA=0:00:55 +[01/04 17:11:57] defrcn.evaluation.evaluator INFO: Inference done 1950/2500. 0.0925 s / img. ETA=0:00:50 +[01/04 17:12:01] defrcn.evaluation.evaluator INFO: Inference done 2000/2500. 0.0924 s / img. ETA=0:00:46 +[01/04 17:12:06] defrcn.evaluation.evaluator INFO: Inference done 2050/2500. 0.0924 s / img. ETA=0:00:41 +[01/04 17:12:10] defrcn.evaluation.evaluator INFO: Inference done 2100/2500. 0.0923 s / img. ETA=0:00:36 +[01/04 17:12:15] defrcn.evaluation.evaluator INFO: Inference done 2150/2500. 0.0924 s / img. ETA=0:00:32 +[01/04 17:12:19] defrcn.evaluation.evaluator INFO: Inference done 2200/2500. 0.0924 s / img. ETA=0:00:27 +[01/04 17:12:24] defrcn.evaluation.evaluator INFO: Inference done 2250/2500. 0.0924 s / img. ETA=0:00:23 +[01/04 17:12:29] defrcn.evaluation.evaluator INFO: Inference done 2300/2500. 0.0924 s / img. ETA=0:00:18 +[01/04 17:12:33] defrcn.evaluation.evaluator INFO: Inference done 2350/2500. 0.0924 s / img. ETA=0:00:13 +[01/04 17:12:38] defrcn.evaluation.evaluator INFO: Inference done 2400/2500. 0.0924 s / img. ETA=0:00:09 +[01/04 17:12:43] defrcn.evaluation.evaluator INFO: Inference done 2450/2500. 0.0924 s / img. ETA=0:00:04 +[01/04 17:12:47] defrcn.evaluation.evaluator INFO: Inference done 2500/2500. 0.0924 s / img. ETA=0:00:00 +[01/04 17:12:48] defrcn.evaluation.evaluator INFO: Total inference time: 0:03:50 (0.092184 s / img per device, on 2 devices) +[01/04 17:12:48] defrcn.evaluation.evaluator INFO: Total inference pure compute time: 0:03:45 (0.090198 s / img per device, on 2 devices) +[01/04 17:12:48] defrcn.evaluation.coco_evaluation INFO: Preparing results for COCO format ... +[01/04 17:12:48] defrcn.evaluation.coco_evaluation INFO: Saving results to checkpoints/coco/10shot_ExAU/inference/coco_instances_results.json +[01/04 17:12:49] defrcn.evaluation.coco_evaluation INFO: Evaluating predictions ... +[01/04 17:13:08] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 28.805 | 44.279 | 30.960 | 14.973 | 32.322 | 40.971 | +[01/04 17:13:08] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:--------------|:-------|:-------------|:-------|:---------------|:-------| +| person | 0.000 | bicycle | 0.000 | car | 0.000 | +| motorcycle | 2.656 | airplane | 3.185 | bus | 17.192 | +| train | 3.504 | truck | 32.986 | boat | 0.000 | +| traffic light | 26.235 | fire hydrant | 64.731 | stop sign | 70.218 | +| parking meter | 36.611 | bench | 18.529 | bird | 2.876 | +| cat | 0.000 | dog | 4.367 | horse | 5.487 | +| sheep | 0.000 | cow | 14.292 | elephant | 65.176 | +| bear | 57.743 | zebra | 58.061 | giraffe | 66.089 | +| backpack | 19.170 | umbrella | 35.971 | handbag | 16.427 | +| tie | 35.009 | suitcase | 33.894 | frisbee | 57.809 | +| skis | 23.398 | snowboard | 35.774 | sports ball | 39.970 | +| kite | 37.741 | baseball bat | 25.397 | baseball glove | 29.433 | +| skateboard | 47.145 | surfboard | 39.070 | tennis racket | 51.203 | +| bottle | 0.000 | wine glass | 32.619 | cup | 37.035 | +| fork | 36.319 | knife | 17.114 | spoon | 18.410 | +| bowl | 37.804 | banana | 23.878 | apple | 20.965 | +| sandwich | 37.464 | orange | 23.529 | broccoli | 25.487 | +| carrot | 26.247 | hot dog | 34.772 | pizza | 51.818 | +| donut | 50.609 | cake | 38.771 | chair | 0.000 | +| couch | 1.525 | potted plant | 0.000 | bed | 40.869 | +| dining table | 0.000 | toilet | 54.682 | tv | 11.767 | +| laptop | 56.021 | mouse | 46.823 | remote | 31.031 | +| keyboard | 48.602 | cell phone | 26.885 | microwave | 52.540 | +| oven | 37.077 | toaster | 26.072 | sink | 32.593 | +| refrigerator | 55.564 | book | 10.437 | clock | 47.249 | +| vase | 35.193 | scissors | 26.670 | teddy bear | 41.356 | +| hair drier | 10.379 | toothbrush | 20.908 | | | +[01/04 17:13:24] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 37.293 | 56.622 | 40.560 | 19.772 | 41.996 | 52.844 | +[01/04 17:13:24] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:---------------|:-------|:--------------|:-------|:-------------|:-------| +| truck | 32.986 | traffic light | 26.235 | fire hydrant | 64.731 | +| stop sign | 70.218 | parking meter | 36.611 | bench | 18.529 | +| elephant | 65.176 | bear | 57.743 | zebra | 58.061 | +| giraffe | 66.089 | backpack | 19.170 | umbrella | 35.971 | +| handbag | 16.427 | tie | 35.009 | suitcase | 33.894 | +| frisbee | 57.809 | skis | 23.398 | snowboard | 35.774 | +| sports ball | 39.970 | kite | 37.741 | baseball bat | 25.397 | +| baseball glove | 29.433 | skateboard | 47.145 | surfboard | 39.070 | +| tennis racket | 51.203 | wine glass | 32.619 | cup | 37.035 | +| fork | 36.319 | knife | 17.114 | spoon | 18.410 | +| bowl | 37.804 | banana | 23.878 | apple | 20.965 | +| sandwich | 37.464 | orange | 23.529 | broccoli | 25.487 | +| carrot | 26.247 | hot dog | 34.772 | pizza | 51.818 | +| donut | 50.609 | cake | 38.771 | bed | 40.869 | +| toilet | 54.682 | laptop | 56.021 | mouse | 46.823 | +| remote | 31.031 | keyboard | 48.602 | cell phone | 26.885 | +| microwave | 52.540 | oven | 37.077 | toaster | 26.072 | +| sink | 32.593 | refrigerator | 55.564 | book | 10.437 | +| clock | 47.249 | vase | 35.193 | scissors | 26.670 | +| teddy bear | 41.356 | hair drier | 10.379 | toothbrush | 20.908 | +[01/04 17:13:27] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:-----:|:------:|:------:|:-----:|:-----:|:-----:| +| 3.343 | 7.250 | 2.158 | 0.814 | 3.301 | 5.353 | +[01/04 17:13:27] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:-------------|:------|:-----------|:-------|:-------------|:-------| +| person | 0.000 | bicycle | 0.000 | car | 0.000 | +| motorcycle | 2.656 | airplane | 3.185 | bus | 17.192 | +| train | 3.504 | boat | 0.000 | bird | 2.876 | +| cat | 0.000 | dog | 4.367 | horse | 5.487 | +| sheep | 0.000 | cow | 14.292 | bottle | 0.000 | +| chair | 0.000 | couch | 1.525 | potted plant | 0.000 | +| dining table | 0.000 | tv | 11.767 | | | +[01/04 17:13:27] defrcn.engine.defaults INFO: Evaluation results for coco14_test_all in csv format: +[01/04 17:13:27] defrcn.evaluation.testing INFO: copypaste: Task: bbox +[01/04 17:13:27] defrcn.evaluation.testing INFO: copypaste: AP,AP50,AP75,APs,APm,APl,bAP,bAP50,bAP75,bAPs,bAPm,bAPl,nAP,nAP50,nAP75,nAPs,nAPm,nAPl +[01/04 17:13:27] defrcn.evaluation.testing INFO: copypaste: 28.8054,44.2787,30.9598,14.9727,32.3225,40.9713,37.2931,56.6217,40.5603,19.7720,41.9963,52.8440,3.3426,7.2495,2.1584,0.8144,3.3010,5.3531 +[01/04 17:13:27] d2.utils.events INFO: eta: 4:06:01 iter: 199 total_loss: 0.7113 loss_cls: 0.2066 loss_box_reg: 0.1474 loss_contrast: 0.2243 loss_rpn_cls: 0.06192 loss_rpn_loc: 0.06717 time: 2.7593 data_time: 0.1314 lr: 0.005 max_mem: 29820M +[01/04 17:14:25] d2.utils.events INFO: eta: 4:05:07 iter: 219 total_loss: 0.6976 loss_cls: 0.2056 loss_box_reg: 0.1439 loss_contrast: 0.2237 loss_rpn_cls: 0.06487 loss_rpn_loc: 0.06498 time: 2.7699 data_time: 0.1298 lr: 0.005 max_mem: 29820M +[01/04 17:15:22] d2.utils.events INFO: eta: 4:04:30 iter: 239 total_loss: 0.7148 loss_cls: 0.2029 loss_box_reg: 0.1492 loss_contrast: 0.2237 loss_rpn_cls: 0.06603 loss_rpn_loc: 0.06035 time: 2.7767 data_time: 0.1371 lr: 0.005 max_mem: 29820M +[01/04 17:16:14] d2.utils.events INFO: eta: 4:02:29 iter: 259 total_loss: 0.6973 loss_cls: 0.1977 loss_box_reg: 0.1461 loss_contrast: 0.2234 loss_rpn_cls: 0.06508 loss_rpn_loc: 0.06127 time: 2.7630 data_time: 0.1346 lr: 0.005 max_mem: 29820M +[01/04 17:17:08] d2.utils.events INFO: eta: 4:01:02 iter: 279 total_loss: 0.6871 loss_cls: 0.1946 loss_box_reg: 0.1469 loss_contrast: 0.223 loss_rpn_cls: 0.06187 loss_rpn_loc: 0.06306 time: 2.7604 data_time: 0.1362 lr: 0.005 max_mem: 29820M +[01/04 17:18:06] d2.utils.events INFO: eta: 3:59:42 iter: 299 total_loss: 0.6711 loss_cls: 0.1879 loss_box_reg: 0.1468 loss_contrast: 0.2228 loss_rpn_cls: 0.0589 loss_rpn_loc: 0.0579 time: 2.7674 data_time: 0.1233 lr: 0.005 max_mem: 29820M +[01/04 17:19:02] d2.utils.events INFO: eta: 3:58:47 iter: 319 total_loss: 0.6688 loss_cls: 0.1785 loss_box_reg: 0.1364 loss_contrast: 0.2226 loss_rpn_cls: 0.06488 loss_rpn_loc: 0.06325 time: 2.7695 data_time: 0.1235 lr: 0.005 max_mem: 29820M +[01/04 17:19:57] d2.utils.events INFO: eta: 3:57:03 iter: 339 total_loss: 0.6746 loss_cls: 0.1703 loss_box_reg: 0.1425 loss_contrast: 0.2224 loss_rpn_cls: 0.0618 loss_rpn_loc: 0.07319 time: 2.7694 data_time: 0.1329 lr: 0.005 max_mem: 29820M +[01/04 17:20:56] d2.utils.events INFO: eta: 3:56:59 iter: 359 total_loss: 0.6543 loss_cls: 0.1743 loss_box_reg: 0.1403 loss_contrast: 0.2223 loss_rpn_cls: 0.06103 loss_rpn_loc: 0.05758 time: 2.7787 data_time: 0.1413 lr: 0.005 max_mem: 29820M +[01/04 17:21:53] d2.utils.events INFO: eta: 3:56:05 iter: 379 total_loss: 0.6508 loss_cls: 0.169 loss_box_reg: 0.1385 loss_contrast: 0.2222 loss_rpn_cls: 0.06388 loss_rpn_loc: 0.06118 time: 2.7825 data_time: 0.1339 lr: 0.005 max_mem: 29820M +[01/04 17:22:53] fvcore.common.checkpoint INFO: Saving checkpoint to checkpoints/coco/10shot_ExAU/model_0000399.pth +[01/04 17:23:07] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 17:23:07] d2.data.common INFO: Serializing 5000 elements to byte tensors and concatenating them all ... +[01/04 17:23:07] d2.data.common INFO: Serialized dataset takes 3.00 MiB +[01/04 17:23:08] defrcn.evaluation.evaluator INFO: Start initializing PCB module, please wait a seconds... +[01/04 17:23:08] defrcn.evaluation.calibration_layer INFO: Loading ImageNet Pre-train Model from ImageNetPretrained/torchvision/resnet101-5d3b4d8f.pth +[01/04 17:23:09] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 17:23:09] d2.data.common INFO: Serializing 402 elements to byte tensors and concatenating them all ... +[01/04 17:23:09] d2.data.common INFO: Serialized dataset takes 0.08 MiB +[01/04 17:23:30] defrcn.evaluation.evaluator INFO: Start inference on 2500 images +[01/04 17:23:41] defrcn.evaluation.evaluator INFO: Inference done 50/2500. 0.0977 s / img. ETA=0:03:59 +[01/04 17:23:46] defrcn.evaluation.evaluator INFO: Inference done 100/2500. 0.0960 s / img. ETA=0:03:50 +[01/04 17:23:51] defrcn.evaluation.evaluator INFO: Inference done 150/2500. 0.0961 s / img. ETA=0:03:45 +[01/04 17:23:55] defrcn.evaluation.evaluator INFO: Inference done 200/2500. 0.0956 s / img. ETA=0:03:39 +[01/04 17:24:00] defrcn.evaluation.evaluator INFO: Inference done 250/2500. 0.0958 s / img. ETA=0:03:35 +[01/04 17:24:05] defrcn.evaluation.evaluator INFO: Inference done 300/2500. 0.0955 s / img. ETA=0:03:30 +[01/04 17:24:10] defrcn.evaluation.evaluator INFO: Inference done 350/2500. 0.0952 s / img. ETA=0:03:24 +[01/04 17:24:14] defrcn.evaluation.evaluator INFO: Inference done 400/2500. 0.0954 s / img. ETA=0:03:20 +[01/04 17:24:19] defrcn.evaluation.evaluator INFO: Inference done 450/2500. 0.0955 s / img. ETA=0:03:15 +[01/04 17:24:24] defrcn.evaluation.evaluator INFO: Inference done 500/2500. 0.0953 s / img. ETA=0:03:10 +[01/04 17:24:29] defrcn.evaluation.evaluator INFO: Inference done 550/2500. 0.0953 s / img. ETA=0:03:05 +[01/04 17:24:33] defrcn.evaluation.evaluator INFO: Inference done 600/2500. 0.0953 s / img. ETA=0:03:01 +[01/04 17:24:38] defrcn.evaluation.evaluator INFO: Inference done 650/2500. 0.0953 s / img. ETA=0:02:56 +[01/04 17:24:43] defrcn.evaluation.evaluator INFO: Inference done 700/2500. 0.0950 s / img. ETA=0:02:50 +[01/04 17:24:48] defrcn.evaluation.evaluator INFO: Inference done 750/2500. 0.0951 s / img. ETA=0:02:46 +[01/04 17:24:52] defrcn.evaluation.evaluator INFO: Inference done 800/2500. 0.0952 s / img. ETA=0:02:41 +[01/04 17:24:57] defrcn.evaluation.evaluator INFO: Inference done 850/2500. 0.0952 s / img. ETA=0:02:37 +[01/04 17:25:02] defrcn.evaluation.evaluator INFO: Inference done 900/2500. 0.0953 s / img. ETA=0:02:32 +[01/04 17:25:07] defrcn.evaluation.evaluator INFO: Inference done 950/2500. 0.0953 s / img. ETA=0:02:27 +[01/04 17:25:12] defrcn.evaluation.evaluator INFO: Inference done 1000/2500. 0.0953 s / img. ETA=0:02:22 +[01/04 17:25:16] defrcn.evaluation.evaluator INFO: Inference done 1050/2500. 0.0953 s / img. ETA=0:02:18 +[01/04 17:25:21] defrcn.evaluation.evaluator INFO: Inference done 1100/2500. 0.0954 s / img. ETA=0:02:13 +[01/04 17:25:26] defrcn.evaluation.evaluator INFO: Inference done 1150/2500. 0.0954 s / img. ETA=0:02:08 +[01/04 17:25:31] defrcn.evaluation.evaluator INFO: Inference done 1200/2500. 0.0954 s / img. ETA=0:02:04 +[01/04 17:25:36] defrcn.evaluation.evaluator INFO: Inference done 1250/2500. 0.0954 s / img. ETA=0:01:59 +[01/04 17:25:40] defrcn.evaluation.evaluator INFO: Inference done 1300/2500. 0.0956 s / img. ETA=0:01:54 +[01/04 17:25:45] defrcn.evaluation.evaluator INFO: Inference done 1350/2500. 0.0956 s / img. ETA=0:01:49 +[01/04 17:25:50] defrcn.evaluation.evaluator INFO: Inference done 1400/2500. 0.0957 s / img. ETA=0:01:45 +[01/04 17:25:55] defrcn.evaluation.evaluator INFO: Inference done 1450/2500. 0.0957 s / img. ETA=0:01:40 +[01/04 17:26:00] defrcn.evaluation.evaluator INFO: Inference done 1500/2500. 0.0958 s / img. ETA=0:01:35 +[01/04 17:26:05] defrcn.evaluation.evaluator INFO: Inference done 1550/2500. 0.0958 s / img. ETA=0:01:30 +[01/04 17:26:09] defrcn.evaluation.evaluator INFO: Inference done 1600/2500. 0.0957 s / img. ETA=0:01:26 +[01/04 17:26:14] defrcn.evaluation.evaluator INFO: Inference done 1650/2500. 0.0957 s / img. ETA=0:01:21 +[01/04 17:26:19] defrcn.evaluation.evaluator INFO: Inference done 1700/2500. 0.0957 s / img. ETA=0:01:16 +[01/04 17:26:24] defrcn.evaluation.evaluator INFO: Inference done 1750/2500. 0.0957 s / img. ETA=0:01:11 +[01/04 17:26:29] defrcn.evaluation.evaluator INFO: Inference done 1800/2500. 0.0957 s / img. ETA=0:01:07 +[01/04 17:26:33] defrcn.evaluation.evaluator INFO: Inference done 1850/2500. 0.0958 s / img. ETA=0:01:02 +[01/04 17:26:38] defrcn.evaluation.evaluator INFO: Inference done 1900/2500. 0.0958 s / img. ETA=0:00:57 +[01/04 17:26:43] defrcn.evaluation.evaluator INFO: Inference done 1950/2500. 0.0958 s / img. ETA=0:00:52 +[01/04 17:26:48] defrcn.evaluation.evaluator INFO: Inference done 2000/2500. 0.0957 s / img. ETA=0:00:47 +[01/04 17:26:52] defrcn.evaluation.evaluator INFO: Inference done 2050/2500. 0.0957 s / img. ETA=0:00:43 +[01/04 17:26:57] defrcn.evaluation.evaluator INFO: Inference done 2100/2500. 0.0956 s / img. ETA=0:00:38 +[01/04 17:27:02] defrcn.evaluation.evaluator INFO: Inference done 2150/2500. 0.0957 s / img. ETA=0:00:33 +[01/04 17:27:07] defrcn.evaluation.evaluator INFO: Inference done 2200/2500. 0.0957 s / img. ETA=0:00:28 +[01/04 17:27:12] defrcn.evaluation.evaluator INFO: Inference done 2250/2500. 0.0957 s / img. ETA=0:00:23 +[01/04 17:27:16] defrcn.evaluation.evaluator INFO: Inference done 2300/2500. 0.0957 s / img. ETA=0:00:19 +[01/04 17:27:21] defrcn.evaluation.evaluator INFO: Inference done 2350/2500. 0.0957 s / img. ETA=0:00:14 +[01/04 17:27:26] defrcn.evaluation.evaluator INFO: Inference done 2400/2500. 0.0957 s / img. ETA=0:00:09 +[01/04 17:27:31] defrcn.evaluation.evaluator INFO: Inference done 2450/2500. 0.0957 s / img. ETA=0:00:04 +[01/04 17:27:35] defrcn.evaluation.evaluator INFO: Inference done 2500/2500. 0.0957 s / img. ETA=0:00:00 +[01/04 17:27:36] defrcn.evaluation.evaluator INFO: Total inference time: 0:03:59 (0.095792 s / img per device, on 2 devices) +[01/04 17:27:36] defrcn.evaluation.evaluator INFO: Total inference pure compute time: 0:03:53 (0.093466 s / img per device, on 2 devices) +[01/04 17:27:37] defrcn.evaluation.coco_evaluation INFO: Preparing results for COCO format ... +[01/04 17:27:37] defrcn.evaluation.coco_evaluation INFO: Saving results to checkpoints/coco/10shot_ExAU/inference/coco_instances_results.json +[01/04 17:27:37] defrcn.evaluation.coco_evaluation INFO: Evaluating predictions ... +[01/04 17:27:56] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 30.569 | 47.987 | 32.349 | 15.780 | 34.036 | 43.227 | +[01/04 17:27:56] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:--------------|:-------|:-------------|:-------|:---------------|:-------| +| person | 0.438 | bicycle | 2.762 | car | 0.000 | +| motorcycle | 8.905 | airplane | 20.626 | bus | 31.673 | +| train | 16.241 | truck | 31.920 | boat | 2.791 | +| traffic light | 25.667 | fire hydrant | 66.111 | stop sign | 70.729 | +| parking meter | 36.422 | bench | 18.046 | bird | 6.074 | +| cat | 14.098 | dog | 13.848 | horse | 9.937 | +| sheep | 5.174 | cow | 18.958 | elephant | 65.473 | +| bear | 58.442 | zebra | 58.473 | giraffe | 65.780 | +| backpack | 18.705 | umbrella | 36.267 | handbag | 16.143 | +| tie | 34.179 | suitcase | 35.072 | frisbee | 57.547 | +| skis | 23.879 | snowboard | 37.004 | sports ball | 39.752 | +| kite | 38.176 | baseball bat | 26.137 | baseball glove | 29.687 | +| skateboard | 47.421 | surfboard | 38.973 | tennis racket | 51.531 | +| bottle | 0.866 | wine glass | 31.528 | cup | 36.726 | +| fork | 35.321 | knife | 17.426 | spoon | 19.013 | +| bowl | 37.957 | banana | 24.855 | apple | 19.997 | +| sandwich | 37.612 | orange | 23.506 | broccoli | 25.473 | +| carrot | 26.240 | hot dog | 34.081 | pizza | 51.355 | +| donut | 51.256 | cake | 39.858 | chair | 1.103 | +| couch | 10.738 | potted plant | 0.000 | bed | 41.645 | +| dining table | 0.000 | toilet | 55.588 | tv | 30.685 | +| laptop | 56.286 | mouse | 47.125 | remote | 29.968 | +| keyboard | 50.359 | cell phone | 26.980 | microwave | 54.278 | +| oven | 36.135 | toaster | 26.588 | sink | 32.898 | +| refrigerator | 55.459 | book | 9.953 | clock | 47.921 | +| vase | 34.293 | scissors | 28.810 | teddy bear | 42.053 | +| hair drier | 12.634 | toothbrush | 21.911 | | | +[01/04 17:28:10] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 37.510 | 57.396 | 40.552 | 19.815 | 41.945 | 52.902 | +[01/04 17:28:10] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:---------------|:-------|:--------------|:-------|:-------------|:-------| +| truck | 31.920 | traffic light | 25.667 | fire hydrant | 66.111 | +| stop sign | 70.729 | parking meter | 36.422 | bench | 18.046 | +| elephant | 65.473 | bear | 58.442 | zebra | 58.473 | +| giraffe | 65.780 | backpack | 18.705 | umbrella | 36.267 | +| handbag | 16.143 | tie | 34.179 | suitcase | 35.072 | +| frisbee | 57.547 | skis | 23.879 | snowboard | 37.004 | +| sports ball | 39.752 | kite | 38.176 | baseball bat | 26.137 | +| baseball glove | 29.687 | skateboard | 47.421 | surfboard | 38.973 | +| tennis racket | 51.531 | wine glass | 31.528 | cup | 36.726 | +| fork | 35.321 | knife | 17.426 | spoon | 19.013 | +| bowl | 37.957 | banana | 24.855 | apple | 19.997 | +| sandwich | 37.612 | orange | 23.506 | broccoli | 25.473 | +| carrot | 26.240 | hot dog | 34.081 | pizza | 51.355 | +| donut | 51.256 | cake | 39.858 | bed | 41.645 | +| toilet | 55.588 | laptop | 56.286 | mouse | 47.125 | +| remote | 29.968 | keyboard | 50.359 | cell phone | 26.980 | +| microwave | 54.278 | oven | 36.135 | toaster | 26.588 | +| sink | 32.898 | refrigerator | 55.459 | book | 9.953 | +| clock | 47.921 | vase | 34.293 | scissors | 28.810 | +| teddy bear | 42.053 | hair drier | 12.634 | toothbrush | 21.911 | +[01/04 17:28:15] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:-----:|:------:|:------:|:-----:|:------:|:------:| +| 9.746 | 19.760 | 7.740 | 3.877 | 10.309 | 14.202 | +[01/04 17:28:15] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:-------------|:-------|:-----------|:-------|:-------------|:-------| +| person | 0.438 | bicycle | 2.762 | car | 0.000 | +| motorcycle | 8.905 | airplane | 20.626 | bus | 31.673 | +| train | 16.241 | boat | 2.791 | bird | 6.074 | +| cat | 14.098 | dog | 13.848 | horse | 9.937 | +| sheep | 5.174 | cow | 18.958 | bottle | 0.866 | +| chair | 1.103 | couch | 10.738 | potted plant | 0.000 | +| dining table | 0.000 | tv | 30.685 | | | +[01/04 17:28:15] defrcn.engine.defaults INFO: Evaluation results for coco14_test_all in csv format: +[01/04 17:28:15] defrcn.evaluation.testing INFO: copypaste: Task: bbox +[01/04 17:28:15] defrcn.evaluation.testing INFO: copypaste: AP,AP50,AP75,APs,APm,APl,bAP,bAP50,bAP75,bAPs,bAPm,bAPl,nAP,nAP50,nAP75,nAPs,nAPm,nAPl +[01/04 17:28:15] defrcn.evaluation.testing INFO: copypaste: 30.5693,47.9870,32.3489,15.7799,34.0361,43.2273,37.5104,57.3959,40.5519,19.8147,41.9453,52.9023,9.7459,19.7602,7.7399,3.8772,10.3085,14.2024 +[01/04 17:28:15] d2.utils.events INFO: eta: 3:55:20 iter: 399 total_loss: 0.6468 loss_cls: 0.1603 loss_box_reg: 0.1328 loss_contrast: 0.2221 loss_rpn_cls: 0.05995 loss_rpn_loc: 0.0677 time: 2.7934 data_time: 0.1274 lr: 0.005 max_mem: 29820M +[01/04 17:29:11] d2.utils.events INFO: eta: 3:55:04 iter: 419 total_loss: 0.6536 loss_cls: 0.1657 loss_box_reg: 0.1373 loss_contrast: 0.222 loss_rpn_cls: 0.06248 loss_rpn_loc: 0.06729 time: 2.7932 data_time: 0.1300 lr: 0.005 max_mem: 29820M +[01/04 17:30:08] d2.utils.events INFO: eta: 3:53:55 iter: 439 total_loss: 0.6388 loss_cls: 0.1577 loss_box_reg: 0.1331 loss_contrast: 0.2219 loss_rpn_cls: 0.05971 loss_rpn_loc: 0.05844 time: 2.7966 data_time: 0.1192 lr: 0.005 max_mem: 29821M +[01/04 17:31:07] d2.utils.events INFO: eta: 3:53:24 iter: 459 total_loss: 0.6529 loss_cls: 0.1655 loss_box_reg: 0.1425 loss_contrast: 0.2218 loss_rpn_cls: 0.06574 loss_rpn_loc: 0.05804 time: 2.8032 data_time: 0.1261 lr: 0.005 max_mem: 29821M +[01/04 17:32:08] d2.utils.events INFO: eta: 3:52:29 iter: 479 total_loss: 0.6356 loss_cls: 0.1566 loss_box_reg: 0.1399 loss_contrast: 0.2218 loss_rpn_cls: 0.05853 loss_rpn_loc: 0.05879 time: 2.8137 data_time: 0.1342 lr: 0.005 max_mem: 29821M +[01/04 17:33:02] d2.utils.events INFO: eta: 3:51:12 iter: 499 total_loss: 0.619 loss_cls: 0.1542 loss_box_reg: 0.1292 loss_contrast: 0.2219 loss_rpn_cls: 0.05999 loss_rpn_loc: 0.05771 time: 2.8076 data_time: 0.1260 lr: 0.005 max_mem: 29821M +[01/04 17:34:06] d2.utils.events INFO: eta: 3:50:37 iter: 519 total_loss: 0.6247 loss_cls: 0.1504 loss_box_reg: 0.1279 loss_contrast: 0.2217 loss_rpn_cls: 0.05423 loss_rpn_loc: 0.05786 time: 2.8226 data_time: 0.1454 lr: 0.005 max_mem: 29821M +[01/04 17:35:01] d2.utils.events INFO: eta: 3:49:37 iter: 539 total_loss: 0.6172 loss_cls: 0.1523 loss_box_reg: 0.1326 loss_contrast: 0.2217 loss_rpn_cls: 0.05755 loss_rpn_loc: 0.05778 time: 2.8208 data_time: 0.1341 lr: 0.005 max_mem: 29821M +[01/04 17:35:57] d2.utils.events INFO: eta: 3:48:28 iter: 559 total_loss: 0.6102 loss_cls: 0.1445 loss_box_reg: 0.1308 loss_contrast: 0.2218 loss_rpn_cls: 0.05475 loss_rpn_loc: 0.057 time: 2.8197 data_time: 0.1341 lr: 0.005 max_mem: 29821M +[01/04 17:36:53] d2.utils.events INFO: eta: 3:47:26 iter: 579 total_loss: 0.622 loss_cls: 0.157 loss_box_reg: 0.1301 loss_contrast: 0.2216 loss_rpn_cls: 0.05491 loss_rpn_loc: 0.05496 time: 2.8185 data_time: 0.1417 lr: 0.005 max_mem: 29821M +[01/04 17:37:51] fvcore.common.checkpoint INFO: Saving checkpoint to checkpoints/coco/10shot_ExAU/model_0000599.pth +[01/04 17:38:06] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 17:38:06] d2.data.common INFO: Serializing 5000 elements to byte tensors and concatenating them all ... +[01/04 17:38:06] d2.data.common INFO: Serialized dataset takes 3.00 MiB +[01/04 17:38:07] defrcn.evaluation.evaluator INFO: Start initializing PCB module, please wait a seconds... +[01/04 17:38:07] defrcn.evaluation.calibration_layer INFO: Loading ImageNet Pre-train Model from ImageNetPretrained/torchvision/resnet101-5d3b4d8f.pth +[01/04 17:38:08] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 17:38:08] d2.data.common INFO: Serializing 402 elements to byte tensors and concatenating them all ... +[01/04 17:38:08] d2.data.common INFO: Serialized dataset takes 0.08 MiB +[01/04 17:38:28] defrcn.evaluation.evaluator INFO: Start inference on 2500 images +[01/04 17:38:40] defrcn.evaluation.evaluator INFO: Inference done 50/2500. 0.0985 s / img. ETA=0:04:01 +[01/04 17:38:45] defrcn.evaluation.evaluator INFO: Inference done 100/2500. 0.0970 s / img. ETA=0:03:52 +[01/04 17:38:49] defrcn.evaluation.evaluator INFO: Inference done 150/2500. 0.0971 s / img. ETA=0:03:48 +[01/04 17:38:54] defrcn.evaluation.evaluator INFO: Inference done 200/2500. 0.0966 s / img. ETA=0:03:42 +[01/04 17:38:59] defrcn.evaluation.evaluator INFO: Inference done 250/2500. 0.0968 s / img. ETA=0:03:37 +[01/04 17:39:04] defrcn.evaluation.evaluator INFO: Inference done 300/2500. 0.0965 s / img. ETA=0:03:32 +[01/04 17:39:09] defrcn.evaluation.evaluator INFO: Inference done 350/2500. 0.0963 s / img. ETA=0:03:27 +[01/04 17:39:13] defrcn.evaluation.evaluator INFO: Inference done 400/2500. 0.0964 s / img. ETA=0:03:22 +[01/04 17:39:18] defrcn.evaluation.evaluator INFO: Inference done 450/2500. 0.0965 s / img. ETA=0:03:17 +[01/04 17:39:23] defrcn.evaluation.evaluator INFO: Inference done 500/2500. 0.0963 s / img. ETA=0:03:12 +[01/04 17:39:28] defrcn.evaluation.evaluator INFO: Inference done 550/2500. 0.0963 s / img. ETA=0:03:07 +[01/04 17:39:33] defrcn.evaluation.evaluator INFO: Inference done 600/2500. 0.0963 s / img. ETA=0:03:02 +[01/04 17:39:37] defrcn.evaluation.evaluator INFO: Inference done 650/2500. 0.0964 s / img. ETA=0:02:58 +[01/04 17:39:42] defrcn.evaluation.evaluator INFO: Inference done 700/2500. 0.0962 s / img. ETA=0:02:53 +[01/04 17:39:47] defrcn.evaluation.evaluator INFO: Inference done 750/2500. 0.0963 s / img. ETA=0:02:48 +[01/04 17:39:52] defrcn.evaluation.evaluator INFO: Inference done 800/2500. 0.0964 s / img. ETA=0:02:43 +[01/04 17:39:57] defrcn.evaluation.evaluator INFO: Inference done 850/2500. 0.0964 s / img. ETA=0:02:39 +[01/04 17:40:02] defrcn.evaluation.evaluator INFO: Inference done 900/2500. 0.0967 s / img. ETA=0:02:34 +[01/04 17:40:07] defrcn.evaluation.evaluator INFO: Inference done 950/2500. 0.0967 s / img. ETA=0:02:29 +[01/04 17:40:12] defrcn.evaluation.evaluator INFO: Inference done 1000/2500. 0.0968 s / img. ETA=0:02:25 +[01/04 17:40:16] defrcn.evaluation.evaluator INFO: Inference done 1050/2500. 0.0967 s / img. ETA=0:02:20 +[01/04 17:40:21] defrcn.evaluation.evaluator INFO: Inference done 1100/2500. 0.0968 s / img. ETA=0:02:15 +[01/04 17:40:26] defrcn.evaluation.evaluator INFO: Inference done 1150/2500. 0.0968 s / img. ETA=0:02:10 +[01/04 17:40:31] defrcn.evaluation.evaluator INFO: Inference done 1200/2500. 0.0968 s / img. ETA=0:02:05 +[01/04 17:40:36] defrcn.evaluation.evaluator INFO: Inference done 1250/2500. 0.0968 s / img. ETA=0:02:00 +[01/04 17:40:41] defrcn.evaluation.evaluator INFO: Inference done 1300/2500. 0.0969 s / img. ETA=0:01:56 +[01/04 17:40:46] defrcn.evaluation.evaluator INFO: Inference done 1350/2500. 0.0970 s / img. ETA=0:01:51 +[01/04 17:40:51] defrcn.evaluation.evaluator INFO: Inference done 1400/2500. 0.0971 s / img. ETA=0:01:46 +[01/04 17:40:56] defrcn.evaluation.evaluator INFO: Inference done 1450/2500. 0.0971 s / img. ETA=0:01:41 +[01/04 17:41:00] defrcn.evaluation.evaluator INFO: Inference done 1500/2500. 0.0971 s / img. ETA=0:01:37 +[01/04 17:41:05] defrcn.evaluation.evaluator INFO: Inference done 1550/2500. 0.0971 s / img. ETA=0:01:32 +[01/04 17:41:10] defrcn.evaluation.evaluator INFO: Inference done 1600/2500. 0.0970 s / img. ETA=0:01:27 +[01/04 17:41:15] defrcn.evaluation.evaluator INFO: Inference done 1650/2500. 0.0969 s / img. ETA=0:01:22 +[01/04 17:41:20] defrcn.evaluation.evaluator INFO: Inference done 1700/2500. 0.0970 s / img. ETA=0:01:17 +[01/04 17:41:25] defrcn.evaluation.evaluator INFO: Inference done 1750/2500. 0.0970 s / img. ETA=0:01:12 +[01/04 17:41:29] defrcn.evaluation.evaluator INFO: Inference done 1800/2500. 0.0969 s / img. ETA=0:01:07 +[01/04 17:41:34] defrcn.evaluation.evaluator INFO: Inference done 1850/2500. 0.0968 s / img. ETA=0:01:02 +[01/04 17:41:39] defrcn.evaluation.evaluator INFO: Inference done 1900/2500. 0.0968 s / img. ETA=0:00:58 +[01/04 17:41:44] defrcn.evaluation.evaluator INFO: Inference done 1950/2500. 0.0968 s / img. ETA=0:00:53 +[01/04 17:41:48] defrcn.evaluation.evaluator INFO: Inference done 2000/2500. 0.0968 s / img. ETA=0:00:48 +[01/04 17:41:53] defrcn.evaluation.evaluator INFO: Inference done 2050/2500. 0.0967 s / img. ETA=0:00:43 +[01/04 17:41:58] defrcn.evaluation.evaluator INFO: Inference done 2100/2500. 0.0966 s / img. ETA=0:00:38 +[01/04 17:42:03] defrcn.evaluation.evaluator INFO: Inference done 2150/2500. 0.0967 s / img. ETA=0:00:33 +[01/04 17:42:07] defrcn.evaluation.evaluator INFO: Inference done 2200/2500. 0.0967 s / img. ETA=0:00:28 +[01/04 17:42:12] defrcn.evaluation.evaluator INFO: Inference done 2250/2500. 0.0966 s / img. ETA=0:00:24 +[01/04 17:42:17] defrcn.evaluation.evaluator INFO: Inference done 2300/2500. 0.0967 s / img. ETA=0:00:19 +[01/04 17:42:22] defrcn.evaluation.evaluator INFO: Inference done 2350/2500. 0.0966 s / img. ETA=0:00:14 +[01/04 17:42:27] defrcn.evaluation.evaluator INFO: Inference done 2400/2500. 0.0966 s / img. ETA=0:00:09 +[01/04 17:42:32] defrcn.evaluation.evaluator INFO: Inference done 2450/2500. 0.0967 s / img. ETA=0:00:04 +[01/04 17:42:36] defrcn.evaluation.evaluator INFO: Inference done 2500/2500. 0.0966 s / img. ETA=0:00:00 +[01/04 17:42:37] defrcn.evaluation.evaluator INFO: Total inference time: 0:04:01 (0.096593 s / img per device, on 2 devices) +[01/04 17:42:37] defrcn.evaluation.evaluator INFO: Total inference pure compute time: 0:03:55 (0.094354 s / img per device, on 2 devices) +[01/04 17:42:38] defrcn.evaluation.coco_evaluation INFO: Preparing results for COCO format ... +[01/04 17:42:38] defrcn.evaluation.coco_evaluation INFO: Saving results to checkpoints/coco/10shot_ExAU/inference/coco_instances_results.json +[01/04 17:42:38] defrcn.evaluation.coco_evaluation INFO: Evaluating predictions ... +[01/04 17:42:57] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 31.207 | 49.205 | 32.951 | 16.028 | 34.977 | 44.582 | +[01/04 17:42:57] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:--------------|:-------|:-------------|:-------|:---------------|:-------| +| person | 1.319 | bicycle | 4.499 | car | 0.891 | +| motorcycle | 11.587 | airplane | 28.822 | bus | 39.130 | +| train | 19.716 | truck | 32.345 | boat | 5.177 | +| traffic light | 25.673 | fire hydrant | 65.030 | stop sign | 70.776 | +| parking meter | 38.112 | bench | 18.252 | bird | 10.087 | +| cat | 19.437 | dog | 18.538 | horse | 13.726 | +| sheep | 5.876 | cow | 20.097 | elephant | 65.792 | +| bear | 56.249 | zebra | 58.082 | giraffe | 64.521 | +| backpack | 18.785 | umbrella | 36.011 | handbag | 16.154 | +| tie | 33.391 | suitcase | 34.885 | frisbee | 57.837 | +| skis | 23.224 | snowboard | 35.611 | sports ball | 40.148 | +| kite | 38.700 | baseball bat | 26.546 | baseball glove | 29.169 | +| skateboard | 47.976 | surfboard | 39.453 | tennis racket | 50.604 | +| bottle | 8.411 | wine glass | 31.594 | cup | 36.586 | +| fork | 35.265 | knife | 17.107 | spoon | 18.876 | +| bowl | 37.626 | banana | 24.391 | apple | 19.872 | +| sandwich | 37.148 | orange | 23.617 | broccoli | 25.506 | +| carrot | 25.491 | hot dog | 34.377 | pizza | 50.697 | +| donut | 51.432 | cake | 40.416 | chair | 2.169 | +| couch | 14.156 | potted plant | 0.693 | bed | 41.431 | +| dining table | 0.891 | toilet | 53.648 | tv | 35.475 | +| laptop | 56.237 | mouse | 46.107 | remote | 29.150 | +| keyboard | 50.579 | cell phone | 27.436 | microwave | 52.915 | +| oven | 35.588 | toaster | 26.455 | sink | 33.256 | +| refrigerator | 54.145 | book | 10.134 | clock | 47.268 | +| vase | 34.242 | scissors | 28.225 | teddy bear | 42.520 | +| hair drier | 10.825 | toothbrush | 22.394 | | | +[01/04 17:43:11] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 37.265 | 57.465 | 40.068 | 19.615 | 41.856 | 52.667 | +[01/04 17:43:11] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:---------------|:-------|:--------------|:-------|:-------------|:-------| +| truck | 32.345 | traffic light | 25.673 | fire hydrant | 65.030 | +| stop sign | 70.776 | parking meter | 38.112 | bench | 18.252 | +| elephant | 65.792 | bear | 56.249 | zebra | 58.082 | +| giraffe | 64.521 | backpack | 18.785 | umbrella | 36.011 | +| handbag | 16.154 | tie | 33.391 | suitcase | 34.885 | +| frisbee | 57.837 | skis | 23.224 | snowboard | 35.611 | +| sports ball | 40.148 | kite | 38.700 | baseball bat | 26.546 | +| baseball glove | 29.169 | skateboard | 47.976 | surfboard | 39.453 | +| tennis racket | 50.604 | wine glass | 31.594 | cup | 36.586 | +| fork | 35.265 | knife | 17.107 | spoon | 18.876 | +| bowl | 37.626 | banana | 24.391 | apple | 19.872 | +| sandwich | 37.148 | orange | 23.617 | broccoli | 25.506 | +| carrot | 25.491 | hot dog | 34.377 | pizza | 50.697 | +| donut | 51.432 | cake | 40.416 | bed | 41.431 | +| toilet | 53.648 | laptop | 56.237 | mouse | 46.107 | +| remote | 29.150 | keyboard | 50.579 | cell phone | 27.436 | +| microwave | 52.915 | oven | 35.588 | toaster | 26.455 | +| sink | 33.256 | refrigerator | 54.145 | book | 10.134 | +| clock | 47.268 | vase | 34.242 | scissors | 28.225 | +| teddy bear | 42.520 | hair drier | 10.825 | toothbrush | 22.394 | +[01/04 17:43:16] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:-----:|:------:|:------:| +| 13.035 | 24.426 | 11.598 | 5.450 | 14.341 | 20.325 | +[01/04 17:43:16] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:-------------|:-------|:-----------|:-------|:-------------|:-------| +| person | 1.319 | bicycle | 4.499 | car | 0.891 | +| motorcycle | 11.587 | airplane | 28.822 | bus | 39.130 | +| train | 19.716 | boat | 5.177 | bird | 10.087 | +| cat | 19.437 | dog | 18.538 | horse | 13.726 | +| sheep | 5.876 | cow | 20.097 | bottle | 8.411 | +| chair | 2.169 | couch | 14.156 | potted plant | 0.693 | +| dining table | 0.891 | tv | 35.475 | | | +[01/04 17:43:16] defrcn.engine.defaults INFO: Evaluation results for coco14_test_all in csv format: +[01/04 17:43:16] defrcn.evaluation.testing INFO: copypaste: Task: bbox +[01/04 17:43:16] defrcn.evaluation.testing INFO: copypaste: AP,AP50,AP75,APs,APm,APl,bAP,bAP50,bAP75,bAPs,bAPm,bAPl,nAP,nAP50,nAP75,nAPs,nAPm,nAPl +[01/04 17:43:16] defrcn.evaluation.testing INFO: copypaste: 31.2072,49.2048,32.9505,16.0285,34.9773,44.5817,37.2647,57.4645,40.0681,19.6145,41.8562,52.6672,13.0349,24.4258,11.5979,5.4496,14.3409,20.3254 +[01/04 17:43:16] d2.utils.events INFO: eta: 3:46:08 iter: 599 total_loss: 0.625 loss_cls: 0.1501 loss_box_reg: 0.1275 loss_contrast: 0.2216 loss_rpn_cls: 0.05968 loss_rpn_loc: 0.05843 time: 2.8212 data_time: 0.1294 lr: 0.005 max_mem: 29821M +[01/04 17:44:14] d2.utils.events INFO: eta: 3:45:09 iter: 619 total_loss: 0.6071 loss_cls: 0.1437 loss_box_reg: 0.1279 loss_contrast: 0.2215 loss_rpn_cls: 0.0566 loss_rpn_loc: 0.06102 time: 2.8238 data_time: 0.1294 lr: 0.005 max_mem: 29821M +[01/04 17:45:16] d2.utils.events INFO: eta: 3:44:51 iter: 639 total_loss: 0.588 loss_cls: 0.1401 loss_box_reg: 0.1227 loss_contrast: 0.2214 loss_rpn_cls: 0.05252 loss_rpn_loc: 0.05789 time: 2.8324 data_time: 0.1266 lr: 0.005 max_mem: 29821M +[01/04 17:46:12] d2.utils.events INFO: eta: 3:44:12 iter: 659 total_loss: 0.6172 loss_cls: 0.1455 loss_box_reg: 0.1311 loss_contrast: 0.2214 loss_rpn_cls: 0.06262 loss_rpn_loc: 0.0561 time: 2.8309 data_time: 0.1278 lr: 0.005 max_mem: 29821M +[01/04 17:47:06] d2.utils.events INFO: eta: 3:42:40 iter: 679 total_loss: 0.6073 loss_cls: 0.1417 loss_box_reg: 0.1258 loss_contrast: 0.2215 loss_rpn_cls: 0.05829 loss_rpn_loc: 0.05962 time: 2.8263 data_time: 0.1416 lr: 0.005 max_mem: 29821M +[01/04 17:48:05] d2.utils.events INFO: eta: 3:41:36 iter: 699 total_loss: 0.5802 loss_cls: 0.1374 loss_box_reg: 0.1199 loss_contrast: 0.2212 loss_rpn_cls: 0.05415 loss_rpn_loc: 0.0569 time: 2.8302 data_time: 0.1277 lr: 0.005 max_mem: 29821M +[01/04 17:49:02] d2.utils.events INFO: eta: 3:40:42 iter: 719 total_loss: 0.5986 loss_cls: 0.1337 loss_box_reg: 0.1182 loss_contrast: 0.2213 loss_rpn_cls: 0.05565 loss_rpn_loc: 0.05578 time: 2.8301 data_time: 0.1278 lr: 0.005 max_mem: 29821M +[01/04 17:50:00] d2.utils.events INFO: eta: 3:39:57 iter: 739 total_loss: 0.6022 loss_cls: 0.1442 loss_box_reg: 0.1255 loss_contrast: 0.2213 loss_rpn_cls: 0.05322 loss_rpn_loc: 0.05675 time: 2.8326 data_time: 0.1305 lr: 0.005 max_mem: 29821M +[01/04 17:50:56] d2.utils.events INFO: eta: 3:38:53 iter: 759 total_loss: 0.5804 loss_cls: 0.1343 loss_box_reg: 0.1133 loss_contrast: 0.2212 loss_rpn_cls: 0.05147 loss_rpn_loc: 0.05449 time: 2.8321 data_time: 0.1255 lr: 0.005 max_mem: 29821M +[01/04 17:51:57] d2.utils.events INFO: eta: 3:38:08 iter: 779 total_loss: 0.5974 loss_cls: 0.1353 loss_box_reg: 0.1207 loss_contrast: 0.2211 loss_rpn_cls: 0.05623 loss_rpn_loc: 0.05713 time: 2.8367 data_time: 0.1307 lr: 0.005 max_mem: 29821M +[01/04 17:52:57] fvcore.common.checkpoint INFO: Saving checkpoint to checkpoints/coco/10shot_ExAU/model_0000799.pth +[01/04 17:53:13] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 17:53:13] d2.data.common INFO: Serializing 5000 elements to byte tensors and concatenating them all ... +[01/04 17:53:13] d2.data.common INFO: Serialized dataset takes 3.00 MiB +[01/04 17:53:13] defrcn.evaluation.evaluator INFO: Start initializing PCB module, please wait a seconds... +[01/04 17:53:13] defrcn.evaluation.calibration_layer INFO: Loading ImageNet Pre-train Model from ImageNetPretrained/torchvision/resnet101-5d3b4d8f.pth +[01/04 17:53:15] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 17:53:15] d2.data.common INFO: Serializing 402 elements to byte tensors and concatenating them all ... +[01/04 17:53:15] d2.data.common INFO: Serialized dataset takes 0.08 MiB +[01/04 17:53:35] defrcn.evaluation.evaluator INFO: Start inference on 2500 images +[01/04 17:53:47] defrcn.evaluation.evaluator INFO: Inference done 50/2500. 0.0988 s / img. ETA=0:04:01 +[01/04 17:53:52] defrcn.evaluation.evaluator INFO: Inference done 100/2500. 0.0971 s / img. ETA=0:03:53 +[01/04 17:53:57] defrcn.evaluation.evaluator INFO: Inference done 150/2500. 0.0971 s / img. ETA=0:03:48 +[01/04 17:54:01] defrcn.evaluation.evaluator INFO: Inference done 200/2500. 0.0966 s / img. ETA=0:03:42 +[01/04 17:54:06] defrcn.evaluation.evaluator INFO: Inference done 250/2500. 0.0968 s / img. ETA=0:03:37 +[01/04 17:54:11] defrcn.evaluation.evaluator INFO: Inference done 300/2500. 0.0964 s / img. ETA=0:03:32 +[01/04 17:54:16] defrcn.evaluation.evaluator INFO: Inference done 350/2500. 0.0962 s / img. ETA=0:03:26 +[01/04 17:54:21] defrcn.evaluation.evaluator INFO: Inference done 400/2500. 0.0964 s / img. ETA=0:03:22 +[01/04 17:54:25] defrcn.evaluation.evaluator INFO: Inference done 450/2500. 0.0965 s / img. ETA=0:03:17 +[01/04 17:54:30] defrcn.evaluation.evaluator INFO: Inference done 500/2500. 0.0962 s / img. ETA=0:03:12 +[01/04 17:54:35] defrcn.evaluation.evaluator INFO: Inference done 550/2500. 0.0964 s / img. ETA=0:03:07 +[01/04 17:54:40] defrcn.evaluation.evaluator INFO: Inference done 600/2500. 0.0963 s / img. ETA=0:03:03 +[01/04 17:54:45] defrcn.evaluation.evaluator INFO: Inference done 650/2500. 0.0964 s / img. ETA=0:02:58 +[01/04 17:54:49] defrcn.evaluation.evaluator INFO: Inference done 700/2500. 0.0962 s / img. ETA=0:02:53 +[01/04 17:54:54] defrcn.evaluation.evaluator INFO: Inference done 750/2500. 0.0963 s / img. ETA=0:02:48 +[01/04 17:54:59] defrcn.evaluation.evaluator INFO: Inference done 800/2500. 0.0964 s / img. ETA=0:02:43 +[01/04 17:55:04] defrcn.evaluation.evaluator INFO: Inference done 850/2500. 0.0965 s / img. ETA=0:02:39 +[01/04 17:55:09] defrcn.evaluation.evaluator INFO: Inference done 900/2500. 0.0966 s / img. ETA=0:02:34 +[01/04 17:55:14] defrcn.evaluation.evaluator INFO: Inference done 950/2500. 0.0966 s / img. ETA=0:02:29 +[01/04 17:55:19] defrcn.evaluation.evaluator INFO: Inference done 1000/2500. 0.0966 s / img. ETA=0:02:24 +[01/04 17:55:24] defrcn.evaluation.evaluator INFO: Inference done 1050/2500. 0.0966 s / img. ETA=0:02:20 +[01/04 17:55:28] defrcn.evaluation.evaluator INFO: Inference done 1100/2500. 0.0967 s / img. ETA=0:02:15 +[01/04 17:55:33] defrcn.evaluation.evaluator INFO: Inference done 1150/2500. 0.0967 s / img. ETA=0:02:10 +[01/04 17:55:38] defrcn.evaluation.evaluator INFO: Inference done 1200/2500. 0.0967 s / img. ETA=0:02:05 +[01/04 17:55:43] defrcn.evaluation.evaluator INFO: Inference done 1250/2500. 0.0967 s / img. ETA=0:02:00 +[01/04 17:55:48] defrcn.evaluation.evaluator INFO: Inference done 1300/2500. 0.0968 s / img. ETA=0:01:56 +[01/04 17:55:53] defrcn.evaluation.evaluator INFO: Inference done 1350/2500. 0.0969 s / img. ETA=0:01:51 +[01/04 17:55:58] defrcn.evaluation.evaluator INFO: Inference done 1400/2500. 0.0970 s / img. ETA=0:01:46 +[01/04 17:56:03] defrcn.evaluation.evaluator INFO: Inference done 1450/2500. 0.0970 s / img. ETA=0:01:41 +[01/04 17:56:08] defrcn.evaluation.evaluator INFO: Inference done 1500/2500. 0.0971 s / img. ETA=0:01:37 +[01/04 17:56:12] defrcn.evaluation.evaluator INFO: Inference done 1550/2500. 0.0970 s / img. ETA=0:01:32 +[01/04 17:56:17] defrcn.evaluation.evaluator INFO: Inference done 1600/2500. 0.0970 s / img. ETA=0:01:27 +[01/04 17:56:22] defrcn.evaluation.evaluator INFO: Inference done 1650/2500. 0.0969 s / img. ETA=0:01:22 +[01/04 17:56:27] defrcn.evaluation.evaluator INFO: Inference done 1700/2500. 0.0969 s / img. ETA=0:01:17 +[01/04 17:56:32] defrcn.evaluation.evaluator INFO: Inference done 1750/2500. 0.0970 s / img. ETA=0:01:12 +[01/04 17:56:37] defrcn.evaluation.evaluator INFO: Inference done 1800/2500. 0.0969 s / img. ETA=0:01:07 +[01/04 17:56:41] defrcn.evaluation.evaluator INFO: Inference done 1850/2500. 0.0969 s / img. ETA=0:01:02 +[01/04 17:56:46] defrcn.evaluation.evaluator INFO: Inference done 1900/2500. 0.0969 s / img. ETA=0:00:58 +[01/04 17:56:51] defrcn.evaluation.evaluator INFO: Inference done 1950/2500. 0.0969 s / img. ETA=0:00:53 +[01/04 17:56:56] defrcn.evaluation.evaluator INFO: Inference done 2000/2500. 0.0969 s / img. ETA=0:00:48 +[01/04 17:57:01] defrcn.evaluation.evaluator INFO: Inference done 2050/2500. 0.0968 s / img. ETA=0:00:43 +[01/04 17:57:05] defrcn.evaluation.evaluator INFO: Inference done 2100/2500. 0.0968 s / img. ETA=0:00:38 +[01/04 17:57:10] defrcn.evaluation.evaluator INFO: Inference done 2150/2500. 0.0968 s / img. ETA=0:00:33 +[01/04 17:57:15] defrcn.evaluation.evaluator INFO: Inference done 2200/2500. 0.0968 s / img. ETA=0:00:29 +[01/04 17:57:20] defrcn.evaluation.evaluator INFO: Inference done 2250/2500. 0.0968 s / img. ETA=0:00:24 +[01/04 17:57:25] defrcn.evaluation.evaluator INFO: Inference done 2300/2500. 0.0968 s / img. ETA=0:00:19 +[01/04 17:57:29] defrcn.evaluation.evaluator INFO: Inference done 2350/2500. 0.0968 s / img. ETA=0:00:14 +[01/04 17:57:34] defrcn.evaluation.evaluator INFO: Inference done 2400/2500. 0.0968 s / img. ETA=0:00:09 +[01/04 17:57:39] defrcn.evaluation.evaluator INFO: Inference done 2450/2500. 0.0968 s / img. ETA=0:00:04 +[01/04 17:57:44] defrcn.evaluation.evaluator INFO: Inference done 2500/2500. 0.0968 s / img. ETA=0:00:00 +[01/04 17:57:45] defrcn.evaluation.evaluator INFO: Total inference time: 0:04:01 (0.096593 s / img per device, on 2 devices) +[01/04 17:57:45] defrcn.evaluation.evaluator INFO: Total inference pure compute time: 0:03:55 (0.094474 s / img per device, on 2 devices) +[01/04 17:57:45] defrcn.evaluation.coco_evaluation INFO: Preparing results for COCO format ... +[01/04 17:57:45] defrcn.evaluation.coco_evaluation INFO: Saving results to checkpoints/coco/10shot_ExAU/inference/coco_instances_results.json +[01/04 17:57:46] defrcn.evaluation.coco_evaluation INFO: Evaluating predictions ... +[01/04 17:58:06] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 31.599 | 49.812 | 33.775 | 16.219 | 35.137 | 45.199 | +[01/04 17:58:06] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:--------------|:-------|:-------------|:-------|:---------------|:-------| +| person | 2.096 | bicycle | 4.510 | car | 4.400 | +| motorcycle | 13.714 | airplane | 34.079 | bus | 46.121 | +| train | 23.099 | truck | 31.658 | boat | 7.071 | +| traffic light | 25.523 | fire hydrant | 64.743 | stop sign | 70.579 | +| parking meter | 37.510 | bench | 18.187 | bird | 11.724 | +| cat | 22.432 | dog | 21.198 | horse | 14.976 | +| sheep | 6.118 | cow | 20.314 | elephant | 65.484 | +| bear | 56.219 | zebra | 56.574 | giraffe | 65.157 | +| backpack | 18.839 | umbrella | 35.299 | handbag | 15.894 | +| tie | 33.940 | suitcase | 34.506 | frisbee | 57.038 | +| skis | 23.144 | snowboard | 35.735 | sports ball | 39.270 | +| kite | 38.244 | baseball bat | 27.014 | baseball glove | 29.424 | +| skateboard | 47.819 | surfboard | 38.888 | tennis racket | 51.498 | +| bottle | 12.659 | wine glass | 31.778 | cup | 36.649 | +| fork | 35.110 | knife | 16.590 | spoon | 19.209 | +| bowl | 37.944 | banana | 24.806 | apple | 20.113 | +| sandwich | 36.402 | orange | 24.293 | broccoli | 25.917 | +| carrot | 25.828 | hot dog | 34.268 | pizza | 50.235 | +| donut | 51.570 | cake | 39.481 | chair | 3.209 | +| couch | 16.118 | potted plant | 1.825 | bed | 41.258 | +| dining table | 3.182 | toilet | 54.231 | tv | 38.155 | +| laptop | 56.194 | mouse | 45.582 | remote | 27.622 | +| keyboard | 49.695 | cell phone | 26.448 | microwave | 53.533 | +| oven | 35.615 | toaster | 26.525 | sink | 33.200 | +| refrigerator | 54.006 | book | 10.214 | clock | 47.252 | +| vase | 34.570 | scissors | 27.056 | teddy bear | 42.886 | +| hair drier | 5.941 | toothbrush | 20.745 | | | +[01/04 17:58:19] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 37.016 | 57.197 | 40.087 | 19.686 | 41.408 | 52.210 | +[01/04 17:58:19] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:---------------|:-------|:--------------|:-------|:-------------|:-------| +| truck | 31.658 | traffic light | 25.523 | fire hydrant | 64.743 | +| stop sign | 70.579 | parking meter | 37.510 | bench | 18.187 | +| elephant | 65.484 | bear | 56.219 | zebra | 56.574 | +| giraffe | 65.157 | backpack | 18.839 | umbrella | 35.299 | +| handbag | 15.894 | tie | 33.940 | suitcase | 34.506 | +| frisbee | 57.038 | skis | 23.144 | snowboard | 35.735 | +| sports ball | 39.270 | kite | 38.244 | baseball bat | 27.014 | +| baseball glove | 29.424 | skateboard | 47.819 | surfboard | 38.888 | +| tennis racket | 51.498 | wine glass | 31.778 | cup | 36.649 | +| fork | 35.110 | knife | 16.590 | spoon | 19.209 | +| bowl | 37.944 | banana | 24.806 | apple | 20.113 | +| sandwich | 36.402 | orange | 24.293 | broccoli | 25.917 | +| carrot | 25.828 | hot dog | 34.268 | pizza | 50.235 | +| donut | 51.570 | cake | 39.481 | bed | 41.258 | +| toilet | 54.231 | laptop | 56.194 | mouse | 45.582 | +| remote | 27.622 | keyboard | 49.695 | cell phone | 26.448 | +| microwave | 53.533 | oven | 35.615 | toaster | 26.525 | +| sink | 33.200 | refrigerator | 54.006 | book | 10.214 | +| clock | 47.252 | vase | 34.570 | scissors | 27.056 | +| teddy bear | 42.886 | hair drier | 5.941 | toothbrush | 20.745 | +[01/04 17:58:26] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:-----:|:------:|:------:| +| 15.350 | 27.657 | 14.841 | 5.990 | 16.323 | 24.165 | +[01/04 17:58:26] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:-------------|:-------|:-----------|:-------|:-------------|:-------| +| person | 2.096 | bicycle | 4.510 | car | 4.400 | +| motorcycle | 13.714 | airplane | 34.079 | bus | 46.121 | +| train | 23.099 | boat | 7.071 | bird | 11.724 | +| cat | 22.432 | dog | 21.198 | horse | 14.976 | +| sheep | 6.118 | cow | 20.314 | bottle | 12.659 | +| chair | 3.209 | couch | 16.118 | potted plant | 1.825 | +| dining table | 3.182 | tv | 38.155 | | | +[01/04 17:58:26] defrcn.engine.defaults INFO: Evaluation results for coco14_test_all in csv format: +[01/04 17:58:26] defrcn.evaluation.testing INFO: copypaste: Task: bbox +[01/04 17:58:26] defrcn.evaluation.testing INFO: copypaste: AP,AP50,AP75,APs,APm,APl,bAP,bAP50,bAP75,bAPs,bAPm,bAPl,nAP,nAP50,nAP75,nAPs,nAPm,nAPl +[01/04 17:58:26] defrcn.evaluation.testing INFO: copypaste: 31.5994,49.8117,33.7752,16.2189,35.1370,45.1985,37.0159,57.1966,40.0867,19.6863,41.4084,52.2098,15.3500,27.6570,14.8408,5.9900,16.3228,24.1648 +[01/04 17:58:26] d2.utils.events INFO: eta: 3:37:14 iter: 799 total_loss: 0.5908 loss_cls: 0.1337 loss_box_reg: 0.1168 loss_contrast: 0.2211 loss_rpn_cls: 0.05537 loss_rpn_loc: 0.05721 time: 2.8413 data_time: 0.1250 lr: 0.005 max_mem: 29821M +[01/04 17:59:24] d2.utils.events INFO: eta: 3:36:34 iter: 819 total_loss: 0.5787 loss_cls: 0.1337 loss_box_reg: 0.1175 loss_contrast: 0.2211 loss_rpn_cls: 0.04881 loss_rpn_loc: 0.05274 time: 2.8427 data_time: 0.1329 lr: 0.005 max_mem: 29821M +[01/04 18:00:16] d2.utils.events INFO: eta: 3:35:16 iter: 839 total_loss: 0.5797 loss_cls: 0.1294 loss_box_reg: 0.1118 loss_contrast: 0.221 loss_rpn_cls: 0.05482 loss_rpn_loc: 0.06427 time: 2.8372 data_time: 0.1183 lr: 0.005 max_mem: 29821M +[01/04 18:01:15] d2.utils.events INFO: eta: 3:34:20 iter: 859 total_loss: 0.5686 loss_cls: 0.1221 loss_box_reg: 0.1134 loss_contrast: 0.221 loss_rpn_cls: 0.04756 loss_rpn_loc: 0.05384 time: 2.8402 data_time: 0.1259 lr: 0.005 max_mem: 29821M +[01/04 18:02:10] d2.utils.events INFO: eta: 3:33:23 iter: 879 total_loss: 0.5539 loss_cls: 0.1231 loss_box_reg: 0.1121 loss_contrast: 0.221 loss_rpn_cls: 0.05071 loss_rpn_loc: 0.05473 time: 2.8373 data_time: 0.1312 lr: 0.005 max_mem: 29821M +[01/04 18:03:08] d2.utils.events INFO: eta: 3:32:32 iter: 899 total_loss: 0.5592 loss_cls: 0.1251 loss_box_reg: 0.1066 loss_contrast: 0.2209 loss_rpn_cls: 0.04693 loss_rpn_loc: 0.05029 time: 2.8389 data_time: 0.1162 lr: 0.005 max_mem: 29822M +[01/04 18:04:06] d2.utils.events INFO: eta: 3:31:39 iter: 919 total_loss: 0.5746 loss_cls: 0.1337 loss_box_reg: 0.1145 loss_contrast: 0.2209 loss_rpn_cls: 0.04839 loss_rpn_loc: 0.05304 time: 2.8401 data_time: 0.1389 lr: 0.005 max_mem: 29822M +[01/04 18:05:02] d2.utils.events INFO: eta: 3:30:45 iter: 939 total_loss: 0.5844 loss_cls: 0.133 loss_box_reg: 0.1191 loss_contrast: 0.2209 loss_rpn_cls: 0.05281 loss_rpn_loc: 0.05189 time: 2.8395 data_time: 0.1193 lr: 0.005 max_mem: 29822M +[01/04 18:05:58] d2.utils.events INFO: eta: 3:30:13 iter: 959 total_loss: 0.5826 loss_cls: 0.1372 loss_box_reg: 0.1111 loss_contrast: 0.2209 loss_rpn_cls: 0.0513 loss_rpn_loc: 0.05406 time: 2.8383 data_time: 0.1201 lr: 0.005 max_mem: 29822M +[01/04 18:06:53] d2.utils.events INFO: eta: 3:29:05 iter: 979 total_loss: 0.5485 loss_cls: 0.1197 loss_box_reg: 0.1068 loss_contrast: 0.2209 loss_rpn_cls: 0.04825 loss_rpn_loc: 0.05739 time: 2.8368 data_time: 0.1477 lr: 0.005 max_mem: 29822M +[01/04 18:07:59] fvcore.common.checkpoint INFO: Saving checkpoint to checkpoints/coco/10shot_ExAU/model_0000999.pth +[01/04 18:08:16] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 18:08:16] d2.data.common INFO: Serializing 5000 elements to byte tensors and concatenating them all ... +[01/04 18:08:16] d2.data.common INFO: Serialized dataset takes 3.00 MiB +[01/04 18:08:16] defrcn.evaluation.evaluator INFO: Start initializing PCB module, please wait a seconds... +[01/04 18:08:16] defrcn.evaluation.calibration_layer INFO: Loading ImageNet Pre-train Model from ImageNetPretrained/torchvision/resnet101-5d3b4d8f.pth +[01/04 18:08:17] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 18:08:17] d2.data.common INFO: Serializing 402 elements to byte tensors and concatenating them all ... +[01/04 18:08:17] d2.data.common INFO: Serialized dataset takes 0.08 MiB +[01/04 18:08:38] defrcn.evaluation.evaluator INFO: Start inference on 2500 images +[01/04 18:08:49] defrcn.evaluation.evaluator INFO: Inference done 50/2500. 0.0993 s / img. ETA=0:04:03 +[01/04 18:08:54] defrcn.evaluation.evaluator INFO: Inference done 100/2500. 0.0981 s / img. ETA=0:03:55 +[01/04 18:08:59] defrcn.evaluation.evaluator INFO: Inference done 150/2500. 0.0981 s / img. ETA=0:03:50 +[01/04 18:09:04] defrcn.evaluation.evaluator INFO: Inference done 200/2500. 0.0975 s / img. ETA=0:03:44 +[01/04 18:09:09] defrcn.evaluation.evaluator INFO: Inference done 250/2500. 0.0978 s / img. ETA=0:03:40 +[01/04 18:09:14] defrcn.evaluation.evaluator INFO: Inference done 300/2500. 0.0974 s / img. ETA=0:03:34 +[01/04 18:09:18] defrcn.evaluation.evaluator INFO: Inference done 350/2500. 0.0972 s / img. ETA=0:03:28 +[01/04 18:09:23] defrcn.evaluation.evaluator INFO: Inference done 400/2500. 0.0972 s / img. ETA=0:03:24 +[01/04 18:09:28] defrcn.evaluation.evaluator INFO: Inference done 450/2500. 0.0973 s / img. ETA=0:03:19 +[01/04 18:09:33] defrcn.evaluation.evaluator INFO: Inference done 500/2500. 0.0971 s / img. ETA=0:03:14 +[01/04 18:09:38] defrcn.evaluation.evaluator INFO: Inference done 550/2500. 0.0971 s / img. ETA=0:03:09 +[01/04 18:09:43] defrcn.evaluation.evaluator INFO: Inference done 600/2500. 0.0971 s / img. ETA=0:03:04 +[01/04 18:09:48] defrcn.evaluation.evaluator INFO: Inference done 650/2500. 0.0972 s / img. ETA=0:02:59 +[01/04 18:09:52] defrcn.evaluation.evaluator INFO: Inference done 700/2500. 0.0970 s / img. ETA=0:02:54 +[01/04 18:09:57] defrcn.evaluation.evaluator INFO: Inference done 750/2500. 0.0972 s / img. ETA=0:02:50 +[01/04 18:10:02] defrcn.evaluation.evaluator INFO: Inference done 800/2500. 0.0974 s / img. ETA=0:02:45 +[01/04 18:10:07] defrcn.evaluation.evaluator INFO: Inference done 850/2500. 0.0974 s / img. ETA=0:02:40 +[01/04 18:10:12] defrcn.evaluation.evaluator INFO: Inference done 900/2500. 0.0976 s / img. ETA=0:02:36 +[01/04 18:10:17] defrcn.evaluation.evaluator INFO: Inference done 950/2500. 0.0977 s / img. ETA=0:02:31 +[01/04 18:10:22] defrcn.evaluation.evaluator INFO: Inference done 1000/2500. 0.0978 s / img. ETA=0:02:26 +[01/04 18:10:27] defrcn.evaluation.evaluator INFO: Inference done 1050/2500. 0.0979 s / img. ETA=0:02:21 +[01/04 18:10:32] defrcn.evaluation.evaluator INFO: Inference done 1100/2500. 0.0980 s / img. ETA=0:02:17 +[01/04 18:10:37] defrcn.evaluation.evaluator INFO: Inference done 1150/2500. 0.0980 s / img. ETA=0:02:12 +[01/04 18:10:42] defrcn.evaluation.evaluator INFO: Inference done 1200/2500. 0.0981 s / img. ETA=0:02:07 +[01/04 18:10:47] defrcn.evaluation.evaluator INFO: Inference done 1250/2500. 0.0983 s / img. ETA=0:02:02 +[01/04 18:10:52] defrcn.evaluation.evaluator INFO: Inference done 1300/2500. 0.0984 s / img. ETA=0:01:58 +[01/04 18:10:57] defrcn.evaluation.evaluator INFO: Inference done 1350/2500. 0.0985 s / img. ETA=0:01:53 +[01/04 18:11:02] defrcn.evaluation.evaluator INFO: Inference done 1400/2500. 0.0986 s / img. ETA=0:01:48 +[01/04 18:11:07] defrcn.evaluation.evaluator INFO: Inference done 1450/2500. 0.0986 s / img. ETA=0:01:43 +[01/04 18:11:12] defrcn.evaluation.evaluator INFO: Inference done 1500/2500. 0.0987 s / img. ETA=0:01:38 +[01/04 18:11:17] defrcn.evaluation.evaluator INFO: Inference done 1550/2500. 0.0987 s / img. ETA=0:01:33 +[01/04 18:11:22] defrcn.evaluation.evaluator INFO: Inference done 1600/2500. 0.0986 s / img. ETA=0:01:28 +[01/04 18:11:27] defrcn.evaluation.evaluator INFO: Inference done 1650/2500. 0.0985 s / img. ETA=0:01:23 +[01/04 18:11:32] defrcn.evaluation.evaluator INFO: Inference done 1700/2500. 0.0985 s / img. ETA=0:01:18 +[01/04 18:11:37] defrcn.evaluation.evaluator INFO: Inference done 1750/2500. 0.0985 s / img. ETA=0:01:13 +[01/04 18:11:42] defrcn.evaluation.evaluator INFO: Inference done 1800/2500. 0.0985 s / img. ETA=0:01:08 +[01/04 18:11:46] defrcn.evaluation.evaluator INFO: Inference done 1850/2500. 0.0984 s / img. ETA=0:01:03 +[01/04 18:11:51] defrcn.evaluation.evaluator INFO: Inference done 1900/2500. 0.0984 s / img. ETA=0:00:59 +[01/04 18:11:56] defrcn.evaluation.evaluator INFO: Inference done 1950/2500. 0.0984 s / img. ETA=0:00:54 +[01/04 18:12:01] defrcn.evaluation.evaluator INFO: Inference done 2000/2500. 0.0984 s / img. ETA=0:00:49 +[01/04 18:12:06] defrcn.evaluation.evaluator INFO: Inference done 2050/2500. 0.0984 s / img. ETA=0:00:44 +[01/04 18:12:11] defrcn.evaluation.evaluator INFO: Inference done 2100/2500. 0.0984 s / img. ETA=0:00:39 +[01/04 18:12:16] defrcn.evaluation.evaluator INFO: Inference done 2150/2500. 0.0985 s / img. ETA=0:00:34 +[01/04 18:12:21] defrcn.evaluation.evaluator INFO: Inference done 2200/2500. 0.0985 s / img. ETA=0:00:29 +[01/04 18:12:26] defrcn.evaluation.evaluator INFO: Inference done 2250/2500. 0.0985 s / img. ETA=0:00:24 +[01/04 18:12:31] defrcn.evaluation.evaluator INFO: Inference done 2300/2500. 0.0987 s / img. ETA=0:00:19 +[01/04 18:12:36] defrcn.evaluation.evaluator INFO: Inference done 2350/2500. 0.0986 s / img. ETA=0:00:14 +[01/04 18:12:41] defrcn.evaluation.evaluator INFO: Inference done 2400/2500. 0.0986 s / img. ETA=0:00:09 +[01/04 18:12:46] defrcn.evaluation.evaluator INFO: Inference done 2450/2500. 0.0987 s / img. ETA=0:00:04 +[01/04 18:12:51] defrcn.evaluation.evaluator INFO: Inference done 2500/2500. 0.0986 s / img. ETA=0:00:00 +[01/04 18:12:51] defrcn.evaluation.evaluator INFO: Total inference time: 0:04:06 (0.098597 s / img per device, on 2 devices) +[01/04 18:12:51] defrcn.evaluation.evaluator INFO: Total inference pure compute time: 0:03:59 (0.095909 s / img per device, on 2 devices) +[01/04 18:12:52] defrcn.evaluation.coco_evaluation INFO: Preparing results for COCO format ... +[01/04 18:12:52] defrcn.evaluation.coco_evaluation INFO: Saving results to checkpoints/coco/10shot_ExAU/inference/coco_instances_results.json +[01/04 18:12:53] defrcn.evaluation.coco_evaluation INFO: Evaluating predictions ... +[01/04 18:13:14] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 32.045 | 50.419 | 34.064 | 16.468 | 35.544 | 45.826 | +[01/04 18:13:14] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:--------------|:-------|:-------------|:-------|:---------------|:-------| +| person | 2.427 | bicycle | 4.493 | car | 10.175 | +| motorcycle | 13.885 | airplane | 36.162 | bus | 48.652 | +| train | 24.644 | truck | 31.458 | boat | 8.212 | +| traffic light | 25.305 | fire hydrant | 65.272 | stop sign | 70.980 | +| parking meter | 37.207 | bench | 18.358 | bird | 13.659 | +| cat | 26.126 | dog | 23.073 | horse | 15.352 | +| sheep | 7.335 | cow | 20.087 | elephant | 65.770 | +| bear | 55.297 | zebra | 57.328 | giraffe | 66.927 | +| backpack | 18.277 | umbrella | 35.616 | handbag | 16.178 | +| tie | 33.490 | suitcase | 34.747 | frisbee | 58.087 | +| skis | 23.075 | snowboard | 37.009 | sports ball | 39.101 | +| kite | 38.153 | baseball bat | 27.038 | baseball glove | 28.938 | +| skateboard | 47.738 | surfboard | 40.032 | tennis racket | 51.303 | +| bottle | 14.432 | wine glass | 31.607 | cup | 36.389 | +| fork | 35.255 | knife | 16.449 | spoon | 18.891 | +| bowl | 37.112 | banana | 25.307 | apple | 20.709 | +| sandwich | 37.290 | orange | 24.520 | broccoli | 25.579 | +| carrot | 25.126 | hot dog | 34.496 | pizza | 49.791 | +| donut | 51.559 | cake | 39.923 | chair | 4.535 | +| couch | 17.022 | potted plant | 1.581 | bed | 43.006 | +| dining table | 4.832 | toilet | 53.786 | tv | 39.799 | +| laptop | 57.045 | mouse | 45.575 | remote | 28.460 | +| keyboard | 51.297 | cell phone | 26.659 | microwave | 53.857 | +| oven | 35.229 | toaster | 25.328 | sink | 32.477 | +| refrigerator | 53.620 | book | 10.192 | clock | 47.094 | +| vase | 34.341 | scissors | 26.545 | teddy bear | 42.408 | +| hair drier | 5.941 | toothbrush | 21.559 | | | +[01/04 18:13:27] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 37.118 | 57.302 | 39.958 | 19.869 | 41.451 | 52.329 | +[01/04 18:13:27] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:---------------|:-------|:--------------|:-------|:-------------|:-------| +| truck | 31.458 | traffic light | 25.305 | fire hydrant | 65.272 | +| stop sign | 70.980 | parking meter | 37.207 | bench | 18.358 | +| elephant | 65.770 | bear | 55.297 | zebra | 57.328 | +| giraffe | 66.927 | backpack | 18.277 | umbrella | 35.616 | +| handbag | 16.178 | tie | 33.490 | suitcase | 34.747 | +| frisbee | 58.087 | skis | 23.075 | snowboard | 37.009 | +| sports ball | 39.101 | kite | 38.153 | baseball bat | 27.038 | +| baseball glove | 28.938 | skateboard | 47.738 | surfboard | 40.032 | +| tennis racket | 51.303 | wine glass | 31.607 | cup | 36.389 | +| fork | 35.255 | knife | 16.449 | spoon | 18.891 | +| bowl | 37.112 | banana | 25.307 | apple | 20.709 | +| sandwich | 37.290 | orange | 24.520 | broccoli | 25.579 | +| carrot | 25.126 | hot dog | 34.496 | pizza | 49.791 | +| donut | 51.559 | cake | 39.923 | bed | 43.006 | +| toilet | 53.786 | laptop | 57.045 | mouse | 45.575 | +| remote | 28.460 | keyboard | 51.297 | cell phone | 26.659 | +| microwave | 53.857 | oven | 35.229 | toaster | 25.328 | +| sink | 32.477 | refrigerator | 53.620 | book | 10.192 | +| clock | 47.094 | vase | 34.341 | scissors | 26.545 | +| teddy bear | 42.408 | hair drier | 5.941 | toothbrush | 21.559 | +[01/04 18:13:34] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:-----:|:------:|:------:| +| 16.824 | 29.771 | 16.381 | 6.433 | 17.824 | 26.317 | +[01/04 18:13:34] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:-------------|:-------|:-----------|:-------|:-------------|:-------| +| person | 2.427 | bicycle | 4.493 | car | 10.175 | +| motorcycle | 13.885 | airplane | 36.162 | bus | 48.652 | +| train | 24.644 | boat | 8.212 | bird | 13.659 | +| cat | 26.126 | dog | 23.073 | horse | 15.352 | +| sheep | 7.335 | cow | 20.087 | bottle | 14.432 | +| chair | 4.535 | couch | 17.022 | potted plant | 1.581 | +| dining table | 4.832 | tv | 39.799 | | | +[01/04 18:13:34] defrcn.engine.defaults INFO: Evaluation results for coco14_test_all in csv format: +[01/04 18:13:34] defrcn.evaluation.testing INFO: copypaste: Task: bbox +[01/04 18:13:34] defrcn.evaluation.testing INFO: copypaste: AP,AP50,AP75,APs,APm,APl,bAP,bAP50,bAP75,bAPs,bAPm,bAPl,nAP,nAP50,nAP75,nAPs,nAPm,nAPl +[01/04 18:13:34] defrcn.evaluation.testing INFO: copypaste: 32.0449,50.4192,34.0640,16.4677,35.5441,45.8261,37.1184,57.3018,39.9583,19.8693,41.4509,52.3290,16.8242,29.7715,16.3810,6.4328,17.8236,26.3172 +[01/04 18:13:34] d2.utils.events INFO: eta: 3:28:45 iter: 999 total_loss: 0.5594 loss_cls: 0.1222 loss_box_reg: 0.1039 loss_contrast: 0.2208 loss_rpn_cls: 0.05104 loss_rpn_loc: 0.05302 time: 2.8453 data_time: 0.1412 lr: 0.005 max_mem: 29822M +[01/04 18:14:42] d2.utils.events INFO: eta: 3:28:00 iter: 1019 total_loss: 0.7675 loss_cls: 0.1328 loss_box_reg: 0.07763 loss_contrast: 0.2208 loss_rpn_cls: 0.05085 loss_rpn_loc: 0.0564 loss_kld: 0.1212 loss_reg_disitll: 0.1133 time: 2.8554 data_time: 0.1333 lr: 0.005 max_mem: 31724M +[01/04 18:15:46] d2.utils.events INFO: eta: 3:27:26 iter: 1039 total_loss: 0.7756 loss_cls: 0.1416 loss_box_reg: 0.07842 loss_contrast: 0.2208 loss_rpn_cls: 0.05766 loss_rpn_loc: 0.06056 loss_kld: 0.1159 loss_reg_disitll: 0.1101 time: 2.8618 data_time: 0.1262 lr: 0.005 max_mem: 31724M +[01/04 18:16:50] d2.utils.events INFO: eta: 3:27:17 iter: 1059 total_loss: 0.7628 loss_cls: 0.1447 loss_box_reg: 0.07576 loss_contrast: 0.2208 loss_rpn_cls: 0.05477 loss_rpn_loc: 0.04678 loss_kld: 0.1107 loss_reg_disitll: 0.1062 time: 2.8682 data_time: 0.1435 lr: 0.005 max_mem: 31936M +[01/04 18:17:50] d2.utils.events INFO: eta: 3:26:55 iter: 1079 total_loss: 0.7399 loss_cls: 0.1413 loss_box_reg: 0.07487 loss_contrast: 0.2208 loss_rpn_cls: 0.05209 loss_rpn_loc: 0.05874 loss_kld: 0.09966 loss_reg_disitll: 0.1058 time: 2.8710 data_time: 0.1407 lr: 0.005 max_mem: 33452M +[01/04 18:18:52] d2.utils.events INFO: eta: 3:26:46 iter: 1099 total_loss: 0.7277 loss_cls: 0.1366 loss_box_reg: 0.07349 loss_contrast: 0.2207 loss_rpn_cls: 0.04932 loss_rpn_loc: 0.0541 loss_kld: 0.09265 loss_reg_disitll: 0.1045 time: 2.8756 data_time: 0.1271 lr: 0.005 max_mem: 33453M +[01/04 18:20:01] d2.utils.events INFO: eta: 3:26:21 iter: 1119 total_loss: 0.7532 loss_cls: 0.1442 loss_box_reg: 0.08139 loss_contrast: 0.2206 loss_rpn_cls: 0.04737 loss_rpn_loc: 0.05628 loss_kld: 0.09344 loss_reg_disitll: 0.1069 time: 2.8850 data_time: 0.1318 lr: 0.005 max_mem: 33457M +[01/04 18:21:00] d2.utils.events INFO: eta: 3:25:57 iter: 1139 total_loss: 0.7227 loss_cls: 0.1355 loss_box_reg: 0.06913 loss_contrast: 0.2206 loss_rpn_cls: 0.05395 loss_rpn_loc: 0.0591 loss_kld: 0.09161 loss_reg_disitll: 0.09358 time: 2.8868 data_time: 0.1329 lr: 0.005 max_mem: 33457M +[01/04 18:22:05] d2.utils.events INFO: eta: 3:25:38 iter: 1159 total_loss: 0.7065 loss_cls: 0.1385 loss_box_reg: 0.06943 loss_contrast: 0.2206 loss_rpn_cls: 0.04774 loss_rpn_loc: 0.0531 loss_kld: 0.08935 loss_reg_disitll: 0.09531 time: 2.8924 data_time: 0.1134 lr: 0.005 max_mem: 33457M +[01/04 18:23:14] d2.utils.events INFO: eta: 3:25:32 iter: 1179 total_loss: 0.6967 loss_cls: 0.1454 loss_box_reg: 0.07644 loss_contrast: 0.2206 loss_rpn_cls: 0.0446 loss_rpn_loc: 0.04945 loss_kld: 0.0791 loss_reg_disitll: 0.0903 time: 2.9018 data_time: 0.1517 lr: 0.005 max_mem: 33457M +[01/04 18:24:19] fvcore.common.checkpoint INFO: Saving checkpoint to checkpoints/coco/10shot_ExAU/model_0001199.pth +[01/04 18:24:35] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 18:24:35] d2.data.common INFO: Serializing 5000 elements to byte tensors and concatenating them all ... +[01/04 18:24:35] d2.data.common INFO: Serialized dataset takes 3.00 MiB +[01/04 18:24:36] defrcn.evaluation.evaluator INFO: Start initializing PCB module, please wait a seconds... +[01/04 18:24:36] defrcn.evaluation.calibration_layer INFO: Loading ImageNet Pre-train Model from ImageNetPretrained/torchvision/resnet101-5d3b4d8f.pth +[01/04 18:24:37] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 18:24:37] d2.data.common INFO: Serializing 402 elements to byte tensors and concatenating them all ... +[01/04 18:24:37] d2.data.common INFO: Serialized dataset takes 0.08 MiB +[01/04 18:24:58] defrcn.evaluation.evaluator INFO: Start inference on 2500 images +[01/04 18:25:10] defrcn.evaluation.evaluator INFO: Inference done 50/2500. 0.1070 s / img. ETA=0:04:22 +[01/04 18:25:15] defrcn.evaluation.evaluator INFO: Inference done 100/2500. 0.1047 s / img. ETA=0:04:11 +[01/04 18:25:20] defrcn.evaluation.evaluator INFO: Inference done 150/2500. 0.1050 s / img. ETA=0:04:06 +[01/04 18:25:26] defrcn.evaluation.evaluator INFO: Inference done 200/2500. 0.1046 s / img. ETA=0:04:00 +[01/04 18:25:31] defrcn.evaluation.evaluator INFO: Inference done 250/2500. 0.1048 s / img. ETA=0:03:55 +[01/04 18:25:36] defrcn.evaluation.evaluator INFO: Inference done 300/2500. 0.1046 s / img. ETA=0:03:50 +[01/04 18:25:41] defrcn.evaluation.evaluator INFO: Inference done 350/2500. 0.1048 s / img. ETA=0:03:45 +[01/04 18:25:47] defrcn.evaluation.evaluator INFO: Inference done 400/2500. 0.1048 s / img. ETA=0:03:40 +[01/04 18:25:52] defrcn.evaluation.evaluator INFO: Inference done 450/2500. 0.1048 s / img. ETA=0:03:34 +[01/04 18:25:57] defrcn.evaluation.evaluator INFO: Inference done 500/2500. 0.1048 s / img. ETA=0:03:29 +[01/04 18:26:02] defrcn.evaluation.evaluator INFO: Inference done 550/2500. 0.1047 s / img. ETA=0:03:24 +[01/04 18:26:07] defrcn.evaluation.evaluator INFO: Inference done 600/2500. 0.1045 s / img. ETA=0:03:18 +[01/04 18:26:13] defrcn.evaluation.evaluator INFO: Inference done 650/2500. 0.1046 s / img. ETA=0:03:13 +[01/04 18:26:18] defrcn.evaluation.evaluator INFO: Inference done 700/2500. 0.1043 s / img. ETA=0:03:07 +[01/04 18:26:23] defrcn.evaluation.evaluator INFO: Inference done 750/2500. 0.1044 s / img. ETA=0:03:02 +[01/04 18:26:28] defrcn.evaluation.evaluator INFO: Inference done 800/2500. 0.1045 s / img. ETA=0:02:57 +[01/04 18:26:33] defrcn.evaluation.evaluator INFO: Inference done 850/2500. 0.1045 s / img. ETA=0:02:52 +[01/04 18:26:39] defrcn.evaluation.evaluator INFO: Inference done 900/2500. 0.1046 s / img. ETA=0:02:47 +[01/04 18:26:44] defrcn.evaluation.evaluator INFO: Inference done 950/2500. 0.1046 s / img. ETA=0:02:42 +[01/04 18:26:49] defrcn.evaluation.evaluator INFO: Inference done 1000/2500. 0.1046 s / img. ETA=0:02:36 +[01/04 18:26:55] defrcn.evaluation.evaluator INFO: Inference done 1050/2500. 0.1047 s / img. ETA=0:02:31 +[01/04 18:27:00] defrcn.evaluation.evaluator INFO: Inference done 1100/2500. 0.1047 s / img. ETA=0:02:26 +[01/04 18:27:05] defrcn.evaluation.evaluator INFO: Inference done 1150/2500. 0.1048 s / img. ETA=0:02:21 +[01/04 18:27:10] defrcn.evaluation.evaluator INFO: Inference done 1200/2500. 0.1048 s / img. ETA=0:02:16 +[01/04 18:27:16] defrcn.evaluation.evaluator INFO: Inference done 1250/2500. 0.1048 s / img. ETA=0:02:11 +[01/04 18:27:21] defrcn.evaluation.evaluator INFO: Inference done 1300/2500. 0.1050 s / img. ETA=0:02:05 +[01/04 18:27:27] defrcn.evaluation.evaluator INFO: Inference done 1350/2500. 0.1051 s / img. ETA=0:02:00 +[01/04 18:27:32] defrcn.evaluation.evaluator INFO: Inference done 1400/2500. 0.1052 s / img. ETA=0:01:55 +[01/04 18:27:37] defrcn.evaluation.evaluator INFO: Inference done 1450/2500. 0.1052 s / img. ETA=0:01:50 +[01/04 18:27:43] defrcn.evaluation.evaluator INFO: Inference done 1500/2500. 0.1054 s / img. ETA=0:01:45 +[01/04 18:27:48] defrcn.evaluation.evaluator INFO: Inference done 1550/2500. 0.1054 s / img. ETA=0:01:40 +[01/04 18:27:53] defrcn.evaluation.evaluator INFO: Inference done 1600/2500. 0.1053 s / img. ETA=0:01:34 +[01/04 18:27:58] defrcn.evaluation.evaluator INFO: Inference done 1650/2500. 0.1052 s / img. ETA=0:01:29 +[01/04 18:28:04] defrcn.evaluation.evaluator INFO: Inference done 1700/2500. 0.1052 s / img. ETA=0:01:24 +[01/04 18:28:09] defrcn.evaluation.evaluator INFO: Inference done 1750/2500. 0.1053 s / img. ETA=0:01:18 +[01/04 18:28:14] defrcn.evaluation.evaluator INFO: Inference done 1800/2500. 0.1052 s / img. ETA=0:01:13 +[01/04 18:28:19] defrcn.evaluation.evaluator INFO: Inference done 1850/2500. 0.1052 s / img. ETA=0:01:08 +[01/04 18:28:25] defrcn.evaluation.evaluator INFO: Inference done 1900/2500. 0.1052 s / img. ETA=0:01:03 +[01/04 18:28:30] defrcn.evaluation.evaluator INFO: Inference done 1950/2500. 0.1053 s / img. ETA=0:00:57 +[01/04 18:28:35] defrcn.evaluation.evaluator INFO: Inference done 2000/2500. 0.1053 s / img. ETA=0:00:52 +[01/04 18:28:40] defrcn.evaluation.evaluator INFO: Inference done 2050/2500. 0.1052 s / img. ETA=0:00:47 +[01/04 18:28:46] defrcn.evaluation.evaluator INFO: Inference done 2100/2500. 0.1052 s / img. ETA=0:00:42 +[01/04 18:28:51] defrcn.evaluation.evaluator INFO: Inference done 2150/2500. 0.1052 s / img. ETA=0:00:36 +[01/04 18:28:56] defrcn.evaluation.evaluator INFO: Inference done 2200/2500. 0.1051 s / img. ETA=0:00:31 +[01/04 18:29:01] defrcn.evaluation.evaluator INFO: Inference done 2250/2500. 0.1051 s / img. ETA=0:00:26 +[01/04 18:29:06] defrcn.evaluation.evaluator INFO: Inference done 2300/2500. 0.1051 s / img. ETA=0:00:21 +[01/04 18:29:12] defrcn.evaluation.evaluator INFO: Inference done 2350/2500. 0.1051 s / img. ETA=0:00:15 +[01/04 18:29:17] defrcn.evaluation.evaluator INFO: Inference done 2400/2500. 0.1051 s / img. ETA=0:00:10 +[01/04 18:29:22] defrcn.evaluation.evaluator INFO: Inference done 2450/2500. 0.1052 s / img. ETA=0:00:05 +[01/04 18:29:28] defrcn.evaluation.evaluator INFO: Inference done 2500/2500. 0.1052 s / img. ETA=0:00:00 +[01/04 18:29:28] defrcn.evaluation.evaluator INFO: Total inference time: 0:04:22 (0.105010 s / img per device, on 2 devices) +[01/04 18:29:28] defrcn.evaluation.evaluator INFO: Total inference pure compute time: 0:04:16 (0.102764 s / img per device, on 2 devices) +[01/04 18:29:29] defrcn.evaluation.coco_evaluation INFO: Preparing results for COCO format ... +[01/04 18:29:29] defrcn.evaluation.coco_evaluation INFO: Saving results to checkpoints/coco/10shot_ExAU/inference/coco_instances_results.json +[01/04 18:29:30] defrcn.evaluation.coco_evaluation INFO: Evaluating predictions ... +[01/04 18:29:57] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 31.752 | 50.504 | 33.923 | 16.550 | 35.506 | 45.028 | +[01/04 18:29:57] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:--------------|:-------|:-------------|:-------|:---------------|:-------| +| person | 3.637 | bicycle | 5.794 | car | 21.538 | +| motorcycle | 16.051 | airplane | 37.780 | bus | 47.714 | +| train | 25.561 | truck | 26.763 | boat | 10.046 | +| traffic light | 25.050 | fire hydrant | 64.620 | stop sign | 70.850 | +| parking meter | 37.689 | bench | 14.859 | bird | 14.833 | +| cat | 32.148 | dog | 24.966 | horse | 14.967 | +| sheep | 11.887 | cow | 20.839 | elephant | 63.341 | +| bear | 54.470 | zebra | 54.666 | giraffe | 64.369 | +| backpack | 17.816 | umbrella | 34.080 | handbag | 15.443 | +| tie | 31.796 | suitcase | 33.861 | frisbee | 58.513 | +| skis | 22.477 | snowboard | 35.138 | sports ball | 39.010 | +| kite | 37.318 | baseball bat | 26.391 | baseball glove | 29.069 | +| skateboard | 47.111 | surfboard | 38.408 | tennis racket | 50.141 | +| bottle | 16.277 | wine glass | 30.859 | cup | 34.468 | +| fork | 32.565 | knife | 14.783 | spoon | 17.581 | +| bowl | 35.817 | banana | 22.335 | apple | 19.058 | +| sandwich | 33.635 | orange | 22.857 | broccoli | 24.422 | +| carrot | 25.493 | hot dog | 33.238 | pizza | 46.891 | +| donut | 50.864 | cake | 39.003 | chair | 7.102 | +| couch | 16.873 | potted plant | 1.836 | bed | 40.872 | +| dining table | 3.795 | toilet | 52.681 | tv | 41.923 | +| laptop | 55.350 | mouse | 46.088 | remote | 27.636 | +| keyboard | 51.899 | cell phone | 25.747 | microwave | 51.626 | +| oven | 33.221 | toaster | 28.796 | sink | 32.446 | +| refrigerator | 52.877 | book | 9.198 | clock | 47.441 | +| vase | 32.037 | scissors | 27.366 | teddy bear | 37.685 | +| hair drier | 14.257 | toothbrush | 20.279 | | | +[01/04 18:30:12] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 36.077 | 56.429 | 38.948 | 19.556 | 40.587 | 50.498 | +[01/04 18:30:12] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:---------------|:-------|:--------------|:-------|:-------------|:-------| +| truck | 26.763 | traffic light | 25.050 | fire hydrant | 64.620 | +| stop sign | 70.850 | parking meter | 37.689 | bench | 14.859 | +| elephant | 63.341 | bear | 54.470 | zebra | 54.666 | +| giraffe | 64.369 | backpack | 17.816 | umbrella | 34.080 | +| handbag | 15.443 | tie | 31.796 | suitcase | 33.861 | +| frisbee | 58.513 | skis | 22.477 | snowboard | 35.138 | +| sports ball | 39.010 | kite | 37.318 | baseball bat | 26.391 | +| baseball glove | 29.069 | skateboard | 47.111 | surfboard | 38.408 | +| tennis racket | 50.141 | wine glass | 30.859 | cup | 34.468 | +| fork | 32.565 | knife | 14.783 | spoon | 17.581 | +| bowl | 35.817 | banana | 22.335 | apple | 19.058 | +| sandwich | 33.635 | orange | 22.857 | broccoli | 24.422 | +| carrot | 25.493 | hot dog | 33.238 | pizza | 46.891 | +| donut | 50.864 | cake | 39.003 | bed | 40.872 | +| toilet | 52.681 | laptop | 55.350 | mouse | 46.088 | +| remote | 27.636 | keyboard | 51.899 | cell phone | 25.747 | +| microwave | 51.626 | oven | 33.221 | toaster | 28.796 | +| sink | 32.446 | refrigerator | 52.877 | book | 9.198 | +| clock | 47.441 | vase | 32.037 | scissors | 27.366 | +| teddy bear | 37.685 | hair drier | 14.257 | toothbrush | 20.279 | +[01/04 18:30:23] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:-----:|:------:|:------:| +| 18.778 | 32.729 | 18.847 | 7.682 | 20.261 | 28.619 | +[01/04 18:30:23] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:-------------|:-------|:-----------|:-------|:-------------|:-------| +| person | 3.637 | bicycle | 5.794 | car | 21.538 | +| motorcycle | 16.051 | airplane | 37.780 | bus | 47.714 | +| train | 25.561 | boat | 10.046 | bird | 14.833 | +| cat | 32.148 | dog | 24.966 | horse | 14.967 | +| sheep | 11.887 | cow | 20.839 | bottle | 16.277 | +| chair | 7.102 | couch | 16.873 | potted plant | 1.836 | +| dining table | 3.795 | tv | 41.923 | | | +[01/04 18:30:23] defrcn.engine.defaults INFO: Evaluation results for coco14_test_all in csv format: +[01/04 18:30:23] defrcn.evaluation.testing INFO: copypaste: Task: bbox +[01/04 18:30:23] defrcn.evaluation.testing INFO: copypaste: AP,AP50,AP75,APs,APm,APl,bAP,bAP50,bAP75,bAPs,bAPm,bAPl,nAP,nAP50,nAP75,nAPs,nAPm,nAPl +[01/04 18:30:23] defrcn.evaluation.testing INFO: copypaste: 31.7523,50.5040,33.9228,16.5497,35.5057,45.0281,36.0770,56.4290,38.9482,19.5557,40.5872,50.4978,18.7784,32.7291,18.8465,7.6819,20.2614,28.6189 +[01/04 18:30:24] d2.utils.events INFO: eta: 3:25:06 iter: 1199 total_loss: 0.6954 loss_cls: 0.1382 loss_box_reg: 0.0687 loss_contrast: 0.2206 loss_rpn_cls: 0.04762 loss_rpn_loc: 0.04907 loss_kld: 0.08162 loss_reg_disitll: 0.0881 time: 2.9079 data_time: 0.1264 lr: 0.005 max_mem: 33457M +[01/04 18:31:33] d2.utils.events INFO: eta: 3:24:58 iter: 1219 total_loss: 0.7088 loss_cls: 0.141 loss_box_reg: 0.07341 loss_contrast: 0.2205 loss_rpn_cls: 0.0484 loss_rpn_loc: 0.0561 loss_kld: 0.07997 loss_reg_disitll: 0.09201 time: 2.9169 data_time: 0.1213 lr: 0.005 max_mem: 33457M +[01/04 18:32:47] d2.utils.events INFO: eta: 3:24:21 iter: 1239 total_loss: 0.703 loss_cls: 0.1414 loss_box_reg: 0.06929 loss_contrast: 0.2205 loss_rpn_cls: 0.04971 loss_rpn_loc: 0.05282 loss_kld: 0.08334 loss_reg_disitll: 0.08865 time: 2.9297 data_time: 0.1333 lr: 0.005 max_mem: 33457M +[01/04 18:33:49] d2.utils.events INFO: eta: 3:24:14 iter: 1259 total_loss: 0.7055 loss_cls: 0.142 loss_box_reg: 0.07232 loss_contrast: 0.2206 loss_rpn_cls: 0.04504 loss_rpn_loc: 0.0523 loss_kld: 0.07857 loss_reg_disitll: 0.0929 time: 2.9324 data_time: 0.1299 lr: 0.005 max_mem: 33457M +[01/04 18:34:58] d2.utils.events INFO: eta: 3:24:01 iter: 1279 total_loss: 0.706 loss_cls: 0.1373 loss_box_reg: 0.06884 loss_contrast: 0.2205 loss_rpn_cls: 0.04698 loss_rpn_loc: 0.06222 loss_kld: 0.07626 loss_reg_disitll: 0.08521 time: 2.9407 data_time: 0.1250 lr: 0.005 max_mem: 33457M +[01/04 18:36:07] d2.utils.events INFO: eta: 3:24:09 iter: 1299 total_loss: 0.7002 loss_cls: 0.1364 loss_box_reg: 0.06958 loss_contrast: 0.2206 loss_rpn_cls: 0.0492 loss_rpn_loc: 0.05512 loss_kld: 0.07663 loss_reg_disitll: 0.08683 time: 2.9482 data_time: 0.1232 lr: 0.005 max_mem: 33457M +[01/04 18:37:08] d2.utils.events INFO: eta: 3:23:45 iter: 1319 total_loss: 0.6736 loss_cls: 0.1321 loss_box_reg: 0.06833 loss_contrast: 0.2205 loss_rpn_cls: 0.04318 loss_rpn_loc: 0.05265 loss_kld: 0.07696 loss_reg_disitll: 0.0845 time: 2.9499 data_time: 0.1245 lr: 0.005 max_mem: 33457M +[01/04 18:38:11] d2.utils.events INFO: eta: 3:23:27 iter: 1339 total_loss: 0.6816 loss_cls: 0.1321 loss_box_reg: 0.0684 loss_contrast: 0.2205 loss_rpn_cls: 0.04995 loss_rpn_loc: 0.05473 loss_kld: 0.07435 loss_reg_disitll: 0.08299 time: 2.9529 data_time: 0.1241 lr: 0.005 max_mem: 33457M +[01/04 18:39:14] d2.utils.events INFO: eta: 3:23:00 iter: 1359 total_loss: 0.6833 loss_cls: 0.1421 loss_box_reg: 0.06653 loss_contrast: 0.2204 loss_rpn_cls: 0.04726 loss_rpn_loc: 0.05254 loss_kld: 0.07758 loss_reg_disitll: 0.08325 time: 2.9559 data_time: 0.1346 lr: 0.005 max_mem: 33457M +[01/04 18:40:20] d2.utils.events INFO: eta: 3:22:44 iter: 1379 total_loss: 0.6716 loss_cls: 0.1326 loss_box_reg: 0.06715 loss_contrast: 0.2204 loss_rpn_cls: 0.04565 loss_rpn_loc: 0.05247 loss_kld: 0.07507 loss_reg_disitll: 0.08039 time: 2.9602 data_time: 0.1251 lr: 0.005 max_mem: 33457M +[01/04 18:41:23] fvcore.common.checkpoint INFO: Saving checkpoint to checkpoints/coco/10shot_ExAU/model_0001399.pth +[01/04 18:41:39] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 18:41:39] d2.data.common INFO: Serializing 5000 elements to byte tensors and concatenating them all ... +[01/04 18:41:39] d2.data.common INFO: Serialized dataset takes 3.00 MiB +[01/04 18:41:39] defrcn.evaluation.evaluator INFO: Start initializing PCB module, please wait a seconds... +[01/04 18:41:39] defrcn.evaluation.calibration_layer INFO: Loading ImageNet Pre-train Model from ImageNetPretrained/torchvision/resnet101-5d3b4d8f.pth +[01/04 18:41:40] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 18:41:40] d2.data.common INFO: Serializing 402 elements to byte tensors and concatenating them all ... +[01/04 18:41:40] d2.data.common INFO: Serialized dataset takes 0.08 MiB +[01/04 18:42:01] defrcn.evaluation.evaluator INFO: Start inference on 2500 images +[01/04 18:42:13] defrcn.evaluation.evaluator INFO: Inference done 50/2500. 0.1088 s / img. ETA=0:04:26 +[01/04 18:42:18] defrcn.evaluation.evaluator INFO: Inference done 100/2500. 0.1057 s / img. ETA=0:04:13 +[01/04 18:42:23] defrcn.evaluation.evaluator INFO: Inference done 150/2500. 0.1057 s / img. ETA=0:04:08 +[01/04 18:42:28] defrcn.evaluation.evaluator INFO: Inference done 200/2500. 0.1050 s / img. ETA=0:04:01 +[01/04 18:42:34] defrcn.evaluation.evaluator INFO: Inference done 250/2500. 0.1051 s / img. ETA=0:03:56 +[01/04 18:42:39] defrcn.evaluation.evaluator INFO: Inference done 300/2500. 0.1048 s / img. ETA=0:03:50 +[01/04 18:42:44] defrcn.evaluation.evaluator INFO: Inference done 350/2500. 0.1044 s / img. ETA=0:03:44 +[01/04 18:42:49] defrcn.evaluation.evaluator INFO: Inference done 400/2500. 0.1045 s / img. ETA=0:03:39 +[01/04 18:42:55] defrcn.evaluation.evaluator INFO: Inference done 450/2500. 0.1045 s / img. ETA=0:03:34 +[01/04 18:43:00] defrcn.evaluation.evaluator INFO: Inference done 500/2500. 0.1045 s / img. ETA=0:03:29 +[01/04 18:43:05] defrcn.evaluation.evaluator INFO: Inference done 550/2500. 0.1045 s / img. ETA=0:03:23 +[01/04 18:43:10] defrcn.evaluation.evaluator INFO: Inference done 600/2500. 0.1044 s / img. ETA=0:03:18 +[01/04 18:43:16] defrcn.evaluation.evaluator INFO: Inference done 650/2500. 0.1049 s / img. ETA=0:03:14 +[01/04 18:43:21] defrcn.evaluation.evaluator INFO: Inference done 700/2500. 0.1046 s / img. ETA=0:03:08 +[01/04 18:43:26] defrcn.evaluation.evaluator INFO: Inference done 750/2500. 0.1046 s / img. ETA=0:03:03 +[01/04 18:43:31] defrcn.evaluation.evaluator INFO: Inference done 800/2500. 0.1048 s / img. ETA=0:02:58 +[01/04 18:43:37] defrcn.evaluation.evaluator INFO: Inference done 850/2500. 0.1048 s / img. ETA=0:02:52 +[01/04 18:43:42] defrcn.evaluation.evaluator INFO: Inference done 900/2500. 0.1049 s / img. ETA=0:02:47 +[01/04 18:43:47] defrcn.evaluation.evaluator INFO: Inference done 950/2500. 0.1050 s / img. ETA=0:02:42 +[01/04 18:43:52] defrcn.evaluation.evaluator INFO: Inference done 1000/2500. 0.1050 s / img. ETA=0:02:37 +[01/04 18:43:58] defrcn.evaluation.evaluator INFO: Inference done 1050/2500. 0.1051 s / img. ETA=0:02:32 +[01/04 18:44:03] defrcn.evaluation.evaluator INFO: Inference done 1100/2500. 0.1053 s / img. ETA=0:02:27 +[01/04 18:44:09] defrcn.evaluation.evaluator INFO: Inference done 1150/2500. 0.1054 s / img. ETA=0:02:22 +[01/04 18:44:14] defrcn.evaluation.evaluator INFO: Inference done 1200/2500. 0.1054 s / img. ETA=0:02:17 +[01/04 18:44:19] defrcn.evaluation.evaluator INFO: Inference done 1250/2500. 0.1054 s / img. ETA=0:02:11 +[01/04 18:44:25] defrcn.evaluation.evaluator INFO: Inference done 1300/2500. 0.1056 s / img. ETA=0:02:06 +[01/04 18:44:30] defrcn.evaluation.evaluator INFO: Inference done 1350/2500. 0.1057 s / img. ETA=0:02:01 +[01/04 18:44:36] defrcn.evaluation.evaluator INFO: Inference done 1400/2500. 0.1058 s / img. ETA=0:01:56 +[01/04 18:44:41] defrcn.evaluation.evaluator INFO: Inference done 1450/2500. 0.1058 s / img. ETA=0:01:51 +[01/04 18:44:46] defrcn.evaluation.evaluator INFO: Inference done 1500/2500. 0.1058 s / img. ETA=0:01:45 +[01/04 18:44:51] defrcn.evaluation.evaluator INFO: Inference done 1550/2500. 0.1058 s / img. ETA=0:01:40 +[01/04 18:44:57] defrcn.evaluation.evaluator INFO: Inference done 1600/2500. 0.1057 s / img. ETA=0:01:35 +[01/04 18:45:02] defrcn.evaluation.evaluator INFO: Inference done 1650/2500. 0.1056 s / img. ETA=0:01:29 +[01/04 18:45:07] defrcn.evaluation.evaluator INFO: Inference done 1700/2500. 0.1056 s / img. ETA=0:01:24 +[01/04 18:45:12] defrcn.evaluation.evaluator INFO: Inference done 1750/2500. 0.1056 s / img. ETA=0:01:19 +[01/04 18:45:18] defrcn.evaluation.evaluator INFO: Inference done 1800/2500. 0.1056 s / img. ETA=0:01:13 +[01/04 18:45:23] defrcn.evaluation.evaluator INFO: Inference done 1850/2500. 0.1056 s / img. ETA=0:01:08 +[01/04 18:45:28] defrcn.evaluation.evaluator INFO: Inference done 1900/2500. 0.1056 s / img. ETA=0:01:03 +[01/04 18:45:33] defrcn.evaluation.evaluator INFO: Inference done 1950/2500. 0.1056 s / img. ETA=0:00:58 +[01/04 18:45:39] defrcn.evaluation.evaluator INFO: Inference done 2000/2500. 0.1056 s / img. ETA=0:00:52 +[01/04 18:45:44] defrcn.evaluation.evaluator INFO: Inference done 2050/2500. 0.1055 s / img. ETA=0:00:47 +[01/04 18:45:49] defrcn.evaluation.evaluator INFO: Inference done 2100/2500. 0.1055 s / img. ETA=0:00:42 +[01/04 18:45:54] defrcn.evaluation.evaluator INFO: Inference done 2150/2500. 0.1055 s / img. ETA=0:00:36 +[01/04 18:45:59] defrcn.evaluation.evaluator INFO: Inference done 2200/2500. 0.1054 s / img. ETA=0:00:31 +[01/04 18:46:05] defrcn.evaluation.evaluator INFO: Inference done 2250/2500. 0.1054 s / img. ETA=0:00:26 +[01/04 18:46:10] defrcn.evaluation.evaluator INFO: Inference done 2300/2500. 0.1054 s / img. ETA=0:00:21 +[01/04 18:46:15] defrcn.evaluation.evaluator INFO: Inference done 2350/2500. 0.1055 s / img. ETA=0:00:15 +[01/04 18:46:21] defrcn.evaluation.evaluator INFO: Inference done 2400/2500. 0.1055 s / img. ETA=0:00:10 +[01/04 18:46:26] defrcn.evaluation.evaluator INFO: Inference done 2450/2500. 0.1056 s / img. ETA=0:00:05 +[01/04 18:46:31] defrcn.evaluation.evaluator INFO: Inference done 2500/2500. 0.1056 s / img. ETA=0:00:00 +[01/04 18:46:32] defrcn.evaluation.evaluator INFO: Total inference time: 0:04:23 (0.105411 s / img per device, on 2 devices) +[01/04 18:46:32] defrcn.evaluation.evaluator INFO: Total inference pure compute time: 0:04:17 (0.103065 s / img per device, on 2 devices) +[01/04 18:46:33] defrcn.evaluation.coco_evaluation INFO: Preparing results for COCO format ... +[01/04 18:46:33] defrcn.evaluation.coco_evaluation INFO: Saving results to checkpoints/coco/10shot_ExAU/inference/coco_instances_results.json +[01/04 18:46:34] defrcn.evaluation.coco_evaluation INFO: Evaluating predictions ... +[01/04 18:47:01] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 31.835 | 50.534 | 33.902 | 16.514 | 35.719 | 45.138 | +[01/04 18:47:01] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:--------------|:-------|:-------------|:-------|:---------------|:-------| +| person | 3.993 | bicycle | 6.648 | car | 23.250 | +| motorcycle | 15.921 | airplane | 37.497 | bus | 48.725 | +| train | 25.367 | truck | 27.860 | boat | 10.034 | +| traffic light | 24.913 | fire hydrant | 66.294 | stop sign | 70.569 | +| parking meter | 37.773 | bench | 15.636 | bird | 15.028 | +| cat | 32.845 | dog | 25.863 | horse | 15.064 | +| sheep | 12.699 | cow | 21.474 | elephant | 63.279 | +| bear | 56.972 | zebra | 54.852 | giraffe | 61.377 | +| backpack | 17.402 | umbrella | 33.894 | handbag | 15.317 | +| tie | 32.487 | suitcase | 34.042 | frisbee | 57.361 | +| skis | 21.820 | snowboard | 35.746 | sports ball | 38.694 | +| kite | 37.376 | baseball bat | 25.198 | baseball glove | 28.848 | +| skateboard | 48.785 | surfboard | 38.219 | tennis racket | 49.041 | +| bottle | 16.927 | wine glass | 29.911 | cup | 34.300 | +| fork | 33.776 | knife | 14.400 | spoon | 17.773 | +| bowl | 35.652 | banana | 21.205 | apple | 18.089 | +| sandwich | 33.369 | orange | 21.473 | broccoli | 25.308 | +| carrot | 24.816 | hot dog | 32.738 | pizza | 46.642 | +| donut | 51.587 | cake | 38.598 | chair | 7.435 | +| couch | 16.150 | potted plant | 2.076 | bed | 41.568 | +| dining table | 3.652 | toilet | 52.926 | tv | 42.982 | +| laptop | 55.596 | mouse | 45.504 | remote | 27.298 | +| keyboard | 51.701 | cell phone | 25.354 | microwave | 52.108 | +| oven | 33.888 | toaster | 28.040 | sink | 31.867 | +| refrigerator | 53.374 | book | 9.546 | clock | 47.430 | +| vase | 32.657 | scissors | 26.367 | teddy bear | 37.278 | +| hair drier | 15.149 | toothbrush | 22.164 | | | +[01/04 18:47:15] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 36.053 | 56.276 | 38.693 | 19.490 | 40.636 | 50.383 | +[01/04 18:47:15] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:---------------|:-------|:--------------|:-------|:-------------|:-------| +| truck | 27.860 | traffic light | 24.913 | fire hydrant | 66.294 | +| stop sign | 70.569 | parking meter | 37.773 | bench | 15.636 | +| elephant | 63.279 | bear | 56.972 | zebra | 54.852 | +| giraffe | 61.377 | backpack | 17.402 | umbrella | 33.894 | +| handbag | 15.317 | tie | 32.487 | suitcase | 34.042 | +| frisbee | 57.361 | skis | 21.820 | snowboard | 35.746 | +| sports ball | 38.694 | kite | 37.376 | baseball bat | 25.198 | +| baseball glove | 28.848 | skateboard | 48.785 | surfboard | 38.219 | +| tennis racket | 49.041 | wine glass | 29.911 | cup | 34.300 | +| fork | 33.776 | knife | 14.400 | spoon | 17.773 | +| bowl | 35.652 | banana | 21.205 | apple | 18.089 | +| sandwich | 33.369 | orange | 21.473 | broccoli | 25.308 | +| carrot | 24.816 | hot dog | 32.738 | pizza | 46.642 | +| donut | 51.587 | cake | 38.598 | bed | 41.568 | +| toilet | 52.926 | laptop | 55.596 | mouse | 45.504 | +| remote | 27.298 | keyboard | 51.701 | cell phone | 25.354 | +| microwave | 52.108 | oven | 33.888 | toaster | 28.040 | +| sink | 31.867 | refrigerator | 53.374 | book | 9.546 | +| clock | 47.430 | vase | 32.657 | scissors | 26.367 | +| teddy bear | 37.278 | hair drier | 15.149 | toothbrush | 22.164 | +[01/04 18:47:28] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:-----:|:------:|:------:| +| 19.182 | 33.308 | 19.528 | 7.734 | 20.969 | 29.404 | +[01/04 18:47:28] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:-------------|:-------|:-----------|:-------|:-------------|:-------| +| person | 3.993 | bicycle | 6.648 | car | 23.250 | +| motorcycle | 15.921 | airplane | 37.497 | bus | 48.725 | +| train | 25.367 | boat | 10.034 | bird | 15.028 | +| cat | 32.845 | dog | 25.863 | horse | 15.064 | +| sheep | 12.699 | cow | 21.474 | bottle | 16.927 | +| chair | 7.435 | couch | 16.150 | potted plant | 2.076 | +| dining table | 3.652 | tv | 42.982 | | | +[01/04 18:47:28] defrcn.engine.defaults INFO: Evaluation results for coco14_test_all in csv format: +[01/04 18:47:28] defrcn.evaluation.testing INFO: copypaste: Task: bbox +[01/04 18:47:28] defrcn.evaluation.testing INFO: copypaste: AP,AP50,AP75,APs,APm,APl,bAP,bAP50,bAP75,bAPs,bAPm,bAPl,nAP,nAP50,nAP75,nAPs,nAPm,nAPl +[01/04 18:47:28] defrcn.evaluation.testing INFO: copypaste: 31.8355,50.5340,33.9016,16.5141,35.7193,45.1383,36.0535,56.2760,38.6929,19.4904,40.6360,50.3830,19.1815,33.3081,19.5277,7.7342,20.9693,29.4043 +[01/04 18:47:28] d2.utils.events INFO: eta: 3:22:17 iter: 1399 total_loss: 0.6809 loss_cls: 0.1394 loss_box_reg: 0.07096 loss_contrast: 0.2205 loss_rpn_cls: 0.04874 loss_rpn_loc: 0.04703 loss_kld: 0.07356 loss_reg_disitll: 0.08364 time: 2.9629 data_time: 0.1306 lr: 0.005 max_mem: 33457M +[01/04 18:48:29] d2.utils.events INFO: eta: 3:22:00 iter: 1419 total_loss: 0.689 loss_cls: 0.1399 loss_box_reg: 0.06959 loss_contrast: 0.2204 loss_rpn_cls: 0.05064 loss_rpn_loc: 0.05889 loss_kld: 0.07341 loss_reg_disitll: 0.08342 time: 2.9643 data_time: 0.1291 lr: 0.005 max_mem: 33457M +[01/04 18:49:39] d2.utils.events INFO: eta: 3:21:44 iter: 1439 total_loss: 0.6672 loss_cls: 0.1377 loss_box_reg: 0.06942 loss_contrast: 0.2204 loss_rpn_cls: 0.04537 loss_rpn_loc: 0.05662 loss_kld: 0.07483 loss_reg_disitll: 0.07938 time: 2.9711 data_time: 0.1344 lr: 0.005 max_mem: 33457M +[01/04 18:50:46] d2.utils.events INFO: eta: 3:21:28 iter: 1459 total_loss: 0.6658 loss_cls: 0.1423 loss_box_reg: 0.07111 loss_contrast: 0.2205 loss_rpn_cls: 0.0459 loss_rpn_loc: 0.05186 loss_kld: 0.07128 loss_reg_disitll: 0.08174 time: 2.9763 data_time: 0.1336 lr: 0.005 max_mem: 33457M +[01/04 18:51:58] d2.utils.events INFO: eta: 3:21:04 iter: 1479 total_loss: 0.6811 loss_cls: 0.1338 loss_box_reg: 0.06873 loss_contrast: 0.2203 loss_rpn_cls: 0.05056 loss_rpn_loc: 0.06076 loss_kld: 0.07525 loss_reg_disitll: 0.07894 time: 2.9851 data_time: 0.1354 lr: 0.005 max_mem: 33457M +[01/04 18:53:01] d2.utils.events INFO: eta: 3:21:04 iter: 1499 total_loss: 0.6736 loss_cls: 0.1382 loss_box_reg: 0.06784 loss_contrast: 0.2204 loss_rpn_cls: 0.05392 loss_rpn_loc: 0.05209 loss_kld: 0.07085 loss_reg_disitll: 0.0775 time: 2.9872 data_time: 0.1279 lr: 0.005 max_mem: 33457M +[01/04 18:54:06] d2.utils.events INFO: eta: 3:20:39 iter: 1519 total_loss: 0.6802 loss_cls: 0.1386 loss_box_reg: 0.06851 loss_contrast: 0.2204 loss_rpn_cls: 0.04463 loss_rpn_loc: 0.05067 loss_kld: 0.07478 loss_reg_disitll: 0.08347 time: 2.9904 data_time: 0.1334 lr: 0.005 max_mem: 33457M +[01/04 18:55:10] d2.utils.events INFO: eta: 3:20:19 iter: 1539 total_loss: 0.6657 loss_cls: 0.1329 loss_box_reg: 0.0682 loss_contrast: 0.2204 loss_rpn_cls: 0.04685 loss_rpn_loc: 0.05146 loss_kld: 0.07362 loss_reg_disitll: 0.08028 time: 2.9930 data_time: 0.1242 lr: 0.005 max_mem: 33457M +[01/04 18:56:13] d2.utils.events INFO: eta: 3:19:48 iter: 1559 total_loss: 0.6496 loss_cls: 0.1296 loss_box_reg: 0.06019 loss_contrast: 0.2203 loss_rpn_cls: 0.04207 loss_rpn_loc: 0.04878 loss_kld: 0.07146 loss_reg_disitll: 0.07321 time: 2.9950 data_time: 0.1306 lr: 0.005 max_mem: 33457M +[01/04 18:57:19] d2.utils.events INFO: eta: 3:19:17 iter: 1579 total_loss: 0.6806 loss_cls: 0.1476 loss_box_reg: 0.07221 loss_contrast: 0.2204 loss_rpn_cls: 0.04456 loss_rpn_loc: 0.05373 loss_kld: 0.0723 loss_reg_disitll: 0.07817 time: 2.9988 data_time: 0.1155 lr: 0.005 max_mem: 33457M +[01/04 18:58:21] fvcore.common.checkpoint INFO: Saving checkpoint to checkpoints/coco/10shot_ExAU/model_0001599.pth +[01/04 18:58:37] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 18:58:37] d2.data.common INFO: Serializing 5000 elements to byte tensors and concatenating them all ... +[01/04 18:58:37] d2.data.common INFO: Serialized dataset takes 3.00 MiB +[01/04 18:58:37] defrcn.evaluation.evaluator INFO: Start initializing PCB module, please wait a seconds... +[01/04 18:58:37] defrcn.evaluation.calibration_layer INFO: Loading ImageNet Pre-train Model from ImageNetPretrained/torchvision/resnet101-5d3b4d8f.pth +[01/04 18:58:39] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 18:58:39] d2.data.common INFO: Serializing 402 elements to byte tensors and concatenating them all ... +[01/04 18:58:39] d2.data.common INFO: Serialized dataset takes 0.08 MiB +[01/04 18:58:59] defrcn.evaluation.evaluator INFO: Start inference on 2500 images +[01/04 18:59:11] defrcn.evaluation.evaluator INFO: Inference done 50/2500. 0.1060 s / img. ETA=0:04:19 +[01/04 18:59:16] defrcn.evaluation.evaluator INFO: Inference done 100/2500. 0.1037 s / img. ETA=0:04:08 +[01/04 18:59:22] defrcn.evaluation.evaluator INFO: Inference done 150/2500. 0.1039 s / img. ETA=0:04:04 +[01/04 18:59:27] defrcn.evaluation.evaluator INFO: Inference done 200/2500. 0.1034 s / img. ETA=0:03:57 +[01/04 18:59:32] defrcn.evaluation.evaluator INFO: Inference done 250/2500. 0.1036 s / img. ETA=0:03:53 +[01/04 18:59:37] defrcn.evaluation.evaluator INFO: Inference done 300/2500. 0.1032 s / img. ETA=0:03:47 +[01/04 18:59:42] defrcn.evaluation.evaluator INFO: Inference done 350/2500. 0.1029 s / img. ETA=0:03:41 +[01/04 18:59:47] defrcn.evaluation.evaluator INFO: Inference done 400/2500. 0.1029 s / img. ETA=0:03:36 +[01/04 18:59:52] defrcn.evaluation.evaluator INFO: Inference done 450/2500. 0.1030 s / img. ETA=0:03:31 +[01/04 18:59:57] defrcn.evaluation.evaluator INFO: Inference done 500/2500. 0.1030 s / img. ETA=0:03:26 +[01/04 19:00:03] defrcn.evaluation.evaluator INFO: Inference done 550/2500. 0.1030 s / img. ETA=0:03:20 +[01/04 19:00:08] defrcn.evaluation.evaluator INFO: Inference done 600/2500. 0.1029 s / img. ETA=0:03:15 +[01/04 19:00:13] defrcn.evaluation.evaluator INFO: Inference done 650/2500. 0.1030 s / img. ETA=0:03:10 +[01/04 19:00:18] defrcn.evaluation.evaluator INFO: Inference done 700/2500. 0.1028 s / img. ETA=0:03:05 +[01/04 19:00:23] defrcn.evaluation.evaluator INFO: Inference done 750/2500. 0.1029 s / img. ETA=0:02:59 +[01/04 19:00:28] defrcn.evaluation.evaluator INFO: Inference done 800/2500. 0.1030 s / img. ETA=0:02:55 +[01/04 19:00:34] defrcn.evaluation.evaluator INFO: Inference done 850/2500. 0.1030 s / img. ETA=0:02:49 +[01/04 19:00:39] defrcn.evaluation.evaluator INFO: Inference done 900/2500. 0.1032 s / img. ETA=0:02:45 +[01/04 19:00:44] defrcn.evaluation.evaluator INFO: Inference done 950/2500. 0.1032 s / img. ETA=0:02:39 +[01/04 19:00:49] defrcn.evaluation.evaluator INFO: Inference done 1000/2500. 0.1033 s / img. ETA=0:02:34 +[01/04 19:00:54] defrcn.evaluation.evaluator INFO: Inference done 1050/2500. 0.1033 s / img. ETA=0:02:29 +[01/04 19:01:00] defrcn.evaluation.evaluator INFO: Inference done 1100/2500. 0.1033 s / img. ETA=0:02:24 +[01/04 19:01:05] defrcn.evaluation.evaluator INFO: Inference done 1150/2500. 0.1034 s / img. ETA=0:02:19 +[01/04 19:01:10] defrcn.evaluation.evaluator INFO: Inference done 1200/2500. 0.1034 s / img. ETA=0:02:14 +[01/04 19:01:15] defrcn.evaluation.evaluator INFO: Inference done 1250/2500. 0.1035 s / img. ETA=0:02:09 +[01/04 19:01:21] defrcn.evaluation.evaluator INFO: Inference done 1300/2500. 0.1036 s / img. ETA=0:02:04 +[01/04 19:01:26] defrcn.evaluation.evaluator INFO: Inference done 1350/2500. 0.1038 s / img. ETA=0:01:59 +[01/04 19:01:31] defrcn.evaluation.evaluator INFO: Inference done 1400/2500. 0.1039 s / img. ETA=0:01:54 +[01/04 19:01:37] defrcn.evaluation.evaluator INFO: Inference done 1450/2500. 0.1038 s / img. ETA=0:01:49 +[01/04 19:01:42] defrcn.evaluation.evaluator INFO: Inference done 1500/2500. 0.1039 s / img. ETA=0:01:43 +[01/04 19:01:47] defrcn.evaluation.evaluator INFO: Inference done 1550/2500. 0.1038 s / img. ETA=0:01:38 +[01/04 19:01:52] defrcn.evaluation.evaluator INFO: Inference done 1600/2500. 0.1037 s / img. ETA=0:01:33 +[01/04 19:01:57] defrcn.evaluation.evaluator INFO: Inference done 1650/2500. 0.1037 s / img. ETA=0:01:28 +[01/04 19:02:02] defrcn.evaluation.evaluator INFO: Inference done 1700/2500. 0.1037 s / img. ETA=0:01:22 +[01/04 19:02:08] defrcn.evaluation.evaluator INFO: Inference done 1750/2500. 0.1037 s / img. ETA=0:01:17 +[01/04 19:02:13] defrcn.evaluation.evaluator INFO: Inference done 1800/2500. 0.1037 s / img. ETA=0:01:12 +[01/04 19:02:18] defrcn.evaluation.evaluator INFO: Inference done 1850/2500. 0.1037 s / img. ETA=0:01:07 +[01/04 19:02:23] defrcn.evaluation.evaluator INFO: Inference done 1900/2500. 0.1037 s / img. ETA=0:01:02 +[01/04 19:02:28] defrcn.evaluation.evaluator INFO: Inference done 1950/2500. 0.1037 s / img. ETA=0:00:57 +[01/04 19:02:33] defrcn.evaluation.evaluator INFO: Inference done 2000/2500. 0.1037 s / img. ETA=0:00:51 +[01/04 19:02:38] defrcn.evaluation.evaluator INFO: Inference done 2050/2500. 0.1037 s / img. ETA=0:00:46 +[01/04 19:02:44] defrcn.evaluation.evaluator INFO: Inference done 2100/2500. 0.1036 s / img. ETA=0:00:41 +[01/04 19:02:49] defrcn.evaluation.evaluator INFO: Inference done 2150/2500. 0.1037 s / img. ETA=0:00:36 +[01/04 19:02:54] defrcn.evaluation.evaluator INFO: Inference done 2200/2500. 0.1036 s / img. ETA=0:00:31 +[01/04 19:02:59] defrcn.evaluation.evaluator INFO: Inference done 2250/2500. 0.1036 s / img. ETA=0:00:25 +[01/04 19:03:04] defrcn.evaluation.evaluator INFO: Inference done 2300/2500. 0.1036 s / img. ETA=0:00:20 +[01/04 19:03:09] defrcn.evaluation.evaluator INFO: Inference done 2350/2500. 0.1036 s / img. ETA=0:00:15 +[01/04 19:03:15] defrcn.evaluation.evaluator INFO: Inference done 2400/2500. 0.1036 s / img. ETA=0:00:10 +[01/04 19:03:20] defrcn.evaluation.evaluator INFO: Inference done 2450/2500. 0.1037 s / img. ETA=0:00:05 +[01/04 19:03:25] defrcn.evaluation.evaluator INFO: Inference done 2500/2500. 0.1037 s / img. ETA=0:00:00 +[01/04 19:03:26] defrcn.evaluation.evaluator INFO: Total inference time: 0:04:19 (0.103808 s / img per device, on 2 devices) +[01/04 19:03:26] defrcn.evaluation.evaluator INFO: Total inference pure compute time: 0:04:12 (0.101363 s / img per device, on 2 devices) +[01/04 19:03:27] defrcn.evaluation.coco_evaluation INFO: Preparing results for COCO format ... +[01/04 19:03:27] defrcn.evaluation.coco_evaluation INFO: Saving results to checkpoints/coco/10shot_ExAU/inference/coco_instances_results.json +[01/04 19:03:28] defrcn.evaluation.coco_evaluation INFO: Evaluating predictions ... +[01/04 19:03:54] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 32.036 | 50.709 | 34.031 | 16.504 | 35.923 | 45.767 | +[01/04 19:03:54] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:--------------|:-------|:-------------|:-------|:---------------|:-------| +| person | 3.880 | bicycle | 6.731 | car | 24.096 | +| motorcycle | 15.416 | airplane | 37.746 | bus | 48.321 | +| train | 26.021 | truck | 27.856 | boat | 9.940 | +| traffic light | 24.636 | fire hydrant | 66.168 | stop sign | 71.530 | +| parking meter | 37.718 | bench | 15.881 | bird | 14.844 | +| cat | 33.222 | dog | 26.414 | horse | 15.863 | +| sheep | 13.130 | cow | 22.004 | elephant | 63.622 | +| bear | 55.235 | zebra | 55.005 | giraffe | 62.084 | +| backpack | 17.572 | umbrella | 33.721 | handbag | 14.982 | +| tie | 31.285 | suitcase | 34.371 | frisbee | 58.555 | +| skis | 22.037 | snowboard | 35.147 | sports ball | 38.826 | +| kite | 37.909 | baseball bat | 24.131 | baseball glove | 28.933 | +| skateboard | 48.379 | surfboard | 38.954 | tennis racket | 49.123 | +| bottle | 16.207 | wine glass | 29.887 | cup | 34.899 | +| fork | 33.579 | knife | 14.944 | spoon | 18.804 | +| bowl | 35.969 | banana | 20.720 | apple | 18.668 | +| sandwich | 34.184 | orange | 22.005 | broccoli | 25.651 | +| carrot | 24.429 | hot dog | 32.629 | pizza | 46.471 | +| donut | 51.670 | cake | 39.673 | chair | 7.306 | +| couch | 17.328 | potted plant | 2.114 | bed | 42.151 | +| dining table | 4.494 | toilet | 53.551 | tv | 42.552 | +| laptop | 54.977 | mouse | 45.631 | remote | 26.637 | +| keyboard | 51.982 | cell phone | 25.385 | microwave | 52.407 | +| oven | 34.407 | toaster | 28.281 | sink | 32.091 | +| refrigerator | 54.200 | book | 9.271 | clock | 47.069 | +| vase | 33.610 | scissors | 28.140 | teddy bear | 37.691 | +| hair drier | 18.564 | toothbrush | 21.361 | | | +[01/04 19:04:09] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 36.254 | 56.503 | 38.878 | 19.478 | 40.809 | 51.172 | +[01/04 19:04:09] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:---------------|:-------|:--------------|:-------|:-------------|:-------| +| truck | 27.856 | traffic light | 24.636 | fire hydrant | 66.168 | +| stop sign | 71.530 | parking meter | 37.718 | bench | 15.881 | +| elephant | 63.622 | bear | 55.235 | zebra | 55.005 | +| giraffe | 62.084 | backpack | 17.572 | umbrella | 33.721 | +| handbag | 14.982 | tie | 31.285 | suitcase | 34.371 | +| frisbee | 58.555 | skis | 22.037 | snowboard | 35.147 | +| sports ball | 38.826 | kite | 37.909 | baseball bat | 24.131 | +| baseball glove | 28.933 | skateboard | 48.379 | surfboard | 38.954 | +| tennis racket | 49.123 | wine glass | 29.887 | cup | 34.899 | +| fork | 33.579 | knife | 14.944 | spoon | 18.804 | +| bowl | 35.969 | banana | 20.720 | apple | 18.668 | +| sandwich | 34.184 | orange | 22.005 | broccoli | 25.651 | +| carrot | 24.429 | hot dog | 32.629 | pizza | 46.471 | +| donut | 51.670 | cake | 39.673 | bed | 42.151 | +| toilet | 53.551 | laptop | 54.977 | mouse | 45.631 | +| remote | 26.637 | keyboard | 51.982 | cell phone | 25.385 | +| microwave | 52.407 | oven | 34.407 | toaster | 28.281 | +| sink | 32.091 | refrigerator | 54.200 | book | 9.271 | +| clock | 47.069 | vase | 33.610 | scissors | 28.140 | +| teddy bear | 37.691 | hair drier | 18.564 | toothbrush | 21.361 | +[01/04 19:04:20] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:-----:|:------:|:------:| +| 19.381 | 33.328 | 19.489 | 7.731 | 21.266 | 29.550 | +[01/04 19:04:20] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:-------------|:-------|:-----------|:-------|:-------------|:-------| +| person | 3.880 | bicycle | 6.731 | car | 24.096 | +| motorcycle | 15.416 | airplane | 37.746 | bus | 48.321 | +| train | 26.021 | boat | 9.940 | bird | 14.844 | +| cat | 33.222 | dog | 26.414 | horse | 15.863 | +| sheep | 13.130 | cow | 22.004 | bottle | 16.207 | +| chair | 7.306 | couch | 17.328 | potted plant | 2.114 | +| dining table | 4.494 | tv | 42.552 | | | +[01/04 19:04:21] defrcn.engine.defaults INFO: Evaluation results for coco14_test_all in csv format: +[01/04 19:04:21] defrcn.evaluation.testing INFO: copypaste: Task: bbox +[01/04 19:04:21] defrcn.evaluation.testing INFO: copypaste: AP,AP50,AP75,APs,APm,APl,bAP,bAP50,bAP75,bAPs,bAPm,bAPl,nAP,nAP50,nAP75,nAPs,nAPm,nAPl +[01/04 19:04:21] defrcn.evaluation.testing INFO: copypaste: 32.0360,50.7094,34.0306,16.5044,35.9232,45.7669,36.2542,56.5031,38.8776,19.4785,40.8088,51.1725,19.3815,33.3283,19.4894,7.7308,21.2663,29.5501 +[01/04 19:04:21] d2.utils.events INFO: eta: 3:18:28 iter: 1599 total_loss: 0.6652 loss_cls: 0.1312 loss_box_reg: 0.06269 loss_contrast: 0.2203 loss_rpn_cls: 0.04838 loss_rpn_loc: 0.05402 loss_kld: 0.0703 loss_reg_disitll: 0.07435 time: 3.0001 data_time: 0.1210 lr: 0.005 max_mem: 33457M +[01/04 19:05:25] d2.utils.events INFO: eta: 3:17:46 iter: 1619 total_loss: 0.6744 loss_cls: 0.1343 loss_box_reg: 0.0687 loss_contrast: 0.2203 loss_rpn_cls: 0.05558 loss_rpn_loc: 0.05855 loss_kld: 0.07243 loss_reg_disitll: 0.07356 time: 3.0026 data_time: 0.1306 lr: 0.005 max_mem: 33457M +[01/04 19:06:33] d2.utils.events INFO: eta: 3:16:58 iter: 1639 total_loss: 0.6504 loss_cls: 0.1308 loss_box_reg: 0.06369 loss_contrast: 0.2203 loss_rpn_cls: 0.04471 loss_rpn_loc: 0.04685 loss_kld: 0.07077 loss_reg_disitll: 0.0719 time: 3.0079 data_time: 0.1270 lr: 0.005 max_mem: 33457M +[01/04 19:07:38] d2.utils.events INFO: eta: 3:16:32 iter: 1659 total_loss: 0.6502 loss_cls: 0.1255 loss_box_reg: 0.06545 loss_contrast: 0.2203 loss_rpn_cls: 0.04261 loss_rpn_loc: 0.05602 loss_kld: 0.07321 loss_reg_disitll: 0.07439 time: 3.0106 data_time: 0.1189 lr: 0.005 max_mem: 33457M +[01/04 19:08:47] d2.utils.events INFO: eta: 3:16:18 iter: 1679 total_loss: 0.6719 loss_cls: 0.1342 loss_box_reg: 0.07007 loss_contrast: 0.2203 loss_rpn_cls: 0.05166 loss_rpn_loc: 0.05636 loss_kld: 0.07044 loss_reg_disitll: 0.07556 time: 3.0155 data_time: 0.1335 lr: 0.005 max_mem: 33457M +[01/04 19:09:51] d2.utils.events INFO: eta: 3:15:25 iter: 1699 total_loss: 0.685 loss_cls: 0.1408 loss_box_reg: 0.07044 loss_contrast: 0.2203 loss_rpn_cls: 0.05037 loss_rpn_loc: 0.05336 loss_kld: 0.07258 loss_reg_disitll: 0.07982 time: 3.0178 data_time: 0.1190 lr: 0.005 max_mem: 33457M +[01/04 19:10:56] d2.utils.events INFO: eta: 3:14:32 iter: 1719 total_loss: 0.6608 loss_cls: 0.1289 loss_box_reg: 0.07115 loss_contrast: 0.2203 loss_rpn_cls: 0.04873 loss_rpn_loc: 0.0559 loss_kld: 0.06746 loss_reg_disitll: 0.08013 time: 3.0205 data_time: 0.1313 lr: 0.005 max_mem: 33457M +[01/04 19:12:02] d2.utils.events INFO: eta: 3:13:53 iter: 1739 total_loss: 0.6561 loss_cls: 0.1277 loss_box_reg: 0.06609 loss_contrast: 0.2203 loss_rpn_cls: 0.04277 loss_rpn_loc: 0.04321 loss_kld: 0.06957 loss_reg_disitll: 0.0743 time: 3.0235 data_time: 0.1344 lr: 0.005 max_mem: 33457M +[01/04 19:13:08] d2.utils.events INFO: eta: 3:12:59 iter: 1759 total_loss: 0.6498 loss_cls: 0.131 loss_box_reg: 0.06256 loss_contrast: 0.2203 loss_rpn_cls: 0.0446 loss_rpn_loc: 0.04878 loss_kld: 0.06653 loss_reg_disitll: 0.07144 time: 3.0266 data_time: 0.1191 lr: 0.005 max_mem: 33457M +[01/04 19:14:13] d2.utils.events INFO: eta: 3:12:06 iter: 1779 total_loss: 0.6274 loss_cls: 0.1324 loss_box_reg: 0.06781 loss_contrast: 0.2202 loss_rpn_cls: 0.04702 loss_rpn_loc: 0.05294 loss_kld: 0.06821 loss_reg_disitll: 0.06919 time: 3.0294 data_time: 0.1481 lr: 0.005 max_mem: 33457M +[01/04 19:15:21] fvcore.common.checkpoint INFO: Saving checkpoint to checkpoints/coco/10shot_ExAU/model_0001799.pth +[01/04 19:15:38] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 19:15:38] d2.data.common INFO: Serializing 5000 elements to byte tensors and concatenating them all ... +[01/04 19:15:38] d2.data.common INFO: Serialized dataset takes 3.00 MiB +[01/04 19:15:39] defrcn.evaluation.evaluator INFO: Start initializing PCB module, please wait a seconds... +[01/04 19:15:39] defrcn.evaluation.calibration_layer INFO: Loading ImageNet Pre-train Model from ImageNetPretrained/torchvision/resnet101-5d3b4d8f.pth +[01/04 19:15:40] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 19:15:40] d2.data.common INFO: Serializing 402 elements to byte tensors and concatenating them all ... +[01/04 19:15:40] d2.data.common INFO: Serialized dataset takes 0.08 MiB +[01/04 19:16:01] defrcn.evaluation.evaluator INFO: Start inference on 2500 images +[01/04 19:16:13] defrcn.evaluation.evaluator INFO: Inference done 50/2500. 0.1062 s / img. ETA=0:04:20 +[01/04 19:16:18] defrcn.evaluation.evaluator INFO: Inference done 100/2500. 0.1037 s / img. ETA=0:04:08 +[01/04 19:16:23] defrcn.evaluation.evaluator INFO: Inference done 150/2500. 0.1041 s / img. ETA=0:04:04 +[01/04 19:16:28] defrcn.evaluation.evaluator INFO: Inference done 200/2500. 0.1037 s / img. ETA=0:03:58 +[01/04 19:16:33] defrcn.evaluation.evaluator INFO: Inference done 250/2500. 0.1038 s / img. ETA=0:03:53 +[01/04 19:16:38] defrcn.evaluation.evaluator INFO: Inference done 300/2500. 0.1035 s / img. ETA=0:03:47 +[01/04 19:16:43] defrcn.evaluation.evaluator INFO: Inference done 350/2500. 0.1032 s / img. ETA=0:03:41 +[01/04 19:16:49] defrcn.evaluation.evaluator INFO: Inference done 400/2500. 0.1031 s / img. ETA=0:03:36 +[01/04 19:16:54] defrcn.evaluation.evaluator INFO: Inference done 450/2500. 0.1032 s / img. ETA=0:03:31 +[01/04 19:16:59] defrcn.evaluation.evaluator INFO: Inference done 500/2500. 0.1031 s / img. ETA=0:03:26 +[01/04 19:17:04] defrcn.evaluation.evaluator INFO: Inference done 550/2500. 0.1031 s / img. ETA=0:03:21 +[01/04 19:17:09] defrcn.evaluation.evaluator INFO: Inference done 600/2500. 0.1030 s / img. ETA=0:03:15 +[01/04 19:17:14] defrcn.evaluation.evaluator INFO: Inference done 650/2500. 0.1032 s / img. ETA=0:03:10 +[01/04 19:17:19] defrcn.evaluation.evaluator INFO: Inference done 700/2500. 0.1030 s / img. ETA=0:03:05 +[01/04 19:17:25] defrcn.evaluation.evaluator INFO: Inference done 750/2500. 0.1032 s / img. ETA=0:03:00 +[01/04 19:17:30] defrcn.evaluation.evaluator INFO: Inference done 800/2500. 0.1033 s / img. ETA=0:02:55 +[01/04 19:17:35] defrcn.evaluation.evaluator INFO: Inference done 850/2500. 0.1034 s / img. ETA=0:02:50 +[01/04 19:17:41] defrcn.evaluation.evaluator INFO: Inference done 900/2500. 0.1036 s / img. ETA=0:02:45 +[01/04 19:17:46] defrcn.evaluation.evaluator INFO: Inference done 950/2500. 0.1036 s / img. ETA=0:02:40 +[01/04 19:17:51] defrcn.evaluation.evaluator INFO: Inference done 1000/2500. 0.1037 s / img. ETA=0:02:35 +[01/04 19:17:56] defrcn.evaluation.evaluator INFO: Inference done 1050/2500. 0.1037 s / img. ETA=0:02:30 +[01/04 19:18:01] defrcn.evaluation.evaluator INFO: Inference done 1100/2500. 0.1038 s / img. ETA=0:02:25 +[01/04 19:18:07] defrcn.evaluation.evaluator INFO: Inference done 1150/2500. 0.1038 s / img. ETA=0:02:20 +[01/04 19:18:12] defrcn.evaluation.evaluator INFO: Inference done 1200/2500. 0.1038 s / img. ETA=0:02:14 +[01/04 19:18:17] defrcn.evaluation.evaluator INFO: Inference done 1250/2500. 0.1038 s / img. ETA=0:02:09 +[01/04 19:18:22] defrcn.evaluation.evaluator INFO: Inference done 1300/2500. 0.1040 s / img. ETA=0:02:04 +[01/04 19:18:28] defrcn.evaluation.evaluator INFO: Inference done 1350/2500. 0.1041 s / img. ETA=0:01:59 +[01/04 19:18:33] defrcn.evaluation.evaluator INFO: Inference done 1400/2500. 0.1042 s / img. ETA=0:01:54 +[01/04 19:18:38] defrcn.evaluation.evaluator INFO: Inference done 1450/2500. 0.1042 s / img. ETA=0:01:49 +[01/04 19:18:44] defrcn.evaluation.evaluator INFO: Inference done 1500/2500. 0.1042 s / img. ETA=0:01:44 +[01/04 19:18:49] defrcn.evaluation.evaluator INFO: Inference done 1550/2500. 0.1042 s / img. ETA=0:01:38 +[01/04 19:18:54] defrcn.evaluation.evaluator INFO: Inference done 1600/2500. 0.1041 s / img. ETA=0:01:33 +[01/04 19:18:59] defrcn.evaluation.evaluator INFO: Inference done 1650/2500. 0.1042 s / img. ETA=0:01:28 +[01/04 19:19:05] defrcn.evaluation.evaluator INFO: Inference done 1700/2500. 0.1044 s / img. ETA=0:01:23 +[01/04 19:19:10] defrcn.evaluation.evaluator INFO: Inference done 1750/2500. 0.1044 s / img. ETA=0:01:18 +[01/04 19:19:15] defrcn.evaluation.evaluator INFO: Inference done 1800/2500. 0.1044 s / img. ETA=0:01:13 +[01/04 19:19:20] defrcn.evaluation.evaluator INFO: Inference done 1850/2500. 0.1044 s / img. ETA=0:01:07 +[01/04 19:19:26] defrcn.evaluation.evaluator INFO: Inference done 1900/2500. 0.1044 s / img. ETA=0:01:02 +[01/04 19:19:31] defrcn.evaluation.evaluator INFO: Inference done 1950/2500. 0.1044 s / img. ETA=0:00:57 +[01/04 19:19:36] defrcn.evaluation.evaluator INFO: Inference done 2000/2500. 0.1043 s / img. ETA=0:00:52 +[01/04 19:19:41] defrcn.evaluation.evaluator INFO: Inference done 2050/2500. 0.1043 s / img. ETA=0:00:46 +[01/04 19:19:46] defrcn.evaluation.evaluator INFO: Inference done 2100/2500. 0.1042 s / img. ETA=0:00:41 +[01/04 19:19:51] defrcn.evaluation.evaluator INFO: Inference done 2150/2500. 0.1042 s / img. ETA=0:00:36 +[01/04 19:19:56] defrcn.evaluation.evaluator INFO: Inference done 2200/2500. 0.1041 s / img. ETA=0:00:31 +[01/04 19:20:02] defrcn.evaluation.evaluator INFO: Inference done 2250/2500. 0.1041 s / img. ETA=0:00:26 +[01/04 19:20:07] defrcn.evaluation.evaluator INFO: Inference done 2300/2500. 0.1041 s / img. ETA=0:00:20 +[01/04 19:20:12] defrcn.evaluation.evaluator INFO: Inference done 2350/2500. 0.1041 s / img. ETA=0:00:15 +[01/04 19:20:17] defrcn.evaluation.evaluator INFO: Inference done 2400/2500. 0.1041 s / img. ETA=0:00:10 +[01/04 19:20:23] defrcn.evaluation.evaluator INFO: Inference done 2450/2500. 0.1042 s / img. ETA=0:00:05 +[01/04 19:20:28] defrcn.evaluation.evaluator INFO: Inference done 2500/2500. 0.1042 s / img. ETA=0:00:00 +[01/04 19:20:28] defrcn.evaluation.evaluator INFO: Total inference time: 0:04:20 (0.104208 s / img per device, on 2 devices) +[01/04 19:20:28] defrcn.evaluation.evaluator INFO: Total inference pure compute time: 0:04:13 (0.101528 s / img per device, on 2 devices) +[01/04 19:20:30] defrcn.evaluation.coco_evaluation INFO: Preparing results for COCO format ... +[01/04 19:20:30] defrcn.evaluation.coco_evaluation INFO: Saving results to checkpoints/coco/10shot_ExAU/inference/coco_instances_results.json +[01/04 19:20:30] defrcn.evaluation.coco_evaluation INFO: Evaluating predictions ... +[01/04 19:20:57] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 32.278 | 51.030 | 34.538 | 16.594 | 36.116 | 46.138 | +[01/04 19:20:57] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:--------------|:-------|:-------------|:-------|:---------------|:-------| +| person | 3.991 | bicycle | 7.249 | car | 24.027 | +| motorcycle | 15.779 | airplane | 37.668 | bus | 49.777 | +| train | 26.860 | truck | 27.981 | boat | 10.111 | +| traffic light | 24.819 | fire hydrant | 66.453 | stop sign | 71.583 | +| parking meter | 36.910 | bench | 16.099 | bird | 14.678 | +| cat | 34.916 | dog | 27.129 | horse | 15.740 | +| sheep | 13.757 | cow | 21.851 | elephant | 63.637 | +| bear | 59.246 | zebra | 54.763 | giraffe | 61.966 | +| backpack | 17.272 | umbrella | 34.181 | handbag | 15.643 | +| tie | 31.972 | suitcase | 34.320 | frisbee | 58.560 | +| skis | 21.902 | snowboard | 35.385 | sports ball | 39.454 | +| kite | 37.850 | baseball bat | 25.670 | baseball glove | 28.973 | +| skateboard | 47.967 | surfboard | 39.235 | tennis racket | 49.758 | +| bottle | 15.958 | wine glass | 30.004 | cup | 34.889 | +| fork | 33.659 | knife | 15.258 | spoon | 19.097 | +| bowl | 36.612 | banana | 21.345 | apple | 18.858 | +| sandwich | 35.269 | orange | 22.074 | broccoli | 25.768 | +| carrot | 24.103 | hot dog | 32.534 | pizza | 46.505 | +| donut | 51.079 | cake | 39.845 | chair | 7.597 | +| couch | 16.816 | potted plant | 2.455 | bed | 42.304 | +| dining table | 4.120 | toilet | 53.979 | tv | 43.025 | +| laptop | 55.837 | mouse | 45.949 | remote | 26.125 | +| keyboard | 50.900 | cell phone | 25.677 | microwave | 52.522 | +| oven | 34.560 | toaster | 28.035 | sink | 31.692 | +| refrigerator | 56.036 | book | 9.572 | clock | 47.175 | +| vase | 33.193 | scissors | 28.685 | teddy bear | 38.554 | +| hair drier | 19.248 | toothbrush | 20.156 | | | +[01/04 19:21:12] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 36.478 | 56.765 | 39.396 | 19.600 | 40.977 | 51.600 | +[01/04 19:21:12] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:---------------|:-------|:--------------|:-------|:-------------|:-------| +| truck | 27.981 | traffic light | 24.819 | fire hydrant | 66.453 | +| stop sign | 71.583 | parking meter | 36.910 | bench | 16.099 | +| elephant | 63.637 | bear | 59.246 | zebra | 54.763 | +| giraffe | 61.966 | backpack | 17.272 | umbrella | 34.181 | +| handbag | 15.643 | tie | 31.972 | suitcase | 34.320 | +| frisbee | 58.560 | skis | 21.902 | snowboard | 35.385 | +| sports ball | 39.454 | kite | 37.850 | baseball bat | 25.670 | +| baseball glove | 28.973 | skateboard | 47.967 | surfboard | 39.235 | +| tennis racket | 49.758 | wine glass | 30.004 | cup | 34.889 | +| fork | 33.659 | knife | 15.258 | spoon | 19.097 | +| bowl | 36.612 | banana | 21.345 | apple | 18.858 | +| sandwich | 35.269 | orange | 22.074 | broccoli | 25.768 | +| carrot | 24.103 | hot dog | 32.534 | pizza | 46.505 | +| donut | 51.079 | cake | 39.845 | bed | 42.304 | +| toilet | 53.979 | laptop | 55.837 | mouse | 45.949 | +| remote | 26.125 | keyboard | 50.900 | cell phone | 25.677 | +| microwave | 52.522 | oven | 34.560 | toaster | 28.035 | +| sink | 31.692 | refrigerator | 56.036 | book | 9.572 | +| clock | 47.175 | vase | 33.193 | scissors | 28.685 | +| teddy bear | 38.554 | hair drier | 19.248 | toothbrush | 20.156 | +[01/04 19:21:24] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:-----:|:------:|:------:| +| 19.675 | 33.823 | 19.962 | 7.725 | 21.532 | 29.752 | +[01/04 19:21:24] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:-------------|:-------|:-----------|:-------|:-------------|:-------| +| person | 3.991 | bicycle | 7.249 | car | 24.027 | +| motorcycle | 15.779 | airplane | 37.668 | bus | 49.777 | +| train | 26.860 | boat | 10.111 | bird | 14.678 | +| cat | 34.916 | dog | 27.129 | horse | 15.740 | +| sheep | 13.757 | cow | 21.851 | bottle | 15.958 | +| chair | 7.597 | couch | 16.816 | potted plant | 2.455 | +| dining table | 4.120 | tv | 43.025 | | | +[01/04 19:21:24] defrcn.engine.defaults INFO: Evaluation results for coco14_test_all in csv format: +[01/04 19:21:24] defrcn.evaluation.testing INFO: copypaste: Task: bbox +[01/04 19:21:24] defrcn.evaluation.testing INFO: copypaste: AP,AP50,AP75,APs,APm,APl,bAP,bAP50,bAP75,bAPs,bAPm,bAPl,nAP,nAP50,nAP75,nAPs,nAPm,nAPl +[01/04 19:21:24] defrcn.evaluation.testing INFO: copypaste: 32.2775,51.0297,34.5377,16.5937,36.1156,46.1380,36.4783,56.7651,39.3963,19.6001,40.9768,51.5999,19.6753,33.8234,19.9618,7.7248,21.5319,29.7523 +[01/04 19:21:24] d2.utils.events INFO: eta: 3:11:29 iter: 1799 total_loss: 0.6659 loss_cls: 0.1304 loss_box_reg: 0.07071 loss_contrast: 0.2202 loss_rpn_cls: 0.0447 loss_rpn_loc: 0.04962 loss_kld: 0.06719 loss_reg_disitll: 0.07511 time: 3.0334 data_time: 0.1327 lr: 0.005 max_mem: 33457M +[01/04 19:22:32] d2.utils.events INFO: eta: 3:10:50 iter: 1819 total_loss: 0.6649 loss_cls: 0.1308 loss_box_reg: 0.06738 loss_contrast: 0.2202 loss_rpn_cls: 0.05461 loss_rpn_loc: 0.05725 loss_kld: 0.0697 loss_reg_disitll: 0.07253 time: 3.0374 data_time: 0.1331 lr: 0.005 max_mem: 33457M +[01/04 19:23:38] d2.utils.events INFO: eta: 3:10:00 iter: 1839 total_loss: 0.6441 loss_cls: 0.1233 loss_box_reg: 0.06435 loss_contrast: 0.2202 loss_rpn_cls: 0.04373 loss_rpn_loc: 0.04813 loss_kld: 0.06757 loss_reg_disitll: 0.07263 time: 3.0400 data_time: 0.1355 lr: 0.005 max_mem: 33457M +[01/04 19:24:42] d2.utils.events INFO: eta: 3:09:25 iter: 1859 total_loss: 0.6554 loss_cls: 0.1305 loss_box_reg: 0.06699 loss_contrast: 0.2202 loss_rpn_cls: 0.04381 loss_rpn_loc: 0.05008 loss_kld: 0.06848 loss_reg_disitll: 0.07652 time: 3.0420 data_time: 0.1299 lr: 0.005 max_mem: 33457M +[01/04 19:25:45] d2.utils.events INFO: eta: 3:08:33 iter: 1879 total_loss: 0.6358 loss_cls: 0.1299 loss_box_reg: 0.06542 loss_contrast: 0.2202 loss_rpn_cls: 0.04587 loss_rpn_loc: 0.04692 loss_kld: 0.06526 loss_reg_disitll: 0.06782 time: 3.0430 data_time: 0.1236 lr: 0.005 max_mem: 33457M +[01/04 19:26:49] d2.utils.events INFO: eta: 3:08:08 iter: 1899 total_loss: 0.6806 loss_cls: 0.1318 loss_box_reg: 0.0683 loss_contrast: 0.2202 loss_rpn_cls: 0.04823 loss_rpn_loc: 0.05542 loss_kld: 0.06942 loss_reg_disitll: 0.07308 time: 3.0443 data_time: 0.1249 lr: 0.005 max_mem: 33457M +[01/04 19:27:59] d2.utils.events INFO: eta: 3:07:32 iter: 1919 total_loss: 0.6362 loss_cls: 0.1233 loss_box_reg: 0.06152 loss_contrast: 0.2202 loss_rpn_cls: 0.04927 loss_rpn_loc: 0.05054 loss_kld: 0.06491 loss_reg_disitll: 0.0628 time: 3.0494 data_time: 0.1316 lr: 0.005 max_mem: 33457M +[01/04 19:28:59] d2.utils.events INFO: eta: 3:06:41 iter: 1939 total_loss: 0.655 loss_cls: 0.1263 loss_box_reg: 0.06255 loss_contrast: 0.2202 loss_rpn_cls: 0.04727 loss_rpn_loc: 0.0555 loss_kld: 0.06845 loss_reg_disitll: 0.07167 time: 3.0485 data_time: 0.1239 lr: 0.005 max_mem: 33457M +[01/04 19:30:08] d2.utils.events INFO: eta: 3:05:57 iter: 1959 total_loss: 0.6548 loss_cls: 0.1289 loss_box_reg: 0.06576 loss_contrast: 0.2202 loss_rpn_cls: 0.05436 loss_rpn_loc: 0.05149 loss_kld: 0.06374 loss_reg_disitll: 0.06961 time: 3.0525 data_time: 0.1333 lr: 0.005 max_mem: 33457M +[01/04 19:31:15] d2.utils.events INFO: eta: 3:05:13 iter: 1979 total_loss: 0.6608 loss_cls: 0.129 loss_box_reg: 0.06762 loss_contrast: 0.2202 loss_rpn_cls: 0.04754 loss_rpn_loc: 0.05159 loss_kld: 0.06711 loss_reg_disitll: 0.07633 time: 3.0556 data_time: 0.1198 lr: 0.005 max_mem: 33457M +[01/04 19:32:22] fvcore.common.checkpoint INFO: Saving checkpoint to checkpoints/coco/10shot_ExAU/model_0001999.pth +[01/04 19:32:40] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 19:32:40] d2.data.common INFO: Serializing 5000 elements to byte tensors and concatenating them all ... +[01/04 19:32:40] d2.data.common INFO: Serialized dataset takes 3.00 MiB +[01/04 19:32:40] defrcn.evaluation.evaluator INFO: Start initializing PCB module, please wait a seconds... +[01/04 19:32:40] defrcn.evaluation.calibration_layer INFO: Loading ImageNet Pre-train Model from ImageNetPretrained/torchvision/resnet101-5d3b4d8f.pth +[01/04 19:32:41] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 19:32:41] d2.data.common INFO: Serializing 402 elements to byte tensors and concatenating them all ... +[01/04 19:32:41] d2.data.common INFO: Serialized dataset takes 0.08 MiB +[01/04 19:33:02] defrcn.evaluation.evaluator INFO: Start inference on 2500 images +[01/04 19:33:14] defrcn.evaluation.evaluator INFO: Inference done 50/2500. 0.1064 s / img. ETA=0:04:20 +[01/04 19:33:19] defrcn.evaluation.evaluator INFO: Inference done 100/2500. 0.1039 s / img. ETA=0:04:09 +[01/04 19:33:24] defrcn.evaluation.evaluator INFO: Inference done 150/2500. 0.1041 s / img. ETA=0:04:04 +[01/04 19:33:29] defrcn.evaluation.evaluator INFO: Inference done 200/2500. 0.1036 s / img. ETA=0:03:58 +[01/04 19:33:34] defrcn.evaluation.evaluator INFO: Inference done 250/2500. 0.1037 s / img. ETA=0:03:53 +[01/04 19:33:40] defrcn.evaluation.evaluator INFO: Inference done 300/2500. 0.1034 s / img. ETA=0:03:47 +[01/04 19:33:45] defrcn.evaluation.evaluator INFO: Inference done 350/2500. 0.1032 s / img. ETA=0:03:41 +[01/04 19:33:50] defrcn.evaluation.evaluator INFO: Inference done 400/2500. 0.1032 s / img. ETA=0:03:36 +[01/04 19:33:55] defrcn.evaluation.evaluator INFO: Inference done 450/2500. 0.1033 s / img. ETA=0:03:31 +[01/04 19:34:00] defrcn.evaluation.evaluator INFO: Inference done 500/2500. 0.1033 s / img. ETA=0:03:26 +[01/04 19:34:05] defrcn.evaluation.evaluator INFO: Inference done 550/2500. 0.1033 s / img. ETA=0:03:21 +[01/04 19:34:10] defrcn.evaluation.evaluator INFO: Inference done 600/2500. 0.1033 s / img. ETA=0:03:16 +[01/04 19:34:16] defrcn.evaluation.evaluator INFO: Inference done 650/2500. 0.1035 s / img. ETA=0:03:11 +[01/04 19:34:21] defrcn.evaluation.evaluator INFO: Inference done 700/2500. 0.1033 s / img. ETA=0:03:05 +[01/04 19:34:26] defrcn.evaluation.evaluator INFO: Inference done 750/2500. 0.1033 s / img. ETA=0:03:00 +[01/04 19:34:31] defrcn.evaluation.evaluator INFO: Inference done 800/2500. 0.1035 s / img. ETA=0:02:55 +[01/04 19:34:36] defrcn.evaluation.evaluator INFO: Inference done 850/2500. 0.1035 s / img. ETA=0:02:50 +[01/04 19:34:42] defrcn.evaluation.evaluator INFO: Inference done 900/2500. 0.1038 s / img. ETA=0:02:46 +[01/04 19:34:47] defrcn.evaluation.evaluator INFO: Inference done 950/2500. 0.1038 s / img. ETA=0:02:40 +[01/04 19:34:52] defrcn.evaluation.evaluator INFO: Inference done 1000/2500. 0.1039 s / img. ETA=0:02:35 +[01/04 19:34:58] defrcn.evaluation.evaluator INFO: Inference done 1050/2500. 0.1039 s / img. ETA=0:02:30 +[01/04 19:35:03] defrcn.evaluation.evaluator INFO: Inference done 1100/2500. 0.1040 s / img. ETA=0:02:25 +[01/04 19:35:08] defrcn.evaluation.evaluator INFO: Inference done 1150/2500. 0.1041 s / img. ETA=0:02:20 +[01/04 19:35:13] defrcn.evaluation.evaluator INFO: Inference done 1200/2500. 0.1041 s / img. ETA=0:02:15 +[01/04 19:35:19] defrcn.evaluation.evaluator INFO: Inference done 1250/2500. 0.1041 s / img. ETA=0:02:10 +[01/04 19:35:24] defrcn.evaluation.evaluator INFO: Inference done 1300/2500. 0.1043 s / img. ETA=0:02:05 +[01/04 19:35:30] defrcn.evaluation.evaluator INFO: Inference done 1350/2500. 0.1045 s / img. ETA=0:02:00 +[01/04 19:35:35] defrcn.evaluation.evaluator INFO: Inference done 1400/2500. 0.1046 s / img. ETA=0:01:55 +[01/04 19:35:40] defrcn.evaluation.evaluator INFO: Inference done 1450/2500. 0.1046 s / img. ETA=0:01:49 +[01/04 19:35:45] defrcn.evaluation.evaluator INFO: Inference done 1500/2500. 0.1046 s / img. ETA=0:01:44 +[01/04 19:35:51] defrcn.evaluation.evaluator INFO: Inference done 1550/2500. 0.1046 s / img. ETA=0:01:39 +[01/04 19:35:56] defrcn.evaluation.evaluator INFO: Inference done 1600/2500. 0.1045 s / img. ETA=0:01:34 +[01/04 19:36:01] defrcn.evaluation.evaluator INFO: Inference done 1650/2500. 0.1044 s / img. ETA=0:01:28 +[01/04 19:36:06] defrcn.evaluation.evaluator INFO: Inference done 1700/2500. 0.1044 s / img. ETA=0:01:23 +[01/04 19:36:11] defrcn.evaluation.evaluator INFO: Inference done 1750/2500. 0.1044 s / img. ETA=0:01:18 +[01/04 19:36:16] defrcn.evaluation.evaluator INFO: Inference done 1800/2500. 0.1044 s / img. ETA=0:01:13 +[01/04 19:36:22] defrcn.evaluation.evaluator INFO: Inference done 1850/2500. 0.1044 s / img. ETA=0:01:07 +[01/04 19:36:27] defrcn.evaluation.evaluator INFO: Inference done 1900/2500. 0.1045 s / img. ETA=0:01:02 +[01/04 19:36:32] defrcn.evaluation.evaluator INFO: Inference done 1950/2500. 0.1045 s / img. ETA=0:00:57 +[01/04 19:36:37] defrcn.evaluation.evaluator INFO: Inference done 2000/2500. 0.1044 s / img. ETA=0:00:52 +[01/04 19:36:42] defrcn.evaluation.evaluator INFO: Inference done 2050/2500. 0.1044 s / img. ETA=0:00:46 +[01/04 19:36:48] defrcn.evaluation.evaluator INFO: Inference done 2100/2500. 0.1044 s / img. ETA=0:00:41 +[01/04 19:36:53] defrcn.evaluation.evaluator INFO: Inference done 2150/2500. 0.1044 s / img. ETA=0:00:36 +[01/04 19:36:58] defrcn.evaluation.evaluator INFO: Inference done 2200/2500. 0.1043 s / img. ETA=0:00:31 +[01/04 19:37:03] defrcn.evaluation.evaluator INFO: Inference done 2250/2500. 0.1044 s / img. ETA=0:00:26 +[01/04 19:37:09] defrcn.evaluation.evaluator INFO: Inference done 2300/2500. 0.1044 s / img. ETA=0:00:20 +[01/04 19:37:14] defrcn.evaluation.evaluator INFO: Inference done 2350/2500. 0.1044 s / img. ETA=0:00:15 +[01/04 19:37:19] defrcn.evaluation.evaluator INFO: Inference done 2400/2500. 0.1044 s / img. ETA=0:00:10 +[01/04 19:37:24] defrcn.evaluation.evaluator INFO: Inference done 2450/2500. 0.1045 s / img. ETA=0:00:05 +[01/04 19:37:30] defrcn.evaluation.evaluator INFO: Inference done 2500/2500. 0.1045 s / img. ETA=0:00:00 +[01/04 19:37:30] defrcn.evaluation.evaluator INFO: Total inference time: 0:04:21 (0.104609 s / img per device, on 2 devices) +[01/04 19:37:30] defrcn.evaluation.evaluator INFO: Total inference pure compute time: 0:04:14 (0.101967 s / img per device, on 2 devices) +[01/04 19:37:31] defrcn.evaluation.coco_evaluation INFO: Preparing results for COCO format ... +[01/04 19:37:31] defrcn.evaluation.coco_evaluation INFO: Saving results to checkpoints/coco/10shot_ExAU/inference/coco_instances_results.json +[01/04 19:37:32] defrcn.evaluation.coco_evaluation INFO: Evaluating predictions ... +[01/04 19:37:59] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 32.255 | 51.051 | 34.263 | 16.494 | 36.118 | 46.563 | +[01/04 19:37:59] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:--------------|:-------|:-------------|:-------|:---------------|:-------| +| person | 4.033 | bicycle | 7.453 | car | 24.073 | +| motorcycle | 16.674 | airplane | 38.872 | bus | 50.421 | +| train | 25.416 | truck | 26.903 | boat | 10.464 | +| traffic light | 24.722 | fire hydrant | 65.755 | stop sign | 71.352 | +| parking meter | 37.583 | bench | 15.685 | bird | 14.799 | +| cat | 33.204 | dog | 26.983 | horse | 15.798 | +| sheep | 13.999 | cow | 22.414 | elephant | 64.937 | +| bear | 58.095 | zebra | 55.560 | giraffe | 60.919 | +| backpack | 17.953 | umbrella | 33.364 | handbag | 15.600 | +| tie | 31.973 | suitcase | 34.519 | frisbee | 58.173 | +| skis | 22.258 | snowboard | 35.677 | sports ball | 38.486 | +| kite | 37.340 | baseball bat | 24.089 | baseball glove | 28.926 | +| skateboard | 48.588 | surfboard | 39.018 | tennis racket | 49.436 | +| bottle | 16.089 | wine glass | 29.632 | cup | 34.835 | +| fork | 33.625 | knife | 15.722 | spoon | 18.868 | +| bowl | 35.787 | banana | 21.427 | apple | 18.833 | +| sandwich | 35.609 | orange | 22.625 | broccoli | 25.636 | +| carrot | 24.813 | hot dog | 32.993 | pizza | 46.300 | +| donut | 51.957 | cake | 39.915 | chair | 7.575 | +| couch | 17.017 | potted plant | 2.380 | bed | 42.013 | +| dining table | 4.224 | toilet | 53.881 | tv | 42.056 | +| laptop | 56.150 | mouse | 46.709 | remote | 26.643 | +| keyboard | 51.353 | cell phone | 26.133 | microwave | 53.532 | +| oven | 34.728 | toaster | 30.091 | sink | 30.911 | +| refrigerator | 54.600 | book | 9.299 | clock | 46.876 | +| vase | 33.452 | scissors | 26.994 | teddy bear | 38.066 | +| hair drier | 18.564 | toothbrush | 20.957 | | | +[01/04 19:38:16] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 36.441 | 56.715 | 39.037 | 19.480 | 41.029 | 52.058 | +[01/04 19:38:16] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:---------------|:-------|:--------------|:-------|:-------------|:-------| +| truck | 26.903 | traffic light | 24.722 | fire hydrant | 65.755 | +| stop sign | 71.352 | parking meter | 37.583 | bench | 15.685 | +| elephant | 64.937 | bear | 58.095 | zebra | 55.560 | +| giraffe | 60.919 | backpack | 17.953 | umbrella | 33.364 | +| handbag | 15.600 | tie | 31.973 | suitcase | 34.519 | +| frisbee | 58.173 | skis | 22.258 | snowboard | 35.677 | +| sports ball | 38.486 | kite | 37.340 | baseball bat | 24.089 | +| baseball glove | 28.926 | skateboard | 48.588 | surfboard | 39.018 | +| tennis racket | 49.436 | wine glass | 29.632 | cup | 34.835 | +| fork | 33.625 | knife | 15.722 | spoon | 18.868 | +| bowl | 35.787 | banana | 21.427 | apple | 18.833 | +| sandwich | 35.609 | orange | 22.625 | broccoli | 25.636 | +| carrot | 24.813 | hot dog | 32.993 | pizza | 46.300 | +| donut | 51.957 | cake | 39.915 | bed | 42.013 | +| toilet | 53.881 | laptop | 56.150 | mouse | 46.709 | +| remote | 26.643 | keyboard | 51.353 | cell phone | 26.133 | +| microwave | 53.532 | oven | 34.728 | toaster | 30.091 | +| sink | 30.911 | refrigerator | 54.600 | book | 9.299 | +| clock | 46.876 | vase | 33.452 | scissors | 26.994 | +| teddy bear | 38.066 | hair drier | 18.564 | toothbrush | 20.957 | +[01/04 19:38:28] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:-----:|:------:|:------:| +| 19.697 | 34.058 | 19.941 | 7.685 | 21.387 | 30.078 | +[01/04 19:38:28] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:-------------|:-------|:-----------|:-------|:-------------|:-------| +| person | 4.033 | bicycle | 7.453 | car | 24.073 | +| motorcycle | 16.674 | airplane | 38.872 | bus | 50.421 | +| train | 25.416 | boat | 10.464 | bird | 14.799 | +| cat | 33.204 | dog | 26.983 | horse | 15.798 | +| sheep | 13.999 | cow | 22.414 | bottle | 16.089 | +| chair | 7.575 | couch | 17.017 | potted plant | 2.380 | +| dining table | 4.224 | tv | 42.056 | | | +[01/04 19:38:28] defrcn.engine.defaults INFO: Evaluation results for coco14_test_all in csv format: +[01/04 19:38:28] defrcn.evaluation.testing INFO: copypaste: Task: bbox +[01/04 19:38:28] defrcn.evaluation.testing INFO: copypaste: AP,AP50,AP75,APs,APm,APl,bAP,bAP50,bAP75,bAPs,bAPm,bAPl,nAP,nAP50,nAP75,nAPs,nAPm,nAPl +[01/04 19:38:28] defrcn.evaluation.testing INFO: copypaste: 32.2548,51.0509,34.2628,16.4936,36.1184,46.5633,36.4407,56.7153,39.0366,19.4796,41.0287,52.0584,19.6973,34.0576,19.9415,7.6849,21.3872,30.0781 +[01/04 19:38:28] d2.utils.events INFO: eta: 3:04:13 iter: 1999 total_loss: 0.6259 loss_cls: 0.1231 loss_box_reg: 0.06397 loss_contrast: 0.2202 loss_rpn_cls: 0.04322 loss_rpn_loc: 0.04377 loss_kld: 0.06378 loss_reg_disitll: 0.06894 time: 3.0589 data_time: 0.1215 lr: 0.005 max_mem: 33785M +[01/04 19:39:34] d2.utils.events INFO: eta: 3:03:13 iter: 2019 total_loss: 0.6537 loss_cls: 0.1309 loss_box_reg: 0.06698 loss_contrast: 0.2202 loss_rpn_cls: 0.04579 loss_rpn_loc: 0.0463 loss_kld: 0.06935 loss_reg_disitll: 0.07279 time: 3.0611 data_time: 0.1262 lr: 0.005 max_mem: 33785M +[01/04 19:40:36] d2.utils.events INFO: eta: 3:02:12 iter: 2039 total_loss: 0.6649 loss_cls: 0.1285 loss_box_reg: 0.06531 loss_contrast: 0.2202 loss_rpn_cls: 0.04808 loss_rpn_loc: 0.05199 loss_kld: 0.06631 loss_reg_disitll: 0.07212 time: 3.0615 data_time: 0.1197 lr: 0.005 max_mem: 33785M +[01/04 19:41:41] d2.utils.events INFO: eta: 3:01:12 iter: 2059 total_loss: 0.6544 loss_cls: 0.1269 loss_box_reg: 0.06726 loss_contrast: 0.2201 loss_rpn_cls: 0.04448 loss_rpn_loc: 0.05198 loss_kld: 0.06471 loss_reg_disitll: 0.07216 time: 3.0632 data_time: 0.1354 lr: 0.005 max_mem: 33785M +[01/04 19:42:43] d2.utils.events INFO: eta: 3:00:10 iter: 2079 total_loss: 0.6493 loss_cls: 0.1288 loss_box_reg: 0.06773 loss_contrast: 0.2202 loss_rpn_cls: 0.04399 loss_rpn_loc: 0.05108 loss_kld: 0.06552 loss_reg_disitll: 0.07358 time: 3.0638 data_time: 0.1186 lr: 0.005 max_mem: 33785M +[01/04 19:43:50] d2.utils.events INFO: eta: 2:59:08 iter: 2099 total_loss: 0.6201 loss_cls: 0.122 loss_box_reg: 0.0635 loss_contrast: 0.2201 loss_rpn_cls: 0.04066 loss_rpn_loc: 0.0534 loss_kld: 0.06213 loss_reg_disitll: 0.07132 time: 3.0664 data_time: 0.1363 lr: 0.005 max_mem: 33785M +[01/04 19:45:01] d2.utils.events INFO: eta: 2:58:23 iter: 2119 total_loss: 0.6473 loss_cls: 0.1279 loss_box_reg: 0.06489 loss_contrast: 0.2201 loss_rpn_cls: 0.04728 loss_rpn_loc: 0.04788 loss_kld: 0.06538 loss_reg_disitll: 0.06897 time: 3.0708 data_time: 0.1245 lr: 0.005 max_mem: 33785M +[01/04 19:46:07] d2.utils.events INFO: eta: 2:57:30 iter: 2139 total_loss: 0.6277 loss_cls: 0.1209 loss_box_reg: 0.05966 loss_contrast: 0.2201 loss_rpn_cls: 0.04425 loss_rpn_loc: 0.05631 loss_kld: 0.06222 loss_reg_disitll: 0.0631 time: 3.0734 data_time: 0.1377 lr: 0.005 max_mem: 33785M +[01/04 19:47:13] d2.utils.events INFO: eta: 2:56:34 iter: 2159 total_loss: 0.6692 loss_cls: 0.1301 loss_box_reg: 0.06957 loss_contrast: 0.2201 loss_rpn_cls: 0.04976 loss_rpn_loc: 0.05499 loss_kld: 0.06853 loss_reg_disitll: 0.07973 time: 3.0754 data_time: 0.1336 lr: 0.005 max_mem: 33785M +[01/04 19:48:18] d2.utils.events INFO: eta: 2:55:18 iter: 2179 total_loss: 0.6677 loss_cls: 0.1273 loss_box_reg: 0.06376 loss_contrast: 0.2201 loss_rpn_cls: 0.04331 loss_rpn_loc: 0.05243 loss_kld: 0.06441 loss_reg_disitll: 0.07101 time: 3.0768 data_time: 0.1276 lr: 0.005 max_mem: 33785M +[01/04 19:49:24] fvcore.common.checkpoint INFO: Saving checkpoint to checkpoints/coco/10shot_ExAU/model_0002199.pth +[01/04 19:49:40] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 19:49:40] d2.data.common INFO: Serializing 5000 elements to byte tensors and concatenating them all ... +[01/04 19:49:40] d2.data.common INFO: Serialized dataset takes 3.00 MiB +[01/04 19:49:41] defrcn.evaluation.evaluator INFO: Start initializing PCB module, please wait a seconds... +[01/04 19:49:41] defrcn.evaluation.calibration_layer INFO: Loading ImageNet Pre-train Model from ImageNetPretrained/torchvision/resnet101-5d3b4d8f.pth +[01/04 19:49:42] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 19:49:42] d2.data.common INFO: Serializing 402 elements to byte tensors and concatenating them all ... +[01/04 19:49:42] d2.data.common INFO: Serialized dataset takes 0.08 MiB +[01/04 19:50:03] defrcn.evaluation.evaluator INFO: Start inference on 2500 images +[01/04 19:50:15] defrcn.evaluation.evaluator INFO: Inference done 50/2500. 0.1074 s / img. ETA=0:04:23 +[01/04 19:50:20] defrcn.evaluation.evaluator INFO: Inference done 100/2500. 0.1042 s / img. ETA=0:04:10 +[01/04 19:50:25] defrcn.evaluation.evaluator INFO: Inference done 150/2500. 0.1046 s / img. ETA=0:04:05 +[01/04 19:50:30] defrcn.evaluation.evaluator INFO: Inference done 200/2500. 0.1041 s / img. ETA=0:03:59 +[01/04 19:50:35] defrcn.evaluation.evaluator INFO: Inference done 250/2500. 0.1043 s / img. ETA=0:03:54 +[01/04 19:50:40] defrcn.evaluation.evaluator INFO: Inference done 300/2500. 0.1041 s / img. ETA=0:03:49 +[01/04 19:50:45] defrcn.evaluation.evaluator INFO: Inference done 350/2500. 0.1038 s / img. ETA=0:03:43 +[01/04 19:50:51] defrcn.evaluation.evaluator INFO: Inference done 400/2500. 0.1038 s / img. ETA=0:03:37 +[01/04 19:50:56] defrcn.evaluation.evaluator INFO: Inference done 450/2500. 0.1037 s / img. ETA=0:03:32 +[01/04 19:51:01] defrcn.evaluation.evaluator INFO: Inference done 500/2500. 0.1037 s / img. ETA=0:03:27 +[01/04 19:51:06] defrcn.evaluation.evaluator INFO: Inference done 550/2500. 0.1037 s / img. ETA=0:03:22 +[01/04 19:51:11] defrcn.evaluation.evaluator INFO: Inference done 600/2500. 0.1037 s / img. ETA=0:03:17 +[01/04 19:51:17] defrcn.evaluation.evaluator INFO: Inference done 650/2500. 0.1039 s / img. ETA=0:03:12 +[01/04 19:51:22] defrcn.evaluation.evaluator INFO: Inference done 700/2500. 0.1037 s / img. ETA=0:03:06 +[01/04 19:51:27] defrcn.evaluation.evaluator INFO: Inference done 750/2500. 0.1038 s / img. ETA=0:03:01 +[01/04 19:51:32] defrcn.evaluation.evaluator INFO: Inference done 800/2500. 0.1039 s / img. ETA=0:02:56 +[01/04 19:51:38] defrcn.evaluation.evaluator INFO: Inference done 850/2500. 0.1040 s / img. ETA=0:02:51 +[01/04 19:51:43] defrcn.evaluation.evaluator INFO: Inference done 900/2500. 0.1042 s / img. ETA=0:02:46 +[01/04 19:51:48] defrcn.evaluation.evaluator INFO: Inference done 950/2500. 0.1042 s / img. ETA=0:02:41 +[01/04 19:51:53] defrcn.evaluation.evaluator INFO: Inference done 1000/2500. 0.1042 s / img. ETA=0:02:36 +[01/04 19:51:59] defrcn.evaluation.evaluator INFO: Inference done 1050/2500. 0.1043 s / img. ETA=0:02:31 +[01/04 19:52:04] defrcn.evaluation.evaluator INFO: Inference done 1100/2500. 0.1043 s / img. ETA=0:02:26 +[01/04 19:52:09] defrcn.evaluation.evaluator INFO: Inference done 1150/2500. 0.1044 s / img. ETA=0:02:20 +[01/04 19:52:14] defrcn.evaluation.evaluator INFO: Inference done 1200/2500. 0.1044 s / img. ETA=0:02:15 +[01/04 19:52:20] defrcn.evaluation.evaluator INFO: Inference done 1250/2500. 0.1044 s / img. ETA=0:02:10 +[01/04 19:52:25] defrcn.evaluation.evaluator INFO: Inference done 1300/2500. 0.1046 s / img. ETA=0:02:05 +[01/04 19:52:30] defrcn.evaluation.evaluator INFO: Inference done 1350/2500. 0.1047 s / img. ETA=0:02:00 +[01/04 19:52:36] defrcn.evaluation.evaluator INFO: Inference done 1400/2500. 0.1048 s / img. ETA=0:01:55 +[01/04 19:52:41] defrcn.evaluation.evaluator INFO: Inference done 1450/2500. 0.1047 s / img. ETA=0:01:49 +[01/04 19:52:46] defrcn.evaluation.evaluator INFO: Inference done 1500/2500. 0.1048 s / img. ETA=0:01:44 +[01/04 19:52:52] defrcn.evaluation.evaluator INFO: Inference done 1550/2500. 0.1048 s / img. ETA=0:01:39 +[01/04 19:52:57] defrcn.evaluation.evaluator INFO: Inference done 1600/2500. 0.1047 s / img. ETA=0:01:34 +[01/04 19:53:02] defrcn.evaluation.evaluator INFO: Inference done 1650/2500. 0.1046 s / img. ETA=0:01:28 +[01/04 19:53:07] defrcn.evaluation.evaluator INFO: Inference done 1700/2500. 0.1046 s / img. ETA=0:01:23 +[01/04 19:53:12] defrcn.evaluation.evaluator INFO: Inference done 1750/2500. 0.1047 s / img. ETA=0:01:18 +[01/04 19:53:18] defrcn.evaluation.evaluator INFO: Inference done 1800/2500. 0.1048 s / img. ETA=0:01:13 +[01/04 19:53:23] defrcn.evaluation.evaluator INFO: Inference done 1850/2500. 0.1049 s / img. ETA=0:01:08 +[01/04 19:53:29] defrcn.evaluation.evaluator INFO: Inference done 1900/2500. 0.1050 s / img. ETA=0:01:02 +[01/04 19:53:34] defrcn.evaluation.evaluator INFO: Inference done 1950/2500. 0.1050 s / img. ETA=0:00:57 +[01/04 19:53:39] defrcn.evaluation.evaluator INFO: Inference done 2000/2500. 0.1049 s / img. ETA=0:00:52 +[01/04 19:53:44] defrcn.evaluation.evaluator INFO: Inference done 2050/2500. 0.1049 s / img. ETA=0:00:47 +[01/04 19:53:49] defrcn.evaluation.evaluator INFO: Inference done 2100/2500. 0.1049 s / img. ETA=0:00:41 +[01/04 19:53:55] defrcn.evaluation.evaluator INFO: Inference done 2150/2500. 0.1049 s / img. ETA=0:00:36 +[01/04 19:54:00] defrcn.evaluation.evaluator INFO: Inference done 2200/2500. 0.1048 s / img. ETA=0:00:31 +[01/04 19:54:05] defrcn.evaluation.evaluator INFO: Inference done 2250/2500. 0.1048 s / img. ETA=0:00:26 +[01/04 19:54:10] defrcn.evaluation.evaluator INFO: Inference done 2300/2500. 0.1049 s / img. ETA=0:00:20 +[01/04 19:54:16] defrcn.evaluation.evaluator INFO: Inference done 2350/2500. 0.1048 s / img. ETA=0:00:15 +[01/04 19:54:21] defrcn.evaluation.evaluator INFO: Inference done 2400/2500. 0.1049 s / img. ETA=0:00:10 +[01/04 19:54:26] defrcn.evaluation.evaluator INFO: Inference done 2450/2500. 0.1050 s / img. ETA=0:00:05 +[01/04 19:54:31] defrcn.evaluation.evaluator INFO: Inference done 2500/2500. 0.1049 s / img. ETA=0:00:00 +[01/04 19:54:32] defrcn.evaluation.evaluator INFO: Total inference time: 0:04:22 (0.105010 s / img per device, on 2 devices) +[01/04 19:54:32] defrcn.evaluation.evaluator INFO: Total inference pure compute time: 0:04:15 (0.102432 s / img per device, on 2 devices) +[01/04 19:54:33] defrcn.evaluation.coco_evaluation INFO: Preparing results for COCO format ... +[01/04 19:54:33] defrcn.evaluation.coco_evaluation INFO: Saving results to checkpoints/coco/10shot_ExAU/inference/coco_instances_results.json +[01/04 19:54:34] defrcn.evaluation.coco_evaluation INFO: Evaluating predictions ... +[01/04 19:55:01] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 32.232 | 51.034 | 34.402 | 16.444 | 36.125 | 46.025 | +[01/04 19:55:01] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:--------------|:-------|:-------------|:-------|:---------------|:-------| +| person | 4.041 | bicycle | 7.450 | car | 23.711 | +| motorcycle | 17.257 | airplane | 38.987 | bus | 50.318 | +| train | 25.797 | truck | 27.500 | boat | 10.487 | +| traffic light | 24.719 | fire hydrant | 66.286 | stop sign | 71.219 | +| parking meter | 36.714 | bench | 15.266 | bird | 15.059 | +| cat | 32.691 | dog | 28.231 | horse | 15.665 | +| sheep | 13.389 | cow | 22.535 | elephant | 64.695 | +| bear | 60.092 | zebra | 55.208 | giraffe | 61.985 | +| backpack | 17.476 | umbrella | 33.084 | handbag | 15.408 | +| tie | 31.262 | suitcase | 34.406 | frisbee | 58.398 | +| skis | 21.898 | snowboard | 35.682 | sports ball | 38.792 | +| kite | 37.581 | baseball bat | 24.528 | baseball glove | 29.204 | +| skateboard | 48.899 | surfboard | 39.015 | tennis racket | 48.664 | +| bottle | 15.993 | wine glass | 29.629 | cup | 34.509 | +| fork | 34.483 | knife | 15.231 | spoon | 18.619 | +| bowl | 36.422 | banana | 22.432 | apple | 18.441 | +| sandwich | 33.563 | orange | 22.094 | broccoli | 25.954 | +| carrot | 24.767 | hot dog | 32.872 | pizza | 46.252 | +| donut | 51.679 | cake | 39.745 | chair | 7.635 | +| couch | 17.756 | potted plant | 2.238 | bed | 41.154 | +| dining table | 4.247 | toilet | 53.994 | tv | 42.762 | +| laptop | 56.015 | mouse | 47.050 | remote | 25.905 | +| keyboard | 50.906 | cell phone | 25.567 | microwave | 53.511 | +| oven | 33.784 | toaster | 30.248 | sink | 30.476 | +| refrigerator | 54.493 | book | 9.438 | clock | 46.893 | +| vase | 33.801 | scissors | 26.057 | teddy bear | 39.154 | +| hair drier | 16.535 | toothbrush | 22.690 | | | +[01/04 19:55:18] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 36.372 | 56.626 | 39.216 | 19.453 | 40.966 | 51.336 | +[01/04 19:55:18] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:---------------|:-------|:--------------|:-------|:-------------|:-------| +| truck | 27.500 | traffic light | 24.719 | fire hydrant | 66.286 | +| stop sign | 71.219 | parking meter | 36.714 | bench | 15.266 | +| elephant | 64.695 | bear | 60.092 | zebra | 55.208 | +| giraffe | 61.985 | backpack | 17.476 | umbrella | 33.084 | +| handbag | 15.408 | tie | 31.262 | suitcase | 34.406 | +| frisbee | 58.398 | skis | 21.898 | snowboard | 35.682 | +| sports ball | 38.792 | kite | 37.581 | baseball bat | 24.528 | +| baseball glove | 29.204 | skateboard | 48.899 | surfboard | 39.015 | +| tennis racket | 48.664 | wine glass | 29.629 | cup | 34.509 | +| fork | 34.483 | knife | 15.231 | spoon | 18.619 | +| bowl | 36.422 | banana | 22.432 | apple | 18.441 | +| sandwich | 33.563 | orange | 22.094 | broccoli | 25.954 | +| carrot | 24.767 | hot dog | 32.872 | pizza | 46.252 | +| donut | 51.679 | cake | 39.745 | bed | 41.154 | +| toilet | 53.994 | laptop | 56.015 | mouse | 47.050 | +| remote | 25.905 | keyboard | 50.906 | cell phone | 25.567 | +| microwave | 53.511 | oven | 33.784 | toaster | 30.248 | +| sink | 30.476 | refrigerator | 54.493 | book | 9.438 | +| clock | 46.893 | vase | 33.801 | scissors | 26.057 | +| teddy bear | 39.154 | hair drier | 16.535 | toothbrush | 22.690 | +[01/04 19:55:28] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:-----:|:------:|:------:| +| 19.812 | 34.260 | 19.961 | 7.570 | 21.600 | 30.093 | +[01/04 19:55:28] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:-------------|:-------|:-----------|:-------|:-------------|:-------| +| person | 4.041 | bicycle | 7.450 | car | 23.711 | +| motorcycle | 17.257 | airplane | 38.987 | bus | 50.318 | +| train | 25.797 | boat | 10.487 | bird | 15.059 | +| cat | 32.691 | dog | 28.231 | horse | 15.665 | +| sheep | 13.389 | cow | 22.535 | bottle | 15.993 | +| chair | 7.635 | couch | 17.756 | potted plant | 2.238 | +| dining table | 4.247 | tv | 42.762 | | | +[01/04 19:55:29] defrcn.engine.defaults INFO: Evaluation results for coco14_test_all in csv format: +[01/04 19:55:29] defrcn.evaluation.testing INFO: copypaste: Task: bbox +[01/04 19:55:29] defrcn.evaluation.testing INFO: copypaste: AP,AP50,AP75,APs,APm,APl,bAP,bAP50,bAP75,bAPs,bAPm,bAPl,nAP,nAP50,nAP75,nAPs,nAPm,nAPl +[01/04 19:55:29] defrcn.evaluation.testing INFO: copypaste: 32.2324,51.0344,34.4022,16.4444,36.1248,46.0248,36.3724,56.6260,39.2159,19.4526,40.9664,51.3355,19.8125,34.2596,19.9613,7.5700,21.6001,30.0925 +[01/04 19:55:29] d2.utils.events INFO: eta: 2:54:05 iter: 2199 total_loss: 0.6437 loss_cls: 0.1253 loss_box_reg: 0.06319 loss_contrast: 0.2201 loss_rpn_cls: 0.04348 loss_rpn_loc: 0.05204 loss_kld: 0.06772 loss_reg_disitll: 0.06837 time: 3.0787 data_time: 0.1318 lr: 0.005 max_mem: 33785M +[01/04 19:56:33] d2.utils.events INFO: eta: 2:53:00 iter: 2219 total_loss: 0.6312 loss_cls: 0.1217 loss_box_reg: 0.05984 loss_contrast: 0.22 loss_rpn_cls: 0.04402 loss_rpn_loc: 0.04973 loss_kld: 0.06495 loss_reg_disitll: 0.06705 time: 3.0798 data_time: 0.1417 lr: 0.005 max_mem: 33785M +[01/04 19:57:35] d2.utils.events INFO: eta: 2:51:35 iter: 2239 total_loss: 0.6177 loss_cls: 0.1211 loss_box_reg: 0.05734 loss_contrast: 0.2201 loss_rpn_cls: 0.04438 loss_rpn_loc: 0.05605 loss_kld: 0.06217 loss_reg_disitll: 0.06179 time: 3.0800 data_time: 0.1225 lr: 0.005 max_mem: 33785M +[01/04 19:58:37] d2.utils.events INFO: eta: 2:50:25 iter: 2259 total_loss: 0.6148 loss_cls: 0.1233 loss_box_reg: 0.06178 loss_contrast: 0.2201 loss_rpn_cls: 0.04307 loss_rpn_loc: 0.05098 loss_kld: 0.06212 loss_reg_disitll: 0.06797 time: 3.0800 data_time: 0.1339 lr: 0.005 max_mem: 33785M +[01/04 19:59:44] d2.utils.events INFO: eta: 2:49:33 iter: 2279 total_loss: 0.6236 loss_cls: 0.1213 loss_box_reg: 0.06619 loss_contrast: 0.2201 loss_rpn_cls: 0.04037 loss_rpn_loc: 0.04881 loss_kld: 0.06175 loss_reg_disitll: 0.06616 time: 3.0824 data_time: 0.1247 lr: 0.005 max_mem: 33785M +[01/04 20:00:47] d2.utils.events INFO: eta: 2:48:23 iter: 2299 total_loss: 0.6241 loss_cls: 0.1161 loss_box_reg: 0.06098 loss_contrast: 0.22 loss_rpn_cls: 0.04096 loss_rpn_loc: 0.04594 loss_kld: 0.06196 loss_reg_disitll: 0.06737 time: 3.0831 data_time: 0.1274 lr: 0.005 max_mem: 33785M +[01/04 20:01:53] d2.utils.events INFO: eta: 2:47:30 iter: 2319 total_loss: 0.6174 loss_cls: 0.1184 loss_box_reg: 0.06351 loss_contrast: 0.22 loss_rpn_cls: 0.04185 loss_rpn_loc: 0.04482 loss_kld: 0.06265 loss_reg_disitll: 0.06897 time: 3.0848 data_time: 0.1260 lr: 0.005 max_mem: 33785M +[01/04 20:02:55] d2.utils.events INFO: eta: 2:46:37 iter: 2339 total_loss: 0.6229 loss_cls: 0.1194 loss_box_reg: 0.06171 loss_contrast: 0.2201 loss_rpn_cls: 0.04047 loss_rpn_loc: 0.04389 loss_kld: 0.06161 loss_reg_disitll: 0.0684 time: 3.0852 data_time: 0.1202 lr: 0.005 max_mem: 33785M +[01/04 20:03:56] d2.utils.events INFO: eta: 2:45:22 iter: 2359 total_loss: 0.6379 loss_cls: 0.126 loss_box_reg: 0.06121 loss_contrast: 0.22 loss_rpn_cls: 0.04104 loss_rpn_loc: 0.05142 loss_kld: 0.06695 loss_reg_disitll: 0.06796 time: 3.0847 data_time: 0.1349 lr: 0.005 max_mem: 33785M +[01/04 20:05:07] d2.utils.events INFO: eta: 2:44:32 iter: 2379 total_loss: 0.6049 loss_cls: 0.1151 loss_box_reg: 0.06145 loss_contrast: 0.22 loss_rpn_cls: 0.04113 loss_rpn_loc: 0.04682 loss_kld: 0.05671 loss_reg_disitll: 0.06318 time: 3.0887 data_time: 0.1264 lr: 0.005 max_mem: 33785M +[01/04 20:06:16] fvcore.common.checkpoint INFO: Saving checkpoint to checkpoints/coco/10shot_ExAU/model_0002399.pth +[01/04 20:06:33] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 20:06:33] d2.data.common INFO: Serializing 5000 elements to byte tensors and concatenating them all ... +[01/04 20:06:33] d2.data.common INFO: Serialized dataset takes 3.00 MiB +[01/04 20:06:33] defrcn.evaluation.evaluator INFO: Start initializing PCB module, please wait a seconds... +[01/04 20:06:33] defrcn.evaluation.calibration_layer INFO: Loading ImageNet Pre-train Model from ImageNetPretrained/torchvision/resnet101-5d3b4d8f.pth +[01/04 20:06:34] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 20:06:34] d2.data.common INFO: Serializing 402 elements to byte tensors and concatenating them all ... +[01/04 20:06:34] d2.data.common INFO: Serialized dataset takes 0.08 MiB +[01/04 20:06:55] defrcn.evaluation.evaluator INFO: Start inference on 2500 images +[01/04 20:07:07] defrcn.evaluation.evaluator INFO: Inference done 50/2500. 0.1055 s / img. ETA=0:04:18 +[01/04 20:07:12] defrcn.evaluation.evaluator INFO: Inference done 100/2500. 0.1031 s / img. ETA=0:04:07 +[01/04 20:07:17] defrcn.evaluation.evaluator INFO: Inference done 150/2500. 0.1031 s / img. ETA=0:04:02 +[01/04 20:07:22] defrcn.evaluation.evaluator INFO: Inference done 200/2500. 0.1029 s / img. ETA=0:03:56 +[01/04 20:07:27] defrcn.evaluation.evaluator INFO: Inference done 250/2500. 0.1031 s / img. ETA=0:03:51 +[01/04 20:07:32] defrcn.evaluation.evaluator INFO: Inference done 300/2500. 0.1027 s / img. ETA=0:03:45 +[01/04 20:07:37] defrcn.evaluation.evaluator INFO: Inference done 350/2500. 0.1025 s / img. ETA=0:03:40 +[01/04 20:07:42] defrcn.evaluation.evaluator INFO: Inference done 400/2500. 0.1025 s / img. ETA=0:03:35 +[01/04 20:07:48] defrcn.evaluation.evaluator INFO: Inference done 450/2500. 0.1025 s / img. ETA=0:03:30 +[01/04 20:07:53] defrcn.evaluation.evaluator INFO: Inference done 500/2500. 0.1025 s / img. ETA=0:03:25 +[01/04 20:07:58] defrcn.evaluation.evaluator INFO: Inference done 550/2500. 0.1025 s / img. ETA=0:03:19 +[01/04 20:08:03] defrcn.evaluation.evaluator INFO: Inference done 600/2500. 0.1025 s / img. ETA=0:03:14 +[01/04 20:08:08] defrcn.evaluation.evaluator INFO: Inference done 650/2500. 0.1026 s / img. ETA=0:03:09 +[01/04 20:08:13] defrcn.evaluation.evaluator INFO: Inference done 700/2500. 0.1024 s / img. ETA=0:03:04 +[01/04 20:08:18] defrcn.evaluation.evaluator INFO: Inference done 750/2500. 0.1026 s / img. ETA=0:02:59 +[01/04 20:08:24] defrcn.evaluation.evaluator INFO: Inference done 800/2500. 0.1028 s / img. ETA=0:02:54 +[01/04 20:08:29] defrcn.evaluation.evaluator INFO: Inference done 850/2500. 0.1028 s / img. ETA=0:02:49 +[01/04 20:08:34] defrcn.evaluation.evaluator INFO: Inference done 900/2500. 0.1030 s / img. ETA=0:02:44 +[01/04 20:08:39] defrcn.evaluation.evaluator INFO: Inference done 950/2500. 0.1029 s / img. ETA=0:02:39 +[01/04 20:08:44] defrcn.evaluation.evaluator INFO: Inference done 1000/2500. 0.1030 s / img. ETA=0:02:34 +[01/04 20:08:50] defrcn.evaluation.evaluator INFO: Inference done 1050/2500. 0.1030 s / img. ETA=0:02:29 +[01/04 20:08:55] defrcn.evaluation.evaluator INFO: Inference done 1100/2500. 0.1030 s / img. ETA=0:02:24 +[01/04 20:09:00] defrcn.evaluation.evaluator INFO: Inference done 1150/2500. 0.1032 s / img. ETA=0:02:19 +[01/04 20:09:05] defrcn.evaluation.evaluator INFO: Inference done 1200/2500. 0.1032 s / img. ETA=0:02:14 +[01/04 20:09:11] defrcn.evaluation.evaluator INFO: Inference done 1250/2500. 0.1033 s / img. ETA=0:02:09 +[01/04 20:09:16] defrcn.evaluation.evaluator INFO: Inference done 1300/2500. 0.1036 s / img. ETA=0:02:04 +[01/04 20:09:21] defrcn.evaluation.evaluator INFO: Inference done 1350/2500. 0.1037 s / img. ETA=0:01:59 +[01/04 20:09:27] defrcn.evaluation.evaluator INFO: Inference done 1400/2500. 0.1038 s / img. ETA=0:01:54 +[01/04 20:09:32] defrcn.evaluation.evaluator INFO: Inference done 1450/2500. 0.1038 s / img. ETA=0:01:48 +[01/04 20:09:37] defrcn.evaluation.evaluator INFO: Inference done 1500/2500. 0.1038 s / img. ETA=0:01:43 +[01/04 20:09:42] defrcn.evaluation.evaluator INFO: Inference done 1550/2500. 0.1038 s / img. ETA=0:01:38 +[01/04 20:09:47] defrcn.evaluation.evaluator INFO: Inference done 1600/2500. 0.1036 s / img. ETA=0:01:33 +[01/04 20:09:52] defrcn.evaluation.evaluator INFO: Inference done 1650/2500. 0.1035 s / img. ETA=0:01:28 +[01/04 20:09:58] defrcn.evaluation.evaluator INFO: Inference done 1700/2500. 0.1036 s / img. ETA=0:01:22 +[01/04 20:10:03] defrcn.evaluation.evaluator INFO: Inference done 1750/2500. 0.1036 s / img. ETA=0:01:17 +[01/04 20:10:08] defrcn.evaluation.evaluator INFO: Inference done 1800/2500. 0.1036 s / img. ETA=0:01:12 +[01/04 20:10:13] defrcn.evaluation.evaluator INFO: Inference done 1850/2500. 0.1035 s / img. ETA=0:01:07 +[01/04 20:10:18] defrcn.evaluation.evaluator INFO: Inference done 1900/2500. 0.1035 s / img. ETA=0:01:02 +[01/04 20:10:23] defrcn.evaluation.evaluator INFO: Inference done 1950/2500. 0.1035 s / img. ETA=0:00:56 +[01/04 20:10:29] defrcn.evaluation.evaluator INFO: Inference done 2000/2500. 0.1035 s / img. ETA=0:00:51 +[01/04 20:10:34] defrcn.evaluation.evaluator INFO: Inference done 2050/2500. 0.1035 s / img. ETA=0:00:46 +[01/04 20:10:39] defrcn.evaluation.evaluator INFO: Inference done 2100/2500. 0.1035 s / img. ETA=0:00:41 +[01/04 20:10:44] defrcn.evaluation.evaluator INFO: Inference done 2150/2500. 0.1037 s / img. ETA=0:00:36 +[01/04 20:10:49] defrcn.evaluation.evaluator INFO: Inference done 2200/2500. 0.1036 s / img. ETA=0:00:31 +[01/04 20:10:55] defrcn.evaluation.evaluator INFO: Inference done 2250/2500. 0.1036 s / img. ETA=0:00:25 +[01/04 20:11:00] defrcn.evaluation.evaluator INFO: Inference done 2300/2500. 0.1037 s / img. ETA=0:00:20 +[01/04 20:11:05] defrcn.evaluation.evaluator INFO: Inference done 2350/2500. 0.1036 s / img. ETA=0:00:15 +[01/04 20:11:10] defrcn.evaluation.evaluator INFO: Inference done 2400/2500. 0.1037 s / img. ETA=0:00:10 +[01/04 20:11:16] defrcn.evaluation.evaluator INFO: Inference done 2450/2500. 0.1037 s / img. ETA=0:00:05 +[01/04 20:11:21] defrcn.evaluation.evaluator INFO: Inference done 2500/2500. 0.1037 s / img. ETA=0:00:00 +[01/04 20:11:21] defrcn.evaluation.evaluator INFO: Total inference time: 0:04:19 (0.103808 s / img per device, on 2 devices) +[01/04 20:11:21] defrcn.evaluation.evaluator INFO: Total inference pure compute time: 0:04:12 (0.101100 s / img per device, on 2 devices) +[01/04 20:11:22] defrcn.evaluation.coco_evaluation INFO: Preparing results for COCO format ... +[01/04 20:11:22] defrcn.evaluation.coco_evaluation INFO: Saving results to checkpoints/coco/10shot_ExAU/inference/coco_instances_results.json +[01/04 20:11:23] defrcn.evaluation.coco_evaluation INFO: Evaluating predictions ... +[01/04 20:11:49] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 32.379 | 51.251 | 34.372 | 16.497 | 36.191 | 46.328 | +[01/04 20:11:49] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:--------------|:-------|:-------------|:-------|:---------------|:-------| +| person | 3.844 | bicycle | 7.389 | car | 23.100 | +| motorcycle | 16.934 | airplane | 39.698 | bus | 51.329 | +| train | 26.067 | truck | 28.164 | boat | 10.647 | +| traffic light | 24.501 | fire hydrant | 66.617 | stop sign | 71.078 | +| parking meter | 37.035 | bench | 15.501 | bird | 14.939 | +| cat | 34.362 | dog | 27.347 | horse | 15.574 | +| sheep | 13.798 | cow | 22.537 | elephant | 64.002 | +| bear | 58.958 | zebra | 55.999 | giraffe | 64.378 | +| backpack | 17.711 | umbrella | 32.843 | handbag | 15.120 | +| tie | 31.040 | suitcase | 34.680 | frisbee | 58.621 | +| skis | 22.045 | snowboard | 35.570 | sports ball | 39.043 | +| kite | 37.752 | baseball bat | 26.114 | baseball glove | 29.007 | +| skateboard | 48.524 | surfboard | 39.716 | tennis racket | 48.824 | +| bottle | 16.162 | wine glass | 29.792 | cup | 35.077 | +| fork | 34.465 | knife | 15.234 | spoon | 19.142 | +| bowl | 36.598 | banana | 22.435 | apple | 17.982 | +| sandwich | 34.911 | orange | 22.765 | broccoli | 26.070 | +| carrot | 24.772 | hot dog | 32.753 | pizza | 46.651 | +| donut | 51.292 | cake | 39.819 | chair | 7.439 | +| couch | 17.577 | potted plant | 2.449 | bed | 42.213 | +| dining table | 4.699 | toilet | 54.036 | tv | 42.530 | +| laptop | 56.523 | mouse | 46.979 | remote | 26.246 | +| keyboard | 50.786 | cell phone | 26.000 | microwave | 51.768 | +| oven | 35.082 | toaster | 31.947 | sink | 30.322 | +| refrigerator | 54.080 | book | 9.140 | clock | 46.735 | +| vase | 33.695 | scissors | 26.205 | teddy bear | 38.649 | +| hair drier | 17.188 | toothbrush | 21.727 | | | +[01/04 20:12:04] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 36.532 | 56.982 | 39.192 | 19.581 | 41.112 | 51.544 | +[01/04 20:12:04] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:---------------|:-------|:--------------|:-------|:-------------|:-------| +| truck | 28.164 | traffic light | 24.501 | fire hydrant | 66.617 | +| stop sign | 71.078 | parking meter | 37.035 | bench | 15.501 | +| elephant | 64.002 | bear | 58.958 | zebra | 55.999 | +| giraffe | 64.378 | backpack | 17.711 | umbrella | 32.843 | +| handbag | 15.120 | tie | 31.040 | suitcase | 34.680 | +| frisbee | 58.621 | skis | 22.045 | snowboard | 35.570 | +| sports ball | 39.043 | kite | 37.752 | baseball bat | 26.114 | +| baseball glove | 29.007 | skateboard | 48.524 | surfboard | 39.716 | +| tennis racket | 48.824 | wine glass | 29.792 | cup | 35.077 | +| fork | 34.465 | knife | 15.234 | spoon | 19.142 | +| bowl | 36.598 | banana | 22.435 | apple | 17.982 | +| sandwich | 34.911 | orange | 22.765 | broccoli | 26.070 | +| carrot | 24.772 | hot dog | 32.753 | pizza | 46.651 | +| donut | 51.292 | cake | 39.819 | bed | 42.213 | +| toilet | 54.036 | laptop | 56.523 | mouse | 46.979 | +| remote | 26.246 | keyboard | 50.786 | cell phone | 26.000 | +| microwave | 51.768 | oven | 35.082 | toaster | 31.947 | +| sink | 30.322 | refrigerator | 54.080 | book | 9.140 | +| clock | 46.735 | vase | 33.695 | scissors | 26.205 | +| teddy bear | 38.649 | hair drier | 17.188 | toothbrush | 21.727 | +[01/04 20:12:15] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:-----:|:------:|:------:| +| 19.921 | 34.059 | 19.910 | 7.401 | 21.426 | 30.679 | +[01/04 20:12:15] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:-------------|:-------|:-----------|:-------|:-------------|:-------| +| person | 3.844 | bicycle | 7.389 | car | 23.100 | +| motorcycle | 16.934 | airplane | 39.698 | bus | 51.329 | +| train | 26.067 | boat | 10.647 | bird | 14.939 | +| cat | 34.362 | dog | 27.347 | horse | 15.574 | +| sheep | 13.798 | cow | 22.537 | bottle | 16.162 | +| chair | 7.439 | couch | 17.577 | potted plant | 2.449 | +| dining table | 4.699 | tv | 42.530 | | | +[01/04 20:12:15] defrcn.engine.defaults INFO: Evaluation results for coco14_test_all in csv format: +[01/04 20:12:15] defrcn.evaluation.testing INFO: copypaste: Task: bbox +[01/04 20:12:15] defrcn.evaluation.testing INFO: copypaste: AP,AP50,AP75,APs,APm,APl,bAP,bAP50,bAP75,bAPs,bAPm,bAPl,nAP,nAP50,nAP75,nAPs,nAPm,nAPl +[01/04 20:12:15] defrcn.evaluation.testing INFO: copypaste: 32.3793,51.2513,34.3717,16.4974,36.1908,46.3275,36.5320,56.9822,39.1921,19.5808,41.1123,51.5438,19.9211,34.0587,19.9104,7.4012,21.4264,30.6786 +[01/04 20:12:15] d2.utils.events INFO: eta: 2:43:30 iter: 2399 total_loss: 0.6136 loss_cls: 0.1199 loss_box_reg: 0.05958 loss_contrast: 0.2201 loss_rpn_cls: 0.0443 loss_rpn_loc: 0.0549 loss_kld: 0.06134 loss_reg_disitll: 0.06317 time: 3.0916 data_time: 0.1260 lr: 0.005 max_mem: 33785M +[01/04 20:13:19] d2.utils.events INFO: eta: 2:42:38 iter: 2419 total_loss: 0.6393 loss_cls: 0.1215 loss_box_reg: 0.06395 loss_contrast: 0.22 loss_rpn_cls: 0.04777 loss_rpn_loc: 0.0483 loss_kld: 0.06173 loss_reg_disitll: 0.0718 time: 3.0923 data_time: 0.1369 lr: 0.005 max_mem: 33785M +[01/04 20:14:25] d2.utils.events INFO: eta: 2:41:40 iter: 2439 total_loss: 0.6246 loss_cls: 0.1201 loss_box_reg: 0.06139 loss_contrast: 0.22 loss_rpn_cls: 0.04141 loss_rpn_loc: 0.04417 loss_kld: 0.06341 loss_reg_disitll: 0.06918 time: 3.0943 data_time: 0.1175 lr: 0.005 max_mem: 33785M +[01/04 20:15:27] d2.utils.events INFO: eta: 2:40:41 iter: 2459 total_loss: 0.648 loss_cls: 0.1234 loss_box_reg: 0.06332 loss_contrast: 0.22 loss_rpn_cls: 0.04657 loss_rpn_loc: 0.05408 loss_kld: 0.06579 loss_reg_disitll: 0.07084 time: 3.0942 data_time: 0.1254 lr: 0.005 max_mem: 33785M +[01/04 20:16:29] d2.utils.events INFO: eta: 2:39:30 iter: 2479 total_loss: 0.6208 loss_cls: 0.1211 loss_box_reg: 0.06269 loss_contrast: 0.2201 loss_rpn_cls: 0.0447 loss_rpn_loc: 0.04874 loss_kld: 0.05888 loss_reg_disitll: 0.06952 time: 3.0941 data_time: 0.1353 lr: 0.005 max_mem: 33785M +[01/04 20:17:33] d2.utils.events INFO: eta: 2:38:36 iter: 2499 total_loss: 0.6342 loss_cls: 0.1218 loss_box_reg: 0.06618 loss_contrast: 0.22 loss_rpn_cls: 0.04719 loss_rpn_loc: 0.05255 loss_kld: 0.06459 loss_reg_disitll: 0.07364 time: 3.0951 data_time: 0.1190 lr: 0.005 max_mem: 33785M +[01/04 20:18:41] d2.utils.events INFO: eta: 2:37:27 iter: 2519 total_loss: 0.6509 loss_cls: 0.1283 loss_box_reg: 0.06653 loss_contrast: 0.2201 loss_rpn_cls: 0.04854 loss_rpn_loc: 0.05074 loss_kld: 0.06606 loss_reg_disitll: 0.07314 time: 3.0972 data_time: 0.1471 lr: 0.005 max_mem: 33785M +[01/04 20:19:46] d2.utils.events INFO: eta: 2:36:25 iter: 2539 total_loss: 0.6271 loss_cls: 0.1157 loss_box_reg: 0.05681 loss_contrast: 0.22 loss_rpn_cls: 0.04716 loss_rpn_loc: 0.05414 loss_kld: 0.06499 loss_reg_disitll: 0.06404 time: 3.0987 data_time: 0.1314 lr: 0.005 max_mem: 33785M +[01/04 20:20:47] d2.utils.events INFO: eta: 2:35:19 iter: 2559 total_loss: 0.6122 loss_cls: 0.1142 loss_box_reg: 0.05923 loss_contrast: 0.22 loss_rpn_cls: 0.04318 loss_rpn_loc: 0.04707 loss_kld: 0.05904 loss_reg_disitll: 0.06602 time: 3.0983 data_time: 0.1382 lr: 0.005 max_mem: 33785M +[01/04 20:21:53] d2.utils.events INFO: eta: 2:34:13 iter: 2579 total_loss: 0.6418 loss_cls: 0.1207 loss_box_reg: 0.06396 loss_contrast: 0.22 loss_rpn_cls: 0.05306 loss_rpn_loc: 0.05011 loss_kld: 0.06628 loss_reg_disitll: 0.0708 time: 3.0997 data_time: 0.1337 lr: 0.005 max_mem: 33785M +[01/04 20:22:57] fvcore.common.checkpoint INFO: Saving checkpoint to checkpoints/coco/10shot_ExAU/model_0002599.pth +[01/04 20:23:10] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 20:23:10] d2.data.common INFO: Serializing 5000 elements to byte tensors and concatenating them all ... +[01/04 20:23:10] d2.data.common INFO: Serialized dataset takes 3.00 MiB +[01/04 20:23:11] defrcn.evaluation.evaluator INFO: Start initializing PCB module, please wait a seconds... +[01/04 20:23:11] defrcn.evaluation.calibration_layer INFO: Loading ImageNet Pre-train Model from ImageNetPretrained/torchvision/resnet101-5d3b4d8f.pth +[01/04 20:23:12] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 20:23:12] d2.data.common INFO: Serializing 402 elements to byte tensors and concatenating them all ... +[01/04 20:23:12] d2.data.common INFO: Serialized dataset takes 0.08 MiB +[01/04 20:23:32] defrcn.evaluation.evaluator INFO: Start inference on 2500 images +[01/04 20:23:45] defrcn.evaluation.evaluator INFO: Inference done 50/2500. 0.1056 s / img. ETA=0:04:18 +[01/04 20:23:50] defrcn.evaluation.evaluator INFO: Inference done 100/2500. 0.1031 s / img. ETA=0:04:07 +[01/04 20:23:55] defrcn.evaluation.evaluator INFO: Inference done 150/2500. 0.1035 s / img. ETA=0:04:03 +[01/04 20:24:00] defrcn.evaluation.evaluator INFO: Inference done 200/2500. 0.1031 s / img. ETA=0:03:57 +[01/04 20:24:05] defrcn.evaluation.evaluator INFO: Inference done 250/2500. 0.1034 s / img. ETA=0:03:52 +[01/04 20:24:10] defrcn.evaluation.evaluator INFO: Inference done 300/2500. 0.1031 s / img. ETA=0:03:46 +[01/04 20:24:15] defrcn.evaluation.evaluator INFO: Inference done 350/2500. 0.1028 s / img. ETA=0:03:40 +[01/04 20:24:20] defrcn.evaluation.evaluator INFO: Inference done 400/2500. 0.1028 s / img. ETA=0:03:35 +[01/04 20:24:25] defrcn.evaluation.evaluator INFO: Inference done 450/2500. 0.1028 s / img. ETA=0:03:30 +[01/04 20:24:31] defrcn.evaluation.evaluator INFO: Inference done 500/2500. 0.1028 s / img. ETA=0:03:25 +[01/04 20:24:36] defrcn.evaluation.evaluator INFO: Inference done 550/2500. 0.1028 s / img. ETA=0:03:20 +[01/04 20:24:41] defrcn.evaluation.evaluator INFO: Inference done 600/2500. 0.1028 s / img. ETA=0:03:15 +[01/04 20:24:46] defrcn.evaluation.evaluator INFO: Inference done 650/2500. 0.1029 s / img. ETA=0:03:10 +[01/04 20:24:51] defrcn.evaluation.evaluator INFO: Inference done 700/2500. 0.1027 s / img. ETA=0:03:04 +[01/04 20:24:56] defrcn.evaluation.evaluator INFO: Inference done 750/2500. 0.1028 s / img. ETA=0:02:59 +[01/04 20:25:02] defrcn.evaluation.evaluator INFO: Inference done 800/2500. 0.1029 s / img. ETA=0:02:55 +[01/04 20:25:07] defrcn.evaluation.evaluator INFO: Inference done 850/2500. 0.1030 s / img. ETA=0:02:49 +[01/04 20:25:12] defrcn.evaluation.evaluator INFO: Inference done 900/2500. 0.1032 s / img. ETA=0:02:45 +[01/04 20:25:17] defrcn.evaluation.evaluator INFO: Inference done 950/2500. 0.1031 s / img. ETA=0:02:39 +[01/04 20:25:22] defrcn.evaluation.evaluator INFO: Inference done 1000/2500. 0.1032 s / img. ETA=0:02:34 +[01/04 20:25:28] defrcn.evaluation.evaluator INFO: Inference done 1050/2500. 0.1033 s / img. ETA=0:02:29 +[01/04 20:25:33] defrcn.evaluation.evaluator INFO: Inference done 1100/2500. 0.1033 s / img. ETA=0:02:24 +[01/04 20:25:38] defrcn.evaluation.evaluator INFO: Inference done 1150/2500. 0.1034 s / img. ETA=0:02:19 +[01/04 20:25:43] defrcn.evaluation.evaluator INFO: Inference done 1200/2500. 0.1035 s / img. ETA=0:02:14 +[01/04 20:25:49] defrcn.evaluation.evaluator INFO: Inference done 1250/2500. 0.1035 s / img. ETA=0:02:09 +[01/04 20:25:54] defrcn.evaluation.evaluator INFO: Inference done 1300/2500. 0.1037 s / img. ETA=0:02:04 +[01/04 20:25:59] defrcn.evaluation.evaluator INFO: Inference done 1350/2500. 0.1038 s / img. ETA=0:01:59 +[01/04 20:26:05] defrcn.evaluation.evaluator INFO: Inference done 1400/2500. 0.1038 s / img. ETA=0:01:54 +[01/04 20:26:10] defrcn.evaluation.evaluator INFO: Inference done 1450/2500. 0.1038 s / img. ETA=0:01:48 +[01/04 20:26:15] defrcn.evaluation.evaluator INFO: Inference done 1500/2500. 0.1039 s / img. ETA=0:01:43 +[01/04 20:26:20] defrcn.evaluation.evaluator INFO: Inference done 1550/2500. 0.1038 s / img. ETA=0:01:38 +[01/04 20:26:25] defrcn.evaluation.evaluator INFO: Inference done 1600/2500. 0.1037 s / img. ETA=0:01:33 +[01/04 20:26:30] defrcn.evaluation.evaluator INFO: Inference done 1650/2500. 0.1036 s / img. ETA=0:01:28 +[01/04 20:26:36] defrcn.evaluation.evaluator INFO: Inference done 1700/2500. 0.1037 s / img. ETA=0:01:22 +[01/04 20:26:41] defrcn.evaluation.evaluator INFO: Inference done 1750/2500. 0.1037 s / img. ETA=0:01:17 +[01/04 20:26:46] defrcn.evaluation.evaluator INFO: Inference done 1800/2500. 0.1037 s / img. ETA=0:01:12 +[01/04 20:26:51] defrcn.evaluation.evaluator INFO: Inference done 1850/2500. 0.1036 s / img. ETA=0:01:07 +[01/04 20:26:56] defrcn.evaluation.evaluator INFO: Inference done 1900/2500. 0.1036 s / img. ETA=0:01:02 +[01/04 20:27:01] defrcn.evaluation.evaluator INFO: Inference done 1950/2500. 0.1036 s / img. ETA=0:00:57 +[01/04 20:27:06] defrcn.evaluation.evaluator INFO: Inference done 2000/2500. 0.1036 s / img. ETA=0:00:51 +[01/04 20:27:12] defrcn.evaluation.evaluator INFO: Inference done 2050/2500. 0.1036 s / img. ETA=0:00:46 +[01/04 20:27:17] defrcn.evaluation.evaluator INFO: Inference done 2100/2500. 0.1035 s / img. ETA=0:00:41 +[01/04 20:27:22] defrcn.evaluation.evaluator INFO: Inference done 2150/2500. 0.1035 s / img. ETA=0:00:36 +[01/04 20:27:27] defrcn.evaluation.evaluator INFO: Inference done 2200/2500. 0.1035 s / img. ETA=0:00:31 +[01/04 20:27:32] defrcn.evaluation.evaluator INFO: Inference done 2250/2500. 0.1034 s / img. ETA=0:00:25 +[01/04 20:27:37] defrcn.evaluation.evaluator INFO: Inference done 2300/2500. 0.1035 s / img. ETA=0:00:20 +[01/04 20:27:42] defrcn.evaluation.evaluator INFO: Inference done 2350/2500. 0.1035 s / img. ETA=0:00:15 +[01/04 20:27:48] defrcn.evaluation.evaluator INFO: Inference done 2400/2500. 0.1035 s / img. ETA=0:00:10 +[01/04 20:27:53] defrcn.evaluation.evaluator INFO: Inference done 2450/2500. 0.1036 s / img. ETA=0:00:05 +[01/04 20:27:58] defrcn.evaluation.evaluator INFO: Inference done 2500/2500. 0.1035 s / img. ETA=0:00:00 +[01/04 20:27:58] defrcn.evaluation.evaluator INFO: Total inference time: 0:04:18 (0.103407 s / img per device, on 2 devices) +[01/04 20:27:58] defrcn.evaluation.evaluator INFO: Total inference pure compute time: 0:04:12 (0.101202 s / img per device, on 2 devices) +[01/04 20:28:00] defrcn.evaluation.coco_evaluation INFO: Preparing results for COCO format ... +[01/04 20:28:00] defrcn.evaluation.coco_evaluation INFO: Saving results to checkpoints/coco/10shot_ExAU/inference/coco_instances_results.json +[01/04 20:28:01] defrcn.evaluation.coco_evaluation INFO: Evaluating predictions ... +[01/04 20:28:26] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 32.316 | 51.058 | 34.298 | 16.472 | 36.183 | 46.112 | +[01/04 20:28:26] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:--------------|:-------|:-------------|:-------|:---------------|:-------| +| person | 3.841 | bicycle | 7.090 | car | 22.815 | +| motorcycle | 17.651 | airplane | 39.662 | bus | 50.980 | +| train | 25.307 | truck | 28.211 | boat | 10.114 | +| traffic light | 24.124 | fire hydrant | 65.744 | stop sign | 71.339 | +| parking meter | 37.165 | bench | 15.991 | bird | 15.185 | +| cat | 34.043 | dog | 28.187 | horse | 15.389 | +| sheep | 14.309 | cow | 22.654 | elephant | 64.138 | +| bear | 59.324 | zebra | 55.335 | giraffe | 63.260 | +| backpack | 18.119 | umbrella | 33.020 | handbag | 15.223 | +| tie | 31.094 | suitcase | 34.660 | frisbee | 57.623 | +| skis | 22.010 | snowboard | 36.415 | sports ball | 38.801 | +| kite | 38.020 | baseball bat | 25.008 | baseball glove | 28.628 | +| skateboard | 48.328 | surfboard | 39.369 | tennis racket | 49.857 | +| bottle | 15.866 | wine glass | 30.289 | cup | 34.990 | +| fork | 34.526 | knife | 15.987 | spoon | 18.810 | +| bowl | 36.406 | banana | 22.327 | apple | 18.835 | +| sandwich | 34.448 | orange | 22.221 | broccoli | 25.775 | +| carrot | 25.013 | hot dog | 32.798 | pizza | 45.727 | +| donut | 51.688 | cake | 39.257 | chair | 7.504 | +| couch | 16.932 | potted plant | 2.588 | bed | 40.289 | +| dining table | 4.616 | toilet | 53.307 | tv | 42.278 | +| laptop | 56.241 | mouse | 47.118 | remote | 26.397 | +| keyboard | 51.294 | cell phone | 25.769 | microwave | 52.795 | +| oven | 33.501 | toaster | 31.252 | sink | 30.170 | +| refrigerator | 54.224 | book | 9.489 | clock | 46.305 | +| vase | 33.472 | scissors | 25.529 | teddy bear | 39.160 | +| hair drier | 19.282 | toothbrush | 22.806 | | | +[01/04 20:28:42] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 36.472 | 56.756 | 39.076 | 19.566 | 41.082 | 51.322 | +[01/04 20:28:42] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:---------------|:-------|:--------------|:-------|:-------------|:-------| +| truck | 28.211 | traffic light | 24.124 | fire hydrant | 65.744 | +| stop sign | 71.339 | parking meter | 37.165 | bench | 15.991 | +| elephant | 64.138 | bear | 59.324 | zebra | 55.335 | +| giraffe | 63.260 | backpack | 18.119 | umbrella | 33.020 | +| handbag | 15.223 | tie | 31.094 | suitcase | 34.660 | +| frisbee | 57.623 | skis | 22.010 | snowboard | 36.415 | +| sports ball | 38.801 | kite | 38.020 | baseball bat | 25.008 | +| baseball glove | 28.628 | skateboard | 48.328 | surfboard | 39.369 | +| tennis racket | 49.857 | wine glass | 30.289 | cup | 34.990 | +| fork | 34.526 | knife | 15.987 | spoon | 18.810 | +| bowl | 36.406 | banana | 22.327 | apple | 18.835 | +| sandwich | 34.448 | orange | 22.221 | broccoli | 25.775 | +| carrot | 25.013 | hot dog | 32.798 | pizza | 45.727 | +| donut | 51.688 | cake | 39.257 | bed | 40.289 | +| toilet | 53.307 | laptop | 56.241 | mouse | 47.118 | +| remote | 26.397 | keyboard | 51.294 | cell phone | 25.769 | +| microwave | 52.795 | oven | 33.501 | toaster | 31.252 | +| sink | 30.170 | refrigerator | 54.224 | book | 9.489 | +| clock | 46.305 | vase | 33.472 | scissors | 25.529 | +| teddy bear | 39.160 | hair drier | 19.282 | toothbrush | 22.806 | +[01/04 20:28:52] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:-----:|:------:|:------:| +| 19.851 | 33.965 | 19.964 | 7.344 | 21.487 | 30.482 | +[01/04 20:28:52] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:-------------|:-------|:-----------|:-------|:-------------|:-------| +| person | 3.841 | bicycle | 7.090 | car | 22.815 | +| motorcycle | 17.651 | airplane | 39.662 | bus | 50.980 | +| train | 25.307 | boat | 10.114 | bird | 15.185 | +| cat | 34.043 | dog | 28.187 | horse | 15.389 | +| sheep | 14.309 | cow | 22.654 | bottle | 15.866 | +| chair | 7.504 | couch | 16.932 | potted plant | 2.588 | +| dining table | 4.616 | tv | 42.278 | | | +[01/04 20:28:52] defrcn.engine.defaults INFO: Evaluation results for coco14_test_all in csv format: +[01/04 20:28:52] defrcn.evaluation.testing INFO: copypaste: Task: bbox +[01/04 20:28:52] defrcn.evaluation.testing INFO: copypaste: AP,AP50,AP75,APs,APm,APl,bAP,bAP50,bAP75,bAPs,bAPm,bAPl,nAP,nAP50,nAP75,nAPs,nAPm,nAPl +[01/04 20:28:52] defrcn.evaluation.testing INFO: copypaste: 32.3164,51.0580,34.2981,16.4716,36.1831,46.1121,36.4717,56.7558,39.0760,19.5659,41.0819,51.3223,19.8505,33.9647,19.9645,7.3435,21.4868,30.4815 +[01/04 20:28:52] d2.utils.events INFO: eta: 2:33:18 iter: 2599 total_loss: 0.5965 loss_cls: 0.1133 loss_box_reg: 0.0547 loss_contrast: 0.22 loss_rpn_cls: 0.03836 loss_rpn_loc: 0.04574 loss_kld: 0.05732 loss_reg_disitll: 0.06204 time: 3.1003 data_time: 0.1282 lr: 0.005 max_mem: 33785M +[01/04 20:29:59] d2.utils.events INFO: eta: 2:32:18 iter: 2619 total_loss: 0.5915 loss_cls: 0.1109 loss_box_reg: 0.05625 loss_contrast: 0.22 loss_rpn_cls: 0.04042 loss_rpn_loc: 0.04868 loss_kld: 0.06189 loss_reg_disitll: 0.058 time: 3.1021 data_time: 0.1260 lr: 0.005 max_mem: 33785M +[01/04 20:30:59] d2.utils.events INFO: eta: 2:31:14 iter: 2639 total_loss: 0.6172 loss_cls: 0.1155 loss_box_reg: 0.0582 loss_contrast: 0.22 loss_rpn_cls: 0.04484 loss_rpn_loc: 0.05217 loss_kld: 0.06246 loss_reg_disitll: 0.06577 time: 3.1013 data_time: 0.1274 lr: 0.005 max_mem: 33785M +[01/04 20:32:00] d2.utils.events INFO: eta: 2:29:57 iter: 2659 total_loss: 0.6004 loss_cls: 0.1158 loss_box_reg: 0.05402 loss_contrast: 0.2199 loss_rpn_cls: 0.04186 loss_rpn_loc: 0.047 loss_kld: 0.05897 loss_reg_disitll: 0.05824 time: 3.1010 data_time: 0.1267 lr: 0.005 max_mem: 33785M +[01/04 20:33:08] d2.utils.events INFO: eta: 2:28:48 iter: 2679 total_loss: 0.6047 loss_cls: 0.116 loss_box_reg: 0.05913 loss_contrast: 0.2199 loss_rpn_cls: 0.0423 loss_rpn_loc: 0.04967 loss_kld: 0.06081 loss_reg_disitll: 0.06277 time: 3.1032 data_time: 0.1240 lr: 0.005 max_mem: 33785M +[01/04 20:34:15] d2.utils.events INFO: eta: 2:27:55 iter: 2699 total_loss: 0.6087 loss_cls: 0.1151 loss_box_reg: 0.05836 loss_contrast: 0.22 loss_rpn_cls: 0.04239 loss_rpn_loc: 0.0446 loss_kld: 0.05952 loss_reg_disitll: 0.06289 time: 3.1048 data_time: 0.1347 lr: 0.005 max_mem: 33785M +[01/04 20:35:22] d2.utils.events INFO: eta: 2:27:09 iter: 2719 total_loss: 0.609 loss_cls: 0.1189 loss_box_reg: 0.06067 loss_contrast: 0.2199 loss_rpn_cls: 0.04525 loss_rpn_loc: 0.04986 loss_kld: 0.05561 loss_reg_disitll: 0.06437 time: 3.1068 data_time: 0.1408 lr: 0.005 max_mem: 33785M +[01/04 20:36:23] d2.utils.events INFO: eta: 2:26:06 iter: 2739 total_loss: 0.6318 loss_cls: 0.1174 loss_box_reg: 0.06545 loss_contrast: 0.22 loss_rpn_cls: 0.03949 loss_rpn_loc: 0.04825 loss_kld: 0.06013 loss_reg_disitll: 0.07382 time: 3.1062 data_time: 0.1154 lr: 0.005 max_mem: 33785M +[01/04 20:37:26] d2.utils.events INFO: eta: 2:25:05 iter: 2759 total_loss: 0.6388 loss_cls: 0.1218 loss_box_reg: 0.06459 loss_contrast: 0.22 loss_rpn_cls: 0.04833 loss_rpn_loc: 0.05004 loss_kld: 0.06065 loss_reg_disitll: 0.07159 time: 3.1064 data_time: 0.1292 lr: 0.005 max_mem: 33785M +[01/04 20:38:31] d2.utils.events INFO: eta: 2:24:05 iter: 2779 total_loss: 0.5958 loss_cls: 0.1113 loss_box_reg: 0.05879 loss_contrast: 0.22 loss_rpn_cls: 0.04271 loss_rpn_loc: 0.04372 loss_kld: 0.05737 loss_reg_disitll: 0.06512 time: 3.1075 data_time: 0.1343 lr: 0.005 max_mem: 33785M +[01/04 20:39:36] fvcore.common.checkpoint INFO: Saving checkpoint to checkpoints/coco/10shot_ExAU/model_0002799.pth +[01/04 20:39:50] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 20:39:50] d2.data.common INFO: Serializing 5000 elements to byte tensors and concatenating them all ... +[01/04 20:39:50] d2.data.common INFO: Serialized dataset takes 3.00 MiB +[01/04 20:39:50] defrcn.evaluation.evaluator INFO: Start initializing PCB module, please wait a seconds... +[01/04 20:39:50] defrcn.evaluation.calibration_layer INFO: Loading ImageNet Pre-train Model from ImageNetPretrained/torchvision/resnet101-5d3b4d8f.pth +[01/04 20:39:52] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 20:39:52] d2.data.common INFO: Serializing 402 elements to byte tensors and concatenating them all ... +[01/04 20:39:52] d2.data.common INFO: Serialized dataset takes 0.08 MiB +[01/04 20:40:12] defrcn.evaluation.evaluator INFO: Start inference on 2500 images +[01/04 20:40:24] defrcn.evaluation.evaluator INFO: Inference done 50/2500. 0.1053 s / img. ETA=0:04:18 +[01/04 20:40:29] defrcn.evaluation.evaluator INFO: Inference done 100/2500. 0.1032 s / img. ETA=0:04:07 +[01/04 20:40:34] defrcn.evaluation.evaluator INFO: Inference done 150/2500. 0.1034 s / img. ETA=0:04:03 +[01/04 20:40:39] defrcn.evaluation.evaluator INFO: Inference done 200/2500. 0.1031 s / img. ETA=0:03:57 +[01/04 20:40:44] defrcn.evaluation.evaluator INFO: Inference done 250/2500. 0.1034 s / img. ETA=0:03:52 +[01/04 20:40:49] defrcn.evaluation.evaluator INFO: Inference done 300/2500. 0.1032 s / img. ETA=0:03:47 +[01/04 20:40:54] defrcn.evaluation.evaluator INFO: Inference done 350/2500. 0.1030 s / img. ETA=0:03:41 +[01/04 20:41:00] defrcn.evaluation.evaluator INFO: Inference done 400/2500. 0.1030 s / img. ETA=0:03:36 +[01/04 20:41:05] defrcn.evaluation.evaluator INFO: Inference done 450/2500. 0.1031 s / img. ETA=0:03:31 +[01/04 20:41:10] defrcn.evaluation.evaluator INFO: Inference done 500/2500. 0.1031 s / img. ETA=0:03:26 +[01/04 20:41:15] defrcn.evaluation.evaluator INFO: Inference done 550/2500. 0.1030 s / img. ETA=0:03:20 +[01/04 20:41:20] defrcn.evaluation.evaluator INFO: Inference done 600/2500. 0.1030 s / img. ETA=0:03:15 +[01/04 20:41:25] defrcn.evaluation.evaluator INFO: Inference done 650/2500. 0.1031 s / img. ETA=0:03:10 +[01/04 20:41:30] defrcn.evaluation.evaluator INFO: Inference done 700/2500. 0.1029 s / img. ETA=0:03:05 +[01/04 20:41:36] defrcn.evaluation.evaluator INFO: Inference done 750/2500. 0.1029 s / img. ETA=0:03:00 +[01/04 20:41:41] defrcn.evaluation.evaluator INFO: Inference done 800/2500. 0.1031 s / img. ETA=0:02:55 +[01/04 20:41:46] defrcn.evaluation.evaluator INFO: Inference done 850/2500. 0.1031 s / img. ETA=0:02:50 +[01/04 20:41:51] defrcn.evaluation.evaluator INFO: Inference done 900/2500. 0.1033 s / img. ETA=0:02:45 +[01/04 20:41:56] defrcn.evaluation.evaluator INFO: Inference done 950/2500. 0.1033 s / img. ETA=0:02:40 +[01/04 20:42:02] defrcn.evaluation.evaluator INFO: Inference done 1000/2500. 0.1033 s / img. ETA=0:02:34 +[01/04 20:42:07] defrcn.evaluation.evaluator INFO: Inference done 1050/2500. 0.1034 s / img. ETA=0:02:29 +[01/04 20:42:12] defrcn.evaluation.evaluator INFO: Inference done 1100/2500. 0.1034 s / img. ETA=0:02:24 +[01/04 20:42:17] defrcn.evaluation.evaluator INFO: Inference done 1150/2500. 0.1035 s / img. ETA=0:02:19 +[01/04 20:42:23] defrcn.evaluation.evaluator INFO: Inference done 1200/2500. 0.1035 s / img. ETA=0:02:14 +[01/04 20:42:28] defrcn.evaluation.evaluator INFO: Inference done 1250/2500. 0.1035 s / img. ETA=0:02:09 +[01/04 20:42:33] defrcn.evaluation.evaluator INFO: Inference done 1300/2500. 0.1036 s / img. ETA=0:02:04 +[01/04 20:42:38] defrcn.evaluation.evaluator INFO: Inference done 1350/2500. 0.1038 s / img. ETA=0:01:59 +[01/04 20:42:44] defrcn.evaluation.evaluator INFO: Inference done 1400/2500. 0.1039 s / img. ETA=0:01:54 +[01/04 20:42:49] defrcn.evaluation.evaluator INFO: Inference done 1450/2500. 0.1038 s / img. ETA=0:01:49 +[01/04 20:42:54] defrcn.evaluation.evaluator INFO: Inference done 1500/2500. 0.1039 s / img. ETA=0:01:43 +[01/04 20:42:59] defrcn.evaluation.evaluator INFO: Inference done 1550/2500. 0.1039 s / img. ETA=0:01:38 +[01/04 20:43:04] defrcn.evaluation.evaluator INFO: Inference done 1600/2500. 0.1038 s / img. ETA=0:01:33 +[01/04 20:43:09] defrcn.evaluation.evaluator INFO: Inference done 1650/2500. 0.1037 s / img. ETA=0:01:28 +[01/04 20:43:15] defrcn.evaluation.evaluator INFO: Inference done 1700/2500. 0.1038 s / img. ETA=0:01:23 +[01/04 20:43:20] defrcn.evaluation.evaluator INFO: Inference done 1750/2500. 0.1038 s / img. ETA=0:01:17 +[01/04 20:43:25] defrcn.evaluation.evaluator INFO: Inference done 1800/2500. 0.1038 s / img. ETA=0:01:12 +[01/04 20:43:30] defrcn.evaluation.evaluator INFO: Inference done 1850/2500. 0.1037 s / img. ETA=0:01:07 +[01/04 20:43:35] defrcn.evaluation.evaluator INFO: Inference done 1900/2500. 0.1037 s / img. ETA=0:01:02 +[01/04 20:43:41] defrcn.evaluation.evaluator INFO: Inference done 1950/2500. 0.1037 s / img. ETA=0:00:57 +[01/04 20:43:46] defrcn.evaluation.evaluator INFO: Inference done 2000/2500. 0.1037 s / img. ETA=0:00:51 +[01/04 20:43:51] defrcn.evaluation.evaluator INFO: Inference done 2050/2500. 0.1037 s / img. ETA=0:00:46 +[01/04 20:43:56] defrcn.evaluation.evaluator INFO: Inference done 2100/2500. 0.1036 s / img. ETA=0:00:41 +[01/04 20:44:01] defrcn.evaluation.evaluator INFO: Inference done 2150/2500. 0.1037 s / img. ETA=0:00:36 +[01/04 20:44:06] defrcn.evaluation.evaluator INFO: Inference done 2200/2500. 0.1036 s / img. ETA=0:00:31 +[01/04 20:44:11] defrcn.evaluation.evaluator INFO: Inference done 2250/2500. 0.1036 s / img. ETA=0:00:25 +[01/04 20:44:17] defrcn.evaluation.evaluator INFO: Inference done 2300/2500. 0.1036 s / img. ETA=0:00:20 +[01/04 20:44:22] defrcn.evaluation.evaluator INFO: Inference done 2350/2500. 0.1036 s / img. ETA=0:00:15 +[01/04 20:44:27] defrcn.evaluation.evaluator INFO: Inference done 2400/2500. 0.1036 s / img. ETA=0:00:10 +[01/04 20:44:32] defrcn.evaluation.evaluator INFO: Inference done 2450/2500. 0.1037 s / img. ETA=0:00:05 +[01/04 20:44:37] defrcn.evaluation.evaluator INFO: Inference done 2500/2500. 0.1037 s / img. ETA=0:00:00 +[01/04 20:44:38] defrcn.evaluation.evaluator INFO: Total inference time: 0:04:19 (0.103808 s / img per device, on 2 devices) +[01/04 20:44:38] defrcn.evaluation.evaluator INFO: Total inference pure compute time: 0:04:12 (0.101401 s / img per device, on 2 devices) +[01/04 20:44:39] defrcn.evaluation.coco_evaluation INFO: Preparing results for COCO format ... +[01/04 20:44:39] defrcn.evaluation.coco_evaluation INFO: Saving results to checkpoints/coco/10shot_ExAU/inference/coco_instances_results.json +[01/04 20:44:40] defrcn.evaluation.coco_evaluation INFO: Evaluating predictions ... +[01/04 20:45:05] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 32.398 | 51.425 | 34.567 | 16.595 | 36.208 | 46.253 | +[01/04 20:45:05] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:--------------|:-------|:-------------|:-------|:---------------|:-------| +| person | 3.818 | bicycle | 8.004 | car | 22.864 | +| motorcycle | 17.216 | airplane | 38.663 | bus | 52.165 | +| train | 25.616 | truck | 28.704 | boat | 10.047 | +| traffic light | 23.841 | fire hydrant | 65.674 | stop sign | 70.671 | +| parking meter | 36.869 | bench | 15.433 | bird | 14.775 | +| cat | 33.628 | dog | 28.436 | horse | 16.211 | +| sheep | 13.805 | cow | 22.375 | elephant | 64.045 | +| bear | 59.582 | zebra | 56.081 | giraffe | 63.949 | +| backpack | 17.724 | umbrella | 33.027 | handbag | 15.174 | +| tie | 31.499 | suitcase | 35.310 | frisbee | 59.391 | +| skis | 22.097 | snowboard | 35.372 | sports ball | 39.102 | +| kite | 37.850 | baseball bat | 23.726 | baseball glove | 29.175 | +| skateboard | 48.022 | surfboard | 40.329 | tennis racket | 49.108 | +| bottle | 15.779 | wine glass | 29.951 | cup | 35.050 | +| fork | 34.295 | knife | 16.150 | spoon | 18.881 | +| bowl | 35.918 | banana | 21.936 | apple | 18.270 | +| sandwich | 35.309 | orange | 23.272 | broccoli | 25.691 | +| carrot | 25.436 | hot dog | 32.929 | pizza | 46.466 | +| donut | 51.006 | cake | 40.491 | chair | 7.664 | +| couch | 17.717 | potted plant | 2.606 | bed | 40.871 | +| dining table | 4.677 | toilet | 53.893 | tv | 42.731 | +| laptop | 56.350 | mouse | 46.779 | remote | 27.463 | +| keyboard | 50.970 | cell phone | 26.052 | microwave | 52.377 | +| oven | 34.277 | toaster | 31.890 | sink | 29.917 | +| refrigerator | 52.458 | book | 9.372 | clock | 46.791 | +| vase | 33.737 | scissors | 25.461 | teddy bear | 37.674 | +| hair drier | 22.129 | toothbrush | 21.790 | | | +[01/04 20:45:20] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 36.551 | 57.133 | 39.432 | 19.746 | 41.035 | 51.462 | +[01/04 20:45:20] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:---------------|:-------|:--------------|:-------|:-------------|:-------| +| truck | 28.704 | traffic light | 23.841 | fire hydrant | 65.674 | +| stop sign | 70.671 | parking meter | 36.869 | bench | 15.433 | +| elephant | 64.045 | bear | 59.582 | zebra | 56.081 | +| giraffe | 63.949 | backpack | 17.724 | umbrella | 33.027 | +| handbag | 15.174 | tie | 31.499 | suitcase | 35.310 | +| frisbee | 59.391 | skis | 22.097 | snowboard | 35.372 | +| sports ball | 39.102 | kite | 37.850 | baseball bat | 23.726 | +| baseball glove | 29.175 | skateboard | 48.022 | surfboard | 40.329 | +| tennis racket | 49.108 | wine glass | 29.951 | cup | 35.050 | +| fork | 34.295 | knife | 16.150 | spoon | 18.881 | +| bowl | 35.918 | banana | 21.936 | apple | 18.270 | +| sandwich | 35.309 | orange | 23.272 | broccoli | 25.691 | +| carrot | 25.436 | hot dog | 32.929 | pizza | 46.466 | +| donut | 51.006 | cake | 40.491 | bed | 40.871 | +| toilet | 53.893 | laptop | 56.350 | mouse | 46.779 | +| remote | 27.463 | keyboard | 50.970 | cell phone | 26.052 | +| microwave | 52.377 | oven | 34.277 | toaster | 31.890 | +| sink | 29.917 | refrigerator | 52.458 | book | 9.372 | +| clock | 46.791 | vase | 33.737 | scissors | 25.461 | +| teddy bear | 37.674 | hair drier | 22.129 | toothbrush | 21.790 | +[01/04 20:45:30] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:-----:|:------:|:------:| +| 19.940 | 34.301 | 19.970 | 7.300 | 21.726 | 30.625 | +[01/04 20:45:30] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:-------------|:-------|:-----------|:-------|:-------------|:-------| +| person | 3.818 | bicycle | 8.004 | car | 22.864 | +| motorcycle | 17.216 | airplane | 38.663 | bus | 52.165 | +| train | 25.616 | boat | 10.047 | bird | 14.775 | +| cat | 33.628 | dog | 28.436 | horse | 16.211 | +| sheep | 13.805 | cow | 22.375 | bottle | 15.779 | +| chair | 7.664 | couch | 17.717 | potted plant | 2.606 | +| dining table | 4.677 | tv | 42.731 | | | +[01/04 20:45:30] defrcn.engine.defaults INFO: Evaluation results for coco14_test_all in csv format: +[01/04 20:45:30] defrcn.evaluation.testing INFO: copypaste: Task: bbox +[01/04 20:45:30] defrcn.evaluation.testing INFO: copypaste: AP,AP50,AP75,APs,APm,APl,bAP,bAP50,bAP75,bAPs,bAPm,bAPl,nAP,nAP50,nAP75,nAPs,nAPm,nAPl +[01/04 20:45:30] defrcn.evaluation.testing INFO: copypaste: 32.3982,51.4252,34.5665,16.5950,36.2078,46.2529,36.5509,57.1334,39.4319,19.7458,41.0350,51.4622,19.9399,34.3005,19.9703,7.3001,21.7262,30.6250 +[01/04 20:45:31] d2.utils.events INFO: eta: 2:23:08 iter: 2799 total_loss: 0.6097 loss_cls: 0.1184 loss_box_reg: 0.05976 loss_contrast: 0.2199 loss_rpn_cls: 0.04126 loss_rpn_loc: 0.04874 loss_kld: 0.05835 loss_reg_disitll: 0.0646 time: 3.1085 data_time: 0.1422 lr: 0.005 max_mem: 33785M +[01/04 20:46:37] d2.utils.events INFO: eta: 2:22:10 iter: 2819 total_loss: 0.6017 loss_cls: 0.114 loss_box_reg: 0.06188 loss_contrast: 0.22 loss_rpn_cls: 0.03905 loss_rpn_loc: 0.04402 loss_kld: 0.05753 loss_reg_disitll: 0.06853 time: 3.1099 data_time: 0.1266 lr: 0.005 max_mem: 33785M +[01/04 20:47:43] d2.utils.events INFO: eta: 2:21:12 iter: 2839 total_loss: 0.6226 loss_cls: 0.1214 loss_box_reg: 0.063 loss_contrast: 0.22 loss_rpn_cls: 0.04473 loss_rpn_loc: 0.05046 loss_kld: 0.05957 loss_reg_disitll: 0.06538 time: 3.1114 data_time: 0.1328 lr: 0.005 max_mem: 33785M +[01/04 20:48:51] d2.utils.events INFO: eta: 2:20:14 iter: 2859 total_loss: 0.5996 loss_cls: 0.1133 loss_box_reg: 0.06019 loss_contrast: 0.2199 loss_rpn_cls: 0.0419 loss_rpn_loc: 0.0542 loss_kld: 0.06036 loss_reg_disitll: 0.06667 time: 3.1131 data_time: 0.1345 lr: 0.005 max_mem: 33785M +[01/04 20:49:51] d2.utils.events INFO: eta: 2:19:10 iter: 2879 total_loss: 0.6256 loss_cls: 0.1142 loss_box_reg: 0.05847 loss_contrast: 0.22 loss_rpn_cls: 0.04843 loss_rpn_loc: 0.04357 loss_kld: 0.06317 loss_reg_disitll: 0.06542 time: 3.1125 data_time: 0.1253 lr: 0.005 max_mem: 33785M +[01/04 20:50:55] d2.utils.events INFO: eta: 2:18:08 iter: 2899 total_loss: 0.6153 loss_cls: 0.1153 loss_box_reg: 0.06369 loss_contrast: 0.2199 loss_rpn_cls: 0.04318 loss_rpn_loc: 0.04703 loss_kld: 0.05953 loss_reg_disitll: 0.06889 time: 3.1131 data_time: 0.1241 lr: 0.005 max_mem: 33785M +[01/04 20:51:58] d2.utils.events INFO: eta: 2:16:58 iter: 2919 total_loss: 0.6128 loss_cls: 0.1115 loss_box_reg: 0.06411 loss_contrast: 0.2199 loss_rpn_cls: 0.0455 loss_rpn_loc: 0.04342 loss_kld: 0.05634 loss_reg_disitll: 0.07138 time: 3.1132 data_time: 0.1192 lr: 0.005 max_mem: 33785M +[01/04 20:53:08] d2.utils.events INFO: eta: 2:16:08 iter: 2939 total_loss: 0.5874 loss_cls: 0.1096 loss_box_reg: 0.05613 loss_contrast: 0.2199 loss_rpn_cls: 0.04185 loss_rpn_loc: 0.04435 loss_kld: 0.05762 loss_reg_disitll: 0.06067 time: 3.1157 data_time: 0.1375 lr: 0.005 max_mem: 33785M +[01/04 20:54:14] d2.utils.events INFO: eta: 2:15:09 iter: 2959 total_loss: 0.6103 loss_cls: 0.1143 loss_box_reg: 0.06213 loss_contrast: 0.2199 loss_rpn_cls: 0.04725 loss_rpn_loc: 0.04829 loss_kld: 0.05645 loss_reg_disitll: 0.06703 time: 3.1172 data_time: 0.1141 lr: 0.005 max_mem: 33785M +[01/04 20:55:14] d2.utils.events INFO: eta: 2:14:08 iter: 2979 total_loss: 0.6151 loss_cls: 0.1155 loss_box_reg: 0.06606 loss_contrast: 0.2199 loss_rpn_cls: 0.03961 loss_rpn_loc: 0.04813 loss_kld: 0.05833 loss_reg_disitll: 0.07268 time: 3.1162 data_time: 0.1308 lr: 0.005 max_mem: 33785M +[01/04 20:56:26] fvcore.common.checkpoint INFO: Saving checkpoint to checkpoints/coco/10shot_ExAU/model_0002999.pth +[01/04 20:56:40] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 20:56:40] d2.data.common INFO: Serializing 5000 elements to byte tensors and concatenating them all ... +[01/04 20:56:40] d2.data.common INFO: Serialized dataset takes 3.00 MiB +[01/04 20:56:41] defrcn.evaluation.evaluator INFO: Start initializing PCB module, please wait a seconds... +[01/04 20:56:41] defrcn.evaluation.calibration_layer INFO: Loading ImageNet Pre-train Model from ImageNetPretrained/torchvision/resnet101-5d3b4d8f.pth +[01/04 20:56:42] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 20:56:42] d2.data.common INFO: Serializing 402 elements to byte tensors and concatenating them all ... +[01/04 20:56:42] d2.data.common INFO: Serialized dataset takes 0.08 MiB +[01/04 20:57:02] defrcn.evaluation.evaluator INFO: Start inference on 2500 images +[01/04 20:57:14] defrcn.evaluation.evaluator INFO: Inference done 50/2500. 0.1053 s / img. ETA=0:04:18 +[01/04 20:57:19] defrcn.evaluation.evaluator INFO: Inference done 100/2500. 0.1033 s / img. ETA=0:04:07 +[01/04 20:57:24] defrcn.evaluation.evaluator INFO: Inference done 150/2500. 0.1035 s / img. ETA=0:04:03 +[01/04 20:57:30] defrcn.evaluation.evaluator INFO: Inference done 200/2500. 0.1030 s / img. ETA=0:03:56 +[01/04 20:57:35] defrcn.evaluation.evaluator INFO: Inference done 250/2500. 0.1033 s / img. ETA=0:03:52 +[01/04 20:57:40] defrcn.evaluation.evaluator INFO: Inference done 300/2500. 0.1031 s / img. ETA=0:03:46 +[01/04 20:57:45] defrcn.evaluation.evaluator INFO: Inference done 350/2500. 0.1028 s / img. ETA=0:03:41 +[01/04 20:57:50] defrcn.evaluation.evaluator INFO: Inference done 400/2500. 0.1028 s / img. ETA=0:03:35 +[01/04 20:57:55] defrcn.evaluation.evaluator INFO: Inference done 450/2500. 0.1028 s / img. ETA=0:03:30 +[01/04 20:58:00] defrcn.evaluation.evaluator INFO: Inference done 500/2500. 0.1027 s / img. ETA=0:03:25 +[01/04 20:58:05] defrcn.evaluation.evaluator INFO: Inference done 550/2500. 0.1027 s / img. ETA=0:03:20 +[01/04 20:58:11] defrcn.evaluation.evaluator INFO: Inference done 600/2500. 0.1027 s / img. ETA=0:03:15 +[01/04 20:58:16] defrcn.evaluation.evaluator INFO: Inference done 650/2500. 0.1028 s / img. ETA=0:03:10 +[01/04 20:58:21] defrcn.evaluation.evaluator INFO: Inference done 700/2500. 0.1025 s / img. ETA=0:03:04 +[01/04 20:58:26] defrcn.evaluation.evaluator INFO: Inference done 750/2500. 0.1027 s / img. ETA=0:02:59 +[01/04 20:58:31] defrcn.evaluation.evaluator INFO: Inference done 800/2500. 0.1028 s / img. ETA=0:02:54 +[01/04 20:58:36] defrcn.evaluation.evaluator INFO: Inference done 850/2500. 0.1028 s / img. ETA=0:02:49 +[01/04 20:58:42] defrcn.evaluation.evaluator INFO: Inference done 900/2500. 0.1030 s / img. ETA=0:02:44 +[01/04 20:58:47] defrcn.evaluation.evaluator INFO: Inference done 950/2500. 0.1029 s / img. ETA=0:02:39 +[01/04 20:58:52] defrcn.evaluation.evaluator INFO: Inference done 1000/2500. 0.1030 s / img. ETA=0:02:34 +[01/04 20:58:57] defrcn.evaluation.evaluator INFO: Inference done 1050/2500. 0.1031 s / img. ETA=0:02:29 +[01/04 20:59:02] defrcn.evaluation.evaluator INFO: Inference done 1100/2500. 0.1031 s / img. ETA=0:02:24 +[01/04 20:59:08] defrcn.evaluation.evaluator INFO: Inference done 1150/2500. 0.1032 s / img. ETA=0:02:19 +[01/04 20:59:13] defrcn.evaluation.evaluator INFO: Inference done 1200/2500. 0.1032 s / img. ETA=0:02:14 +[01/04 20:59:18] defrcn.evaluation.evaluator INFO: Inference done 1250/2500. 0.1032 s / img. ETA=0:02:09 +[01/04 20:59:23] defrcn.evaluation.evaluator INFO: Inference done 1300/2500. 0.1034 s / img. ETA=0:02:04 +[01/04 20:59:29] defrcn.evaluation.evaluator INFO: Inference done 1350/2500. 0.1035 s / img. ETA=0:01:58 +[01/04 20:59:34] defrcn.evaluation.evaluator INFO: Inference done 1400/2500. 0.1036 s / img. ETA=0:01:53 +[01/04 20:59:39] defrcn.evaluation.evaluator INFO: Inference done 1450/2500. 0.1035 s / img. ETA=0:01:48 +[01/04 20:59:44] defrcn.evaluation.evaluator INFO: Inference done 1500/2500. 0.1036 s / img. ETA=0:01:43 +[01/04 20:59:50] defrcn.evaluation.evaluator INFO: Inference done 1550/2500. 0.1036 s / img. ETA=0:01:38 +[01/04 20:59:55] defrcn.evaluation.evaluator INFO: Inference done 1600/2500. 0.1035 s / img. ETA=0:01:33 +[01/04 21:00:00] defrcn.evaluation.evaluator INFO: Inference done 1650/2500. 0.1034 s / img. ETA=0:01:27 +[01/04 21:00:05] defrcn.evaluation.evaluator INFO: Inference done 1700/2500. 0.1035 s / img. ETA=0:01:22 +[01/04 21:00:10] defrcn.evaluation.evaluator INFO: Inference done 1750/2500. 0.1035 s / img. ETA=0:01:17 +[01/04 21:00:15] defrcn.evaluation.evaluator INFO: Inference done 1800/2500. 0.1035 s / img. ETA=0:01:12 +[01/04 21:00:20] defrcn.evaluation.evaluator INFO: Inference done 1850/2500. 0.1034 s / img. ETA=0:01:07 +[01/04 21:00:26] defrcn.evaluation.evaluator INFO: Inference done 1900/2500. 0.1035 s / img. ETA=0:01:02 +[01/04 21:00:31] defrcn.evaluation.evaluator INFO: Inference done 1950/2500. 0.1035 s / img. ETA=0:00:56 +[01/04 21:00:36] defrcn.evaluation.evaluator INFO: Inference done 2000/2500. 0.1035 s / img. ETA=0:00:51 +[01/04 21:00:41] defrcn.evaluation.evaluator INFO: Inference done 2050/2500. 0.1035 s / img. ETA=0:00:46 +[01/04 21:00:46] defrcn.evaluation.evaluator INFO: Inference done 2100/2500. 0.1035 s / img. ETA=0:00:41 +[01/04 21:00:51] defrcn.evaluation.evaluator INFO: Inference done 2150/2500. 0.1035 s / img. ETA=0:00:36 +[01/04 21:00:57] defrcn.evaluation.evaluator INFO: Inference done 2200/2500. 0.1034 s / img. ETA=0:00:31 +[01/04 21:01:02] defrcn.evaluation.evaluator INFO: Inference done 2250/2500. 0.1034 s / img. ETA=0:00:25 +[01/04 21:01:07] defrcn.evaluation.evaluator INFO: Inference done 2300/2500. 0.1035 s / img. ETA=0:00:20 +[01/04 21:01:12] defrcn.evaluation.evaluator INFO: Inference done 2350/2500. 0.1035 s / img. ETA=0:00:15 +[01/04 21:01:17] defrcn.evaluation.evaluator INFO: Inference done 2400/2500. 0.1035 s / img. ETA=0:00:10 +[01/04 21:01:23] defrcn.evaluation.evaluator INFO: Inference done 2450/2500. 0.1036 s / img. ETA=0:00:05 +[01/04 21:01:28] defrcn.evaluation.evaluator INFO: Inference done 2500/2500. 0.1035 s / img. ETA=0:00:00 +[01/04 21:01:28] defrcn.evaluation.evaluator INFO: Total inference time: 0:04:18 (0.103407 s / img per device, on 2 devices) +[01/04 21:01:28] defrcn.evaluation.evaluator INFO: Total inference pure compute time: 0:04:12 (0.101151 s / img per device, on 2 devices) +[01/04 21:01:29] defrcn.evaluation.coco_evaluation INFO: Preparing results for COCO format ... +[01/04 21:01:29] defrcn.evaluation.coco_evaluation INFO: Saving results to checkpoints/coco/10shot_ExAU/inference/coco_instances_results.json +[01/04 21:01:30] defrcn.evaluation.coco_evaluation INFO: Evaluating predictions ... +[01/04 21:01:55] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 32.309 | 51.274 | 34.209 | 16.453 | 36.411 | 45.979 | +[01/04 21:01:55] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:--------------|:-------|:-------------|:-------|:---------------|:-------| +| person | 3.822 | bicycle | 7.645 | car | 22.606 | +| motorcycle | 17.338 | airplane | 39.999 | bus | 50.474 | +| train | 24.741 | truck | 28.741 | boat | 10.245 | +| traffic light | 23.471 | fire hydrant | 65.306 | stop sign | 70.898 | +| parking meter | 37.278 | bench | 15.835 | bird | 15.141 | +| cat | 34.727 | dog | 28.858 | horse | 16.082 | +| sheep | 14.402 | cow | 22.779 | elephant | 64.630 | +| bear | 59.899 | zebra | 55.982 | giraffe | 63.773 | +| backpack | 17.826 | umbrella | 33.863 | handbag | 14.958 | +| tie | 31.690 | suitcase | 34.966 | frisbee | 58.418 | +| skis | 22.378 | snowboard | 34.831 | sports ball | 39.233 | +| kite | 37.986 | baseball bat | 25.719 | baseball glove | 29.319 | +| skateboard | 47.973 | surfboard | 39.289 | tennis racket | 50.145 | +| bottle | 15.798 | wine glass | 30.464 | cup | 34.997 | +| fork | 34.695 | knife | 15.917 | spoon | 18.557 | +| bowl | 36.393 | banana | 22.110 | apple | 18.238 | +| sandwich | 34.872 | orange | 22.190 | broccoli | 25.639 | +| carrot | 25.174 | hot dog | 33.376 | pizza | 46.239 | +| donut | 51.042 | cake | 39.852 | chair | 7.507 | +| couch | 17.791 | potted plant | 2.753 | bed | 40.598 | +| dining table | 4.606 | toilet | 53.649 | tv | 42.653 | +| laptop | 56.610 | mouse | 46.308 | remote | 26.927 | +| keyboard | 50.635 | cell phone | 25.644 | microwave | 53.187 | +| oven | 33.401 | toaster | 30.135 | sink | 30.483 | +| refrigerator | 54.450 | book | 9.443 | clock | 46.214 | +| vase | 33.293 | scissors | 26.238 | teddy bear | 38.676 | +| hair drier | 12.475 | toothbrush | 22.254 | | | +[01/04 21:02:11] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 36.413 | 56.918 | 38.904 | 19.611 | 41.342 | 51.027 | +[01/04 21:02:11] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:---------------|:-------|:--------------|:-------|:-------------|:-------| +| truck | 28.741 | traffic light | 23.471 | fire hydrant | 65.306 | +| stop sign | 70.898 | parking meter | 37.278 | bench | 15.835 | +| elephant | 64.630 | bear | 59.899 | zebra | 55.982 | +| giraffe | 63.773 | backpack | 17.826 | umbrella | 33.863 | +| handbag | 14.958 | tie | 31.690 | suitcase | 34.966 | +| frisbee | 58.418 | skis | 22.378 | snowboard | 34.831 | +| sports ball | 39.233 | kite | 37.986 | baseball bat | 25.719 | +| baseball glove | 29.319 | skateboard | 47.973 | surfboard | 39.289 | +| tennis racket | 50.145 | wine glass | 30.464 | cup | 34.997 | +| fork | 34.695 | knife | 15.917 | spoon | 18.557 | +| bowl | 36.393 | banana | 22.110 | apple | 18.238 | +| sandwich | 34.872 | orange | 22.190 | broccoli | 25.639 | +| carrot | 25.174 | hot dog | 33.376 | pizza | 46.239 | +| donut | 51.042 | cake | 39.852 | bed | 40.598 | +| toilet | 53.649 | laptop | 56.610 | mouse | 46.308 | +| remote | 26.927 | keyboard | 50.635 | cell phone | 25.644 | +| microwave | 53.187 | oven | 33.401 | toaster | 30.135 | +| sink | 30.483 | refrigerator | 54.450 | book | 9.443 | +| clock | 46.214 | vase | 33.293 | scissors | 26.238 | +| teddy bear | 38.676 | hair drier | 12.475 | toothbrush | 22.254 | +[01/04 21:02:21] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:-----:|:------:|:------:| +| 19.998 | 34.343 | 20.124 | 7.136 | 21.621 | 30.837 | +[01/04 21:02:21] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:-------------|:-------|:-----------|:-------|:-------------|:-------| +| person | 3.822 | bicycle | 7.645 | car | 22.606 | +| motorcycle | 17.338 | airplane | 39.999 | bus | 50.474 | +| train | 24.741 | boat | 10.245 | bird | 15.141 | +| cat | 34.727 | dog | 28.858 | horse | 16.082 | +| sheep | 14.402 | cow | 22.779 | bottle | 15.798 | +| chair | 7.507 | couch | 17.791 | potted plant | 2.753 | +| dining table | 4.606 | tv | 42.653 | | | +[01/04 21:02:21] defrcn.engine.defaults INFO: Evaluation results for coco14_test_all in csv format: +[01/04 21:02:21] defrcn.evaluation.testing INFO: copypaste: Task: bbox +[01/04 21:02:21] defrcn.evaluation.testing INFO: copypaste: AP,AP50,AP75,APs,APm,APl,bAP,bAP50,bAP75,bAPs,bAPm,bAPl,nAP,nAP50,nAP75,nAPs,nAPm,nAPl +[01/04 21:02:21] defrcn.evaluation.testing INFO: copypaste: 32.3094,51.2743,34.2089,16.4530,36.4114,45.9794,36.4131,56.9182,38.9038,19.6114,41.3417,51.0268,19.9983,34.3428,20.1242,7.1356,21.6206,30.8374 +[01/04 21:02:21] d2.utils.events INFO: eta: 2:13:21 iter: 2999 total_loss: 0.5845 loss_cls: 0.1075 loss_box_reg: 0.05495 loss_contrast: 0.2199 loss_rpn_cls: 0.03911 loss_rpn_loc: 0.05447 loss_kld: 0.05732 loss_reg_disitll: 0.05968 time: 3.1194 data_time: 0.1297 lr: 0.005 max_mem: 33785M +[01/04 21:03:19] d2.utils.events INFO: eta: 2:12:05 iter: 3019 total_loss: 0.6167 loss_cls: 0.117 loss_box_reg: 0.06048 loss_contrast: 0.2199 loss_rpn_cls: 0.04427 loss_rpn_loc: 0.04467 loss_kld: 0.05959 loss_reg_disitll: 0.06681 time: 3.1179 data_time: 0.1290 lr: 0.005 max_mem: 33785M +[01/04 21:04:30] d2.utils.events INFO: eta: 2:11:16 iter: 3039 total_loss: 0.6227 loss_cls: 0.116 loss_box_reg: 0.0637 loss_contrast: 0.2199 loss_rpn_cls: 0.04266 loss_rpn_loc: 0.04678 loss_kld: 0.05758 loss_reg_disitll: 0.06872 time: 3.1206 data_time: 0.1458 lr: 0.005 max_mem: 33785M +[01/04 21:05:36] d2.utils.events INFO: eta: 2:10:11 iter: 3059 total_loss: 0.5913 loss_cls: 0.1117 loss_box_reg: 0.06056 loss_contrast: 0.2199 loss_rpn_cls: 0.04099 loss_rpn_loc: 0.04363 loss_kld: 0.05899 loss_reg_disitll: 0.06421 time: 3.1218 data_time: 0.1286 lr: 0.005 max_mem: 33785M +[01/04 21:06:46] d2.utils.events INFO: eta: 2:09:27 iter: 3079 total_loss: 0.6055 loss_cls: 0.1145 loss_box_reg: 0.05898 loss_contrast: 0.2199 loss_rpn_cls: 0.03653 loss_rpn_loc: 0.046 loss_kld: 0.05837 loss_reg_disitll: 0.06461 time: 3.1242 data_time: 0.1285 lr: 0.005 max_mem: 33785M +[01/04 21:07:47] d2.utils.events INFO: eta: 2:08:27 iter: 3099 total_loss: 0.6117 loss_cls: 0.1142 loss_box_reg: 0.05977 loss_contrast: 0.2199 loss_rpn_cls: 0.04712 loss_rpn_loc: 0.04576 loss_kld: 0.05877 loss_reg_disitll: 0.06686 time: 3.1237 data_time: 0.1257 lr: 0.005 max_mem: 33785M +[01/04 21:08:52] d2.utils.events INFO: eta: 2:07:23 iter: 3119 total_loss: 0.6173 loss_cls: 0.1208 loss_box_reg: 0.06054 loss_contrast: 0.2199 loss_rpn_cls: 0.04214 loss_rpn_loc: 0.03994 loss_kld: 0.05988 loss_reg_disitll: 0.06631 time: 3.1246 data_time: 0.1317 lr: 0.005 max_mem: 33785M +[01/04 21:09:55] d2.utils.events INFO: eta: 2:06:13 iter: 3139 total_loss: 0.598 loss_cls: 0.1124 loss_box_reg: 0.05759 loss_contrast: 0.2199 loss_rpn_cls: 0.04183 loss_rpn_loc: 0.05173 loss_kld: 0.05782 loss_reg_disitll: 0.06551 time: 3.1247 data_time: 0.1326 lr: 0.005 max_mem: 33785M +[01/04 21:11:08] d2.utils.events INFO: eta: 2:05:15 iter: 3159 total_loss: 0.5787 loss_cls: 0.113 loss_box_reg: 0.05775 loss_contrast: 0.2199 loss_rpn_cls: 0.03812 loss_rpn_loc: 0.04681 loss_kld: 0.05693 loss_reg_disitll: 0.06002 time: 3.1280 data_time: 0.1191 lr: 0.005 max_mem: 33785M +[01/04 21:12:20] d2.utils.events INFO: eta: 2:04:20 iter: 3179 total_loss: 0.6015 loss_cls: 0.1136 loss_box_reg: 0.05984 loss_contrast: 0.2199 loss_rpn_cls: 0.04175 loss_rpn_loc: 0.0447 loss_kld: 0.05888 loss_reg_disitll: 0.06603 time: 3.1311 data_time: 0.1330 lr: 0.005 max_mem: 33785M +[01/04 21:13:24] fvcore.common.checkpoint INFO: Saving checkpoint to checkpoints/coco/10shot_ExAU/model_0003199.pth +[01/04 21:13:40] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 21:13:40] d2.data.common INFO: Serializing 5000 elements to byte tensors and concatenating them all ... +[01/04 21:13:40] d2.data.common INFO: Serialized dataset takes 3.00 MiB +[01/04 21:13:40] defrcn.evaluation.evaluator INFO: Start initializing PCB module, please wait a seconds... +[01/04 21:13:40] defrcn.evaluation.calibration_layer INFO: Loading ImageNet Pre-train Model from ImageNetPretrained/torchvision/resnet101-5d3b4d8f.pth +[01/04 21:13:41] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 21:13:41] d2.data.common INFO: Serializing 402 elements to byte tensors and concatenating them all ... +[01/04 21:13:41] d2.data.common INFO: Serialized dataset takes 0.08 MiB +[01/04 21:14:02] defrcn.evaluation.evaluator INFO: Start inference on 2500 images +[01/04 21:14:14] defrcn.evaluation.evaluator INFO: Inference done 50/2500. 0.1063 s / img. ETA=0:04:20 +[01/04 21:14:19] defrcn.evaluation.evaluator INFO: Inference done 100/2500. 0.1041 s / img. ETA=0:04:09 +[01/04 21:14:24] defrcn.evaluation.evaluator INFO: Inference done 150/2500. 0.1042 s / img. ETA=0:04:04 +[01/04 21:14:30] defrcn.evaluation.evaluator INFO: Inference done 200/2500. 0.1037 s / img. ETA=0:03:58 +[01/04 21:14:35] defrcn.evaluation.evaluator INFO: Inference done 250/2500. 0.1040 s / img. ETA=0:03:53 +[01/04 21:14:40] defrcn.evaluation.evaluator INFO: Inference done 300/2500. 0.1038 s / img. ETA=0:03:48 +[01/04 21:14:45] defrcn.evaluation.evaluator INFO: Inference done 350/2500. 0.1035 s / img. ETA=0:03:42 +[01/04 21:14:50] defrcn.evaluation.evaluator INFO: Inference done 400/2500. 0.1035 s / img. ETA=0:03:37 +[01/04 21:14:55] defrcn.evaluation.evaluator INFO: Inference done 450/2500. 0.1035 s / img. ETA=0:03:32 +[01/04 21:15:01] defrcn.evaluation.evaluator INFO: Inference done 500/2500. 0.1035 s / img. ETA=0:03:27 +[01/04 21:15:06] defrcn.evaluation.evaluator INFO: Inference done 550/2500. 0.1035 s / img. ETA=0:03:21 +[01/04 21:15:11] defrcn.evaluation.evaluator INFO: Inference done 600/2500. 0.1034 s / img. ETA=0:03:16 +[01/04 21:15:16] defrcn.evaluation.evaluator INFO: Inference done 650/2500. 0.1036 s / img. ETA=0:03:11 +[01/04 21:15:21] defrcn.evaluation.evaluator INFO: Inference done 700/2500. 0.1033 s / img. ETA=0:03:06 +[01/04 21:15:26] defrcn.evaluation.evaluator INFO: Inference done 750/2500. 0.1034 s / img. ETA=0:03:01 +[01/04 21:15:32] defrcn.evaluation.evaluator INFO: Inference done 800/2500. 0.1036 s / img. ETA=0:02:56 +[01/04 21:15:37] defrcn.evaluation.evaluator INFO: Inference done 850/2500. 0.1037 s / img. ETA=0:02:51 +[01/04 21:15:42] defrcn.evaluation.evaluator INFO: Inference done 900/2500. 0.1038 s / img. ETA=0:02:46 +[01/04 21:15:47] defrcn.evaluation.evaluator INFO: Inference done 950/2500. 0.1038 s / img. ETA=0:02:40 +[01/04 21:15:53] defrcn.evaluation.evaluator INFO: Inference done 1000/2500. 0.1039 s / img. ETA=0:02:35 +[01/04 21:15:58] defrcn.evaluation.evaluator INFO: Inference done 1050/2500. 0.1039 s / img. ETA=0:02:30 +[01/04 21:16:03] defrcn.evaluation.evaluator INFO: Inference done 1100/2500. 0.1040 s / img. ETA=0:02:25 +[01/04 21:16:08] defrcn.evaluation.evaluator INFO: Inference done 1150/2500. 0.1040 s / img. ETA=0:02:20 +[01/04 21:16:14] defrcn.evaluation.evaluator INFO: Inference done 1200/2500. 0.1041 s / img. ETA=0:02:15 +[01/04 21:16:19] defrcn.evaluation.evaluator INFO: Inference done 1250/2500. 0.1041 s / img. ETA=0:02:10 +[01/04 21:16:24] defrcn.evaluation.evaluator INFO: Inference done 1300/2500. 0.1042 s / img. ETA=0:02:05 +[01/04 21:16:30] defrcn.evaluation.evaluator INFO: Inference done 1350/2500. 0.1044 s / img. ETA=0:02:00 +[01/04 21:16:35] defrcn.evaluation.evaluator INFO: Inference done 1400/2500. 0.1044 s / img. ETA=0:01:54 +[01/04 21:16:40] defrcn.evaluation.evaluator INFO: Inference done 1450/2500. 0.1044 s / img. ETA=0:01:49 +[01/04 21:16:45] defrcn.evaluation.evaluator INFO: Inference done 1500/2500. 0.1045 s / img. ETA=0:01:44 +[01/04 21:16:51] defrcn.evaluation.evaluator INFO: Inference done 1550/2500. 0.1044 s / img. ETA=0:01:39 +[01/04 21:16:56] defrcn.evaluation.evaluator INFO: Inference done 1600/2500. 0.1045 s / img. ETA=0:01:34 +[01/04 21:17:01] defrcn.evaluation.evaluator INFO: Inference done 1650/2500. 0.1044 s / img. ETA=0:01:28 +[01/04 21:17:06] defrcn.evaluation.evaluator INFO: Inference done 1700/2500. 0.1044 s / img. ETA=0:01:23 +[01/04 21:17:12] defrcn.evaluation.evaluator INFO: Inference done 1750/2500. 0.1045 s / img. ETA=0:01:18 +[01/04 21:17:17] defrcn.evaluation.evaluator INFO: Inference done 1800/2500. 0.1044 s / img. ETA=0:01:13 +[01/04 21:17:22] defrcn.evaluation.evaluator INFO: Inference done 1850/2500. 0.1044 s / img. ETA=0:01:07 +[01/04 21:17:27] defrcn.evaluation.evaluator INFO: Inference done 1900/2500. 0.1044 s / img. ETA=0:01:02 +[01/04 21:17:32] defrcn.evaluation.evaluator INFO: Inference done 1950/2500. 0.1044 s / img. ETA=0:00:57 +[01/04 21:17:38] defrcn.evaluation.evaluator INFO: Inference done 2000/2500. 0.1044 s / img. ETA=0:00:52 +[01/04 21:17:43] defrcn.evaluation.evaluator INFO: Inference done 2050/2500. 0.1044 s / img. ETA=0:00:46 +[01/04 21:17:48] defrcn.evaluation.evaluator INFO: Inference done 2100/2500. 0.1043 s / img. ETA=0:00:41 +[01/04 21:17:53] defrcn.evaluation.evaluator INFO: Inference done 2150/2500. 0.1043 s / img. ETA=0:00:36 +[01/04 21:17:58] defrcn.evaluation.evaluator INFO: Inference done 2200/2500. 0.1043 s / img. ETA=0:00:31 +[01/04 21:18:03] defrcn.evaluation.evaluator INFO: Inference done 2250/2500. 0.1042 s / img. ETA=0:00:26 +[01/04 21:18:09] defrcn.evaluation.evaluator INFO: Inference done 2300/2500. 0.1043 s / img. ETA=0:00:20 +[01/04 21:18:14] defrcn.evaluation.evaluator INFO: Inference done 2350/2500. 0.1043 s / img. ETA=0:00:15 +[01/04 21:18:19] defrcn.evaluation.evaluator INFO: Inference done 2400/2500. 0.1043 s / img. ETA=0:00:10 +[01/04 21:18:24] defrcn.evaluation.evaluator INFO: Inference done 2450/2500. 0.1044 s / img. ETA=0:00:05 +[01/04 21:18:30] defrcn.evaluation.evaluator INFO: Inference done 2500/2500. 0.1043 s / img. ETA=0:00:00 +[01/04 21:18:30] defrcn.evaluation.evaluator INFO: Total inference time: 0:04:20 (0.104208 s / img per device, on 2 devices) +[01/04 21:18:30] defrcn.evaluation.evaluator INFO: Total inference pure compute time: 0:04:14 (0.102010 s / img per device, on 2 devices) +[01/04 21:18:31] defrcn.evaluation.coco_evaluation INFO: Preparing results for COCO format ... +[01/04 21:18:31] defrcn.evaluation.coco_evaluation INFO: Saving results to checkpoints/coco/10shot_ExAU/inference/coco_instances_results.json +[01/04 21:18:32] defrcn.evaluation.coco_evaluation INFO: Evaluating predictions ... +[01/04 21:18:58] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 32.273 | 51.298 | 34.208 | 16.470 | 36.100 | 45.994 | +[01/04 21:18:58] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:--------------|:-------|:-------------|:-------|:---------------|:-------| +| person | 3.913 | bicycle | 7.498 | car | 22.056 | +| motorcycle | 16.969 | airplane | 40.885 | bus | 51.176 | +| train | 25.480 | truck | 28.359 | boat | 10.711 | +| traffic light | 23.953 | fire hydrant | 65.017 | stop sign | 70.759 | +| parking meter | 37.828 | bench | 15.376 | bird | 14.282 | +| cat | 34.577 | dog | 28.467 | horse | 15.243 | +| sheep | 14.058 | cow | 22.268 | elephant | 64.289 | +| bear | 59.435 | zebra | 56.722 | giraffe | 63.507 | +| backpack | 18.396 | umbrella | 33.326 | handbag | 14.906 | +| tie | 31.694 | suitcase | 34.423 | frisbee | 57.806 | +| skis | 22.548 | snowboard | 35.081 | sports ball | 39.249 | +| kite | 37.493 | baseball bat | 24.024 | baseball glove | 29.272 | +| skateboard | 48.329 | surfboard | 39.955 | tennis racket | 49.528 | +| bottle | 16.056 | wine glass | 29.863 | cup | 34.843 | +| fork | 33.801 | knife | 16.065 | spoon | 18.958 | +| bowl | 36.177 | banana | 21.854 | apple | 18.346 | +| sandwich | 36.245 | orange | 22.424 | broccoli | 25.858 | +| carrot | 24.512 | hot dog | 33.462 | pizza | 45.597 | +| donut | 50.436 | cake | 39.686 | chair | 7.595 | +| couch | 18.095 | potted plant | 2.804 | bed | 41.665 | +| dining table | 5.158 | toilet | 53.618 | tv | 42.939 | +| laptop | 56.359 | mouse | 46.010 | remote | 26.308 | +| keyboard | 50.803 | cell phone | 25.514 | microwave | 53.139 | +| oven | 33.561 | toaster | 30.457 | sink | 30.118 | +| refrigerator | 53.339 | book | 9.181 | clock | 46.825 | +| vase | 33.719 | scissors | 26.199 | teddy bear | 38.508 | +| hair drier | 14.827 | toothbrush | 22.078 | | | +[01/04 21:19:14] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 36.360 | 56.975 | 38.904 | 19.597 | 40.966 | 51.132 | +[01/04 21:19:14] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:---------------|:-------|:--------------|:-------|:-------------|:-------| +| truck | 28.359 | traffic light | 23.953 | fire hydrant | 65.017 | +| stop sign | 70.759 | parking meter | 37.828 | bench | 15.376 | +| elephant | 64.289 | bear | 59.435 | zebra | 56.722 | +| giraffe | 63.507 | backpack | 18.396 | umbrella | 33.326 | +| handbag | 14.906 | tie | 31.694 | suitcase | 34.423 | +| frisbee | 57.806 | skis | 22.548 | snowboard | 35.081 | +| sports ball | 39.249 | kite | 37.493 | baseball bat | 24.024 | +| baseball glove | 29.272 | skateboard | 48.329 | surfboard | 39.955 | +| tennis racket | 49.528 | wine glass | 29.863 | cup | 34.843 | +| fork | 33.801 | knife | 16.065 | spoon | 18.958 | +| bowl | 36.177 | banana | 21.854 | apple | 18.346 | +| sandwich | 36.245 | orange | 22.424 | broccoli | 25.858 | +| carrot | 24.512 | hot dog | 33.462 | pizza | 45.597 | +| donut | 50.436 | cake | 39.686 | bed | 41.665 | +| toilet | 53.618 | laptop | 56.359 | mouse | 46.010 | +| remote | 26.308 | keyboard | 50.803 | cell phone | 25.514 | +| microwave | 53.139 | oven | 33.561 | toaster | 30.457 | +| sink | 30.118 | refrigerator | 53.339 | book | 9.181 | +| clock | 46.825 | vase | 33.719 | scissors | 26.199 | +| teddy bear | 38.508 | hair drier | 14.827 | toothbrush | 22.078 | +[01/04 21:19:24] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:-----:|:------:|:------:| +| 20.011 | 34.266 | 20.120 | 7.246 | 21.503 | 30.579 | +[01/04 21:19:24] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:-------------|:-------|:-----------|:-------|:-------------|:-------| +| person | 3.913 | bicycle | 7.498 | car | 22.056 | +| motorcycle | 16.969 | airplane | 40.885 | bus | 51.176 | +| train | 25.480 | boat | 10.711 | bird | 14.282 | +| cat | 34.577 | dog | 28.467 | horse | 15.243 | +| sheep | 14.058 | cow | 22.268 | bottle | 16.056 | +| chair | 7.595 | couch | 18.095 | potted plant | 2.804 | +| dining table | 5.158 | tv | 42.939 | | | +[01/04 21:19:24] defrcn.engine.defaults INFO: Evaluation results for coco14_test_all in csv format: +[01/04 21:19:24] defrcn.evaluation.testing INFO: copypaste: Task: bbox +[01/04 21:19:24] defrcn.evaluation.testing INFO: copypaste: AP,AP50,AP75,APs,APm,APl,bAP,bAP50,bAP75,bAPs,bAPm,bAPl,nAP,nAP50,nAP75,nAPs,nAPm,nAPl +[01/04 21:19:24] defrcn.evaluation.testing INFO: copypaste: 32.2732,51.2978,34.2080,16.4704,36.1003,45.9937,36.3605,56.9752,38.9041,19.5972,40.9661,51.1319,20.0114,34.2656,20.1198,7.2464,21.5027,30.5792 +[01/04 21:19:24] d2.utils.events INFO: eta: 2:03:22 iter: 3199 total_loss: 0.6113 loss_cls: 0.1082 loss_box_reg: 0.05788 loss_contrast: 0.2199 loss_rpn_cls: 0.0441 loss_rpn_loc: 0.04393 loss_kld: 0.05965 loss_reg_disitll: 0.06471 time: 3.1314 data_time: 0.1178 lr: 0.005 max_mem: 33785M +[01/04 21:20:25] d2.utils.events INFO: eta: 2:02:06 iter: 3219 total_loss: 0.5895 loss_cls: 0.1084 loss_box_reg: 0.05555 loss_contrast: 0.2199 loss_rpn_cls: 0.04165 loss_rpn_loc: 0.04127 loss_kld: 0.06106 loss_reg_disitll: 0.06136 time: 3.1308 data_time: 0.1305 lr: 0.005 max_mem: 33785M +[01/04 21:21:28] d2.utils.events INFO: eta: 2:01:18 iter: 3239 total_loss: 0.6082 loss_cls: 0.113 loss_box_reg: 0.05846 loss_contrast: 0.2199 loss_rpn_cls: 0.04122 loss_rpn_loc: 0.03806 loss_kld: 0.05818 loss_reg_disitll: 0.06507 time: 3.1311 data_time: 0.1328 lr: 0.005 max_mem: 33785M +[01/04 21:22:27] d2.utils.events INFO: eta: 2:00:13 iter: 3259 total_loss: 0.6029 loss_cls: 0.1132 loss_box_reg: 0.06047 loss_contrast: 0.2199 loss_rpn_cls: 0.03852 loss_rpn_loc: 0.0423 loss_kld: 0.05824 loss_reg_disitll: 0.06687 time: 3.1299 data_time: 0.1286 lr: 0.005 max_mem: 33785M +[01/04 21:23:30] d2.utils.events INFO: eta: 1:59:12 iter: 3279 total_loss: 0.6031 loss_cls: 0.1082 loss_box_reg: 0.0568 loss_contrast: 0.2199 loss_rpn_cls: 0.04396 loss_rpn_loc: 0.04741 loss_kld: 0.0578 loss_reg_disitll: 0.06346 time: 3.1299 data_time: 0.1277 lr: 0.005 max_mem: 33785M +[01/04 21:24:36] d2.utils.events INFO: eta: 1:58:09 iter: 3299 total_loss: 0.597 loss_cls: 0.112 loss_box_reg: 0.06055 loss_contrast: 0.2198 loss_rpn_cls: 0.03606 loss_rpn_loc: 0.04349 loss_kld: 0.05454 loss_reg_disitll: 0.06381 time: 3.1309 data_time: 0.1252 lr: 0.005 max_mem: 33785M +[01/04 21:25:45] d2.utils.events INFO: eta: 1:57:08 iter: 3319 total_loss: 0.6013 loss_cls: 0.1161 loss_box_reg: 0.06319 loss_contrast: 0.2199 loss_rpn_cls: 0.04159 loss_rpn_loc: 0.05246 loss_kld: 0.05403 loss_reg_disitll: 0.06442 time: 3.1330 data_time: 0.1250 lr: 0.005 max_mem: 33785M +[01/04 21:26:52] d2.utils.events INFO: eta: 1:56:07 iter: 3339 total_loss: 0.604 loss_cls: 0.1137 loss_box_reg: 0.06075 loss_contrast: 0.2198 loss_rpn_cls: 0.0428 loss_rpn_loc: 0.04939 loss_kld: 0.05999 loss_reg_disitll: 0.06713 time: 3.1340 data_time: 0.1284 lr: 0.005 max_mem: 33785M +[01/04 21:27:59] d2.utils.events INFO: eta: 1:55:13 iter: 3359 total_loss: 0.5925 loss_cls: 0.1088 loss_box_reg: 0.05742 loss_contrast: 0.2198 loss_rpn_cls: 0.03866 loss_rpn_loc: 0.05078 loss_kld: 0.05614 loss_reg_disitll: 0.06083 time: 3.1353 data_time: 0.1292 lr: 0.005 max_mem: 33785M +[01/04 21:29:07] d2.utils.events INFO: eta: 1:53:58 iter: 3379 total_loss: 0.5964 loss_cls: 0.1156 loss_box_reg: 0.06031 loss_contrast: 0.2198 loss_rpn_cls: 0.04484 loss_rpn_loc: 0.04769 loss_kld: 0.05708 loss_reg_disitll: 0.05919 time: 3.1369 data_time: 0.1271 lr: 0.005 max_mem: 33785M +[01/04 21:30:17] fvcore.common.checkpoint INFO: Saving checkpoint to checkpoints/coco/10shot_ExAU/model_0003399.pth +[01/04 21:30:33] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 21:30:33] d2.data.common INFO: Serializing 5000 elements to byte tensors and concatenating them all ... +[01/04 21:30:33] d2.data.common INFO: Serialized dataset takes 3.00 MiB +[01/04 21:30:33] defrcn.evaluation.evaluator INFO: Start initializing PCB module, please wait a seconds... +[01/04 21:30:33] defrcn.evaluation.calibration_layer INFO: Loading ImageNet Pre-train Model from ImageNetPretrained/torchvision/resnet101-5d3b4d8f.pth +[01/04 21:30:35] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 21:30:35] d2.data.common INFO: Serializing 402 elements to byte tensors and concatenating them all ... +[01/04 21:30:35] d2.data.common INFO: Serialized dataset takes 0.08 MiB +[01/04 21:30:55] defrcn.evaluation.evaluator INFO: Start inference on 2500 images +[01/04 21:31:07] defrcn.evaluation.evaluator INFO: Inference done 50/2500. 0.1054 s / img. ETA=0:04:18 +[01/04 21:31:12] defrcn.evaluation.evaluator INFO: Inference done 100/2500. 0.1031 s / img. ETA=0:04:07 +[01/04 21:31:17] defrcn.evaluation.evaluator INFO: Inference done 150/2500. 0.1032 s / img. ETA=0:04:02 +[01/04 21:31:22] defrcn.evaluation.evaluator INFO: Inference done 200/2500. 0.1028 s / img. ETA=0:03:56 +[01/04 21:31:28] defrcn.evaluation.evaluator INFO: Inference done 250/2500. 0.1031 s / img. ETA=0:03:51 +[01/04 21:31:33] defrcn.evaluation.evaluator INFO: Inference done 300/2500. 0.1029 s / img. ETA=0:03:46 +[01/04 21:31:38] defrcn.evaluation.evaluator INFO: Inference done 350/2500. 0.1026 s / img. ETA=0:03:40 +[01/04 21:31:43] defrcn.evaluation.evaluator INFO: Inference done 400/2500. 0.1025 s / img. ETA=0:03:35 +[01/04 21:31:48] defrcn.evaluation.evaluator INFO: Inference done 450/2500. 0.1025 s / img. ETA=0:03:30 +[01/04 21:31:53] defrcn.evaluation.evaluator INFO: Inference done 500/2500. 0.1025 s / img. ETA=0:03:24 +[01/04 21:31:58] defrcn.evaluation.evaluator INFO: Inference done 550/2500. 0.1025 s / img. ETA=0:03:19 +[01/04 21:32:03] defrcn.evaluation.evaluator INFO: Inference done 600/2500. 0.1024 s / img. ETA=0:03:14 +[01/04 21:32:09] defrcn.evaluation.evaluator INFO: Inference done 650/2500. 0.1026 s / img. ETA=0:03:09 +[01/04 21:32:14] defrcn.evaluation.evaluator INFO: Inference done 700/2500. 0.1024 s / img. ETA=0:03:04 +[01/04 21:32:19] defrcn.evaluation.evaluator INFO: Inference done 750/2500. 0.1025 s / img. ETA=0:02:59 +[01/04 21:32:24] defrcn.evaluation.evaluator INFO: Inference done 800/2500. 0.1026 s / img. ETA=0:02:54 +[01/04 21:32:29] defrcn.evaluation.evaluator INFO: Inference done 850/2500. 0.1026 s / img. ETA=0:02:49 +[01/04 21:32:35] defrcn.evaluation.evaluator INFO: Inference done 900/2500. 0.1030 s / img. ETA=0:02:44 +[01/04 21:32:40] defrcn.evaluation.evaluator INFO: Inference done 950/2500. 0.1029 s / img. ETA=0:02:39 +[01/04 21:32:45] defrcn.evaluation.evaluator INFO: Inference done 1000/2500. 0.1030 s / img. ETA=0:02:34 +[01/04 21:32:50] defrcn.evaluation.evaluator INFO: Inference done 1050/2500. 0.1030 s / img. ETA=0:02:29 +[01/04 21:32:55] defrcn.evaluation.evaluator INFO: Inference done 1100/2500. 0.1030 s / img. ETA=0:02:24 +[01/04 21:33:00] defrcn.evaluation.evaluator INFO: Inference done 1150/2500. 0.1031 s / img. ETA=0:02:19 +[01/04 21:33:06] defrcn.evaluation.evaluator INFO: Inference done 1200/2500. 0.1031 s / img. ETA=0:02:14 +[01/04 21:33:11] defrcn.evaluation.evaluator INFO: Inference done 1250/2500. 0.1031 s / img. ETA=0:02:08 +[01/04 21:33:16] defrcn.evaluation.evaluator INFO: Inference done 1300/2500. 0.1032 s / img. ETA=0:02:03 +[01/04 21:33:21] defrcn.evaluation.evaluator INFO: Inference done 1350/2500. 0.1033 s / img. ETA=0:01:58 +[01/04 21:33:27] defrcn.evaluation.evaluator INFO: Inference done 1400/2500. 0.1034 s / img. ETA=0:01:53 +[01/04 21:33:32] defrcn.evaluation.evaluator INFO: Inference done 1450/2500. 0.1034 s / img. ETA=0:01:48 +[01/04 21:33:37] defrcn.evaluation.evaluator INFO: Inference done 1500/2500. 0.1034 s / img. ETA=0:01:43 +[01/04 21:33:42] defrcn.evaluation.evaluator INFO: Inference done 1550/2500. 0.1034 s / img. ETA=0:01:38 +[01/04 21:33:47] defrcn.evaluation.evaluator INFO: Inference done 1600/2500. 0.1033 s / img. ETA=0:01:32 +[01/04 21:33:52] defrcn.evaluation.evaluator INFO: Inference done 1650/2500. 0.1032 s / img. ETA=0:01:27 +[01/04 21:33:58] defrcn.evaluation.evaluator INFO: Inference done 1700/2500. 0.1033 s / img. ETA=0:01:22 +[01/04 21:34:03] defrcn.evaluation.evaluator INFO: Inference done 1750/2500. 0.1033 s / img. ETA=0:01:17 +[01/04 21:34:08] defrcn.evaluation.evaluator INFO: Inference done 1800/2500. 0.1033 s / img. ETA=0:01:12 +[01/04 21:34:13] defrcn.evaluation.evaluator INFO: Inference done 1850/2500. 0.1032 s / img. ETA=0:01:07 +[01/04 21:34:18] defrcn.evaluation.evaluator INFO: Inference done 1900/2500. 0.1033 s / img. ETA=0:01:01 +[01/04 21:34:23] defrcn.evaluation.evaluator INFO: Inference done 1950/2500. 0.1033 s / img. ETA=0:00:56 +[01/04 21:34:28] defrcn.evaluation.evaluator INFO: Inference done 2000/2500. 0.1032 s / img. ETA=0:00:51 +[01/04 21:34:33] defrcn.evaluation.evaluator INFO: Inference done 2050/2500. 0.1032 s / img. ETA=0:00:46 +[01/04 21:34:39] defrcn.evaluation.evaluator INFO: Inference done 2100/2500. 0.1031 s / img. ETA=0:00:41 +[01/04 21:34:44] defrcn.evaluation.evaluator INFO: Inference done 2150/2500. 0.1032 s / img. ETA=0:00:36 +[01/04 21:34:49] defrcn.evaluation.evaluator INFO: Inference done 2200/2500. 0.1031 s / img. ETA=0:00:30 +[01/04 21:34:54] defrcn.evaluation.evaluator INFO: Inference done 2250/2500. 0.1031 s / img. ETA=0:00:25 +[01/04 21:34:59] defrcn.evaluation.evaluator INFO: Inference done 2300/2500. 0.1031 s / img. ETA=0:00:20 +[01/04 21:35:04] defrcn.evaluation.evaluator INFO: Inference done 2350/2500. 0.1031 s / img. ETA=0:00:15 +[01/04 21:35:10] defrcn.evaluation.evaluator INFO: Inference done 2400/2500. 0.1032 s / img. ETA=0:00:10 +[01/04 21:35:15] defrcn.evaluation.evaluator INFO: Inference done 2450/2500. 0.1032 s / img. ETA=0:00:05 +[01/04 21:35:20] defrcn.evaluation.evaluator INFO: Inference done 2500/2500. 0.1032 s / img. ETA=0:00:00 +[01/04 21:35:20] defrcn.evaluation.evaluator INFO: Total inference time: 0:04:17 (0.103006 s / img per device, on 2 devices) +[01/04 21:35:20] defrcn.evaluation.evaluator INFO: Total inference pure compute time: 0:04:11 (0.100858 s / img per device, on 2 devices) +[01/04 21:35:22] defrcn.evaluation.coco_evaluation INFO: Preparing results for COCO format ... +[01/04 21:35:22] defrcn.evaluation.coco_evaluation INFO: Saving results to checkpoints/coco/10shot_ExAU/inference/coco_instances_results.json +[01/04 21:35:22] defrcn.evaluation.coco_evaluation INFO: Evaluating predictions ... +[01/04 21:35:48] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 32.234 | 51.194 | 34.348 | 16.298 | 36.183 | 46.222 | +[01/04 21:35:48] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:--------------|:-------|:-------------|:-------|:---------------|:-------| +| person | 3.772 | bicycle | 7.624 | car | 21.830 | +| motorcycle | 17.762 | airplane | 40.079 | bus | 50.789 | +| train | 24.555 | truck | 28.096 | boat | 10.070 | +| traffic light | 23.972 | fire hydrant | 64.620 | stop sign | 70.394 | +| parking meter | 36.893 | bench | 15.207 | bird | 14.628 | +| cat | 34.407 | dog | 28.803 | horse | 15.909 | +| sheep | 13.701 | cow | 22.432 | elephant | 64.195 | +| bear | 59.844 | zebra | 55.506 | giraffe | 63.043 | +| backpack | 18.147 | umbrella | 33.236 | handbag | 14.751 | +| tie | 31.299 | suitcase | 34.726 | frisbee | 58.179 | +| skis | 21.903 | snowboard | 35.081 | sports ball | 38.619 | +| kite | 37.982 | baseball bat | 25.586 | baseball glove | 29.780 | +| skateboard | 47.862 | surfboard | 39.388 | tennis racket | 49.760 | +| bottle | 15.837 | wine glass | 30.053 | cup | 34.526 | +| fork | 33.409 | knife | 15.162 | spoon | 19.318 | +| bowl | 35.415 | banana | 22.338 | apple | 18.125 | +| sandwich | 35.315 | orange | 22.469 | broccoli | 25.387 | +| carrot | 24.940 | hot dog | 34.065 | pizza | 46.045 | +| donut | 50.848 | cake | 39.103 | chair | 7.608 | +| couch | 18.270 | potted plant | 2.672 | bed | 40.886 | +| dining table | 4.923 | toilet | 54.248 | tv | 42.425 | +| laptop | 56.426 | mouse | 45.538 | remote | 26.486 | +| keyboard | 51.005 | cell phone | 26.312 | microwave | 53.565 | +| oven | 33.816 | toaster | 29.615 | sink | 29.655 | +| refrigerator | 53.502 | book | 9.280 | clock | 46.309 | +| vase | 33.427 | scissors | 26.782 | teddy bear | 37.846 | +| hair drier | 19.158 | toothbrush | 22.184 | | | +[01/04 21:36:03] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 36.344 | 56.801 | 39.163 | 19.390 | 41.024 | 51.454 | +[01/04 21:36:03] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:---------------|:-------|:--------------|:-------|:-------------|:-------| +| truck | 28.096 | traffic light | 23.972 | fire hydrant | 64.620 | +| stop sign | 70.394 | parking meter | 36.893 | bench | 15.207 | +| elephant | 64.195 | bear | 59.844 | zebra | 55.506 | +| giraffe | 63.043 | backpack | 18.147 | umbrella | 33.236 | +| handbag | 14.751 | tie | 31.299 | suitcase | 34.726 | +| frisbee | 58.179 | skis | 21.903 | snowboard | 35.081 | +| sports ball | 38.619 | kite | 37.982 | baseball bat | 25.586 | +| baseball glove | 29.780 | skateboard | 47.862 | surfboard | 39.388 | +| tennis racket | 49.760 | wine glass | 30.053 | cup | 34.526 | +| fork | 33.409 | knife | 15.162 | spoon | 19.318 | +| bowl | 35.415 | banana | 22.338 | apple | 18.125 | +| sandwich | 35.315 | orange | 22.469 | broccoli | 25.387 | +| carrot | 24.940 | hot dog | 34.065 | pizza | 46.045 | +| donut | 50.848 | cake | 39.103 | bed | 40.886 | +| toilet | 54.248 | laptop | 56.426 | mouse | 45.538 | +| remote | 26.486 | keyboard | 51.005 | cell phone | 26.312 | +| microwave | 53.565 | oven | 33.816 | toaster | 29.615 | +| sink | 29.655 | refrigerator | 53.502 | book | 9.280 | +| clock | 46.309 | vase | 33.427 | scissors | 26.782 | +| teddy bear | 37.846 | hair drier | 19.158 | toothbrush | 22.184 | +[01/04 21:36:14] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:-----:|:------:|:------:| +| 19.905 | 34.372 | 19.902 | 7.178 | 21.663 | 30.526 | +[01/04 21:36:14] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:-------------|:-------|:-----------|:-------|:-------------|:-------| +| person | 3.772 | bicycle | 7.624 | car | 21.830 | +| motorcycle | 17.762 | airplane | 40.079 | bus | 50.789 | +| train | 24.555 | boat | 10.070 | bird | 14.628 | +| cat | 34.407 | dog | 28.803 | horse | 15.909 | +| sheep | 13.701 | cow | 22.432 | bottle | 15.837 | +| chair | 7.608 | couch | 18.270 | potted plant | 2.672 | +| dining table | 4.923 | tv | 42.425 | | | +[01/04 21:36:14] defrcn.engine.defaults INFO: Evaluation results for coco14_test_all in csv format: +[01/04 21:36:14] defrcn.evaluation.testing INFO: copypaste: Task: bbox +[01/04 21:36:14] defrcn.evaluation.testing INFO: copypaste: AP,AP50,AP75,APs,APm,APl,bAP,bAP50,bAP75,bAPs,bAPm,bAPl,nAP,nAP50,nAP75,nAPs,nAPm,nAPl +[01/04 21:36:14] defrcn.evaluation.testing INFO: copypaste: 32.2341,51.1939,34.3482,16.2984,36.1834,46.2221,36.3438,56.8013,39.1635,19.3901,41.0236,51.4541,19.9049,34.3718,19.9023,7.1780,21.6629,30.5262 +[01/04 21:36:14] d2.utils.events INFO: eta: 1:53:00 iter: 3399 total_loss: 0.5949 loss_cls: 0.1063 loss_box_reg: 0.05756 loss_contrast: 0.2198 loss_rpn_cls: 0.0457 loss_rpn_loc: 0.05247 loss_kld: 0.0588 loss_reg_disitll: 0.06354 time: 3.1391 data_time: 0.1193 lr: 0.005 max_mem: 33785M +[01/04 21:37:22] d2.utils.events INFO: eta: 1:51:54 iter: 3419 total_loss: 0.5834 loss_cls: 0.1064 loss_box_reg: 0.0583 loss_contrast: 0.2198 loss_rpn_cls: 0.04065 loss_rpn_loc: 0.04733 loss_kld: 0.05644 loss_reg_disitll: 0.05707 time: 3.1407 data_time: 0.1337 lr: 0.005 max_mem: 33785M +[01/04 21:38:29] d2.utils.events INFO: eta: 1:50:50 iter: 3439 total_loss: 0.6098 loss_cls: 0.1145 loss_box_reg: 0.06041 loss_contrast: 0.2198 loss_rpn_cls: 0.04375 loss_rpn_loc: 0.05163 loss_kld: 0.05891 loss_reg_disitll: 0.06492 time: 3.1417 data_time: 0.1296 lr: 0.005 max_mem: 33785M +[01/04 21:39:37] d2.utils.events INFO: eta: 1:49:56 iter: 3459 total_loss: 0.6029 loss_cls: 0.1124 loss_box_reg: 0.06343 loss_contrast: 0.2199 loss_rpn_cls: 0.04526 loss_rpn_loc: 0.04745 loss_kld: 0.05887 loss_reg_disitll: 0.06977 time: 3.1432 data_time: 0.1357 lr: 0.005 max_mem: 33785M +[01/04 21:40:46] d2.utils.events INFO: eta: 1:48:59 iter: 3479 total_loss: 0.6103 loss_cls: 0.1115 loss_box_reg: 0.06205 loss_contrast: 0.2198 loss_rpn_cls: 0.04904 loss_rpn_loc: 0.04552 loss_kld: 0.05903 loss_reg_disitll: 0.06809 time: 3.1451 data_time: 0.1257 lr: 0.005 max_mem: 33785M +[01/04 21:41:51] d2.utils.events INFO: eta: 1:47:54 iter: 3499 total_loss: 0.5968 loss_cls: 0.1087 loss_box_reg: 0.05796 loss_contrast: 0.2198 loss_rpn_cls: 0.04277 loss_rpn_loc: 0.0471 loss_kld: 0.05864 loss_reg_disitll: 0.06489 time: 3.1457 data_time: 0.1343 lr: 0.005 max_mem: 33785M +[01/04 21:42:55] d2.utils.events INFO: eta: 1:46:52 iter: 3519 total_loss: 0.6017 loss_cls: 0.11 loss_box_reg: 0.06316 loss_contrast: 0.2198 loss_rpn_cls: 0.04129 loss_rpn_loc: 0.04884 loss_kld: 0.0559 loss_reg_disitll: 0.06778 time: 3.1459 data_time: 0.1297 lr: 0.005 max_mem: 33785M +[01/04 21:44:04] d2.utils.events INFO: eta: 1:45:48 iter: 3539 total_loss: 0.5721 loss_cls: 0.1088 loss_box_reg: 0.05864 loss_contrast: 0.2198 loss_rpn_cls: 0.0417 loss_rpn_loc: 0.04165 loss_kld: 0.05678 loss_reg_disitll: 0.06459 time: 3.1476 data_time: 0.1267 lr: 0.005 max_mem: 33785M +[01/04 21:45:10] d2.utils.events INFO: eta: 1:44:55 iter: 3559 total_loss: 0.6165 loss_cls: 0.1107 loss_box_reg: 0.06428 loss_contrast: 0.2198 loss_rpn_cls: 0.04489 loss_rpn_loc: 0.05236 loss_kld: 0.05692 loss_reg_disitll: 0.07032 time: 3.1485 data_time: 0.1285 lr: 0.005 max_mem: 33785M +[01/04 21:46:12] d2.utils.events INFO: eta: 1:43:54 iter: 3579 total_loss: 0.6164 loss_cls: 0.1177 loss_box_reg: 0.06353 loss_contrast: 0.2198 loss_rpn_cls: 0.04287 loss_rpn_loc: 0.04941 loss_kld: 0.0605 loss_reg_disitll: 0.07144 time: 3.1482 data_time: 0.1339 lr: 0.005 max_mem: 33785M +[01/04 21:47:17] fvcore.common.checkpoint INFO: Saving checkpoint to checkpoints/coco/10shot_ExAU/model_0003599.pth +[01/04 21:47:33] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 21:47:33] d2.data.common INFO: Serializing 5000 elements to byte tensors and concatenating them all ... +[01/04 21:47:33] d2.data.common INFO: Serialized dataset takes 3.00 MiB +[01/04 21:47:34] defrcn.evaluation.evaluator INFO: Start initializing PCB module, please wait a seconds... +[01/04 21:47:34] defrcn.evaluation.calibration_layer INFO: Loading ImageNet Pre-train Model from ImageNetPretrained/torchvision/resnet101-5d3b4d8f.pth +[01/04 21:47:35] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 21:47:35] d2.data.common INFO: Serializing 402 elements to byte tensors and concatenating them all ... +[01/04 21:47:35] d2.data.common INFO: Serialized dataset takes 0.08 MiB +[01/04 21:47:56] defrcn.evaluation.evaluator INFO: Start inference on 2500 images +[01/04 21:48:07] defrcn.evaluation.evaluator INFO: Inference done 50/2500. 0.1054 s / img. ETA=0:04:18 +[01/04 21:48:12] defrcn.evaluation.evaluator INFO: Inference done 100/2500. 0.1028 s / img. ETA=0:04:06 +[01/04 21:48:18] defrcn.evaluation.evaluator INFO: Inference done 150/2500. 0.1029 s / img. ETA=0:04:01 +[01/04 21:48:23] defrcn.evaluation.evaluator INFO: Inference done 200/2500. 0.1024 s / img. ETA=0:03:55 +[01/04 21:48:28] defrcn.evaluation.evaluator INFO: Inference done 250/2500. 0.1026 s / img. ETA=0:03:50 +[01/04 21:48:33] defrcn.evaluation.evaluator INFO: Inference done 300/2500. 0.1024 s / img. ETA=0:03:45 +[01/04 21:48:38] defrcn.evaluation.evaluator INFO: Inference done 350/2500. 0.1021 s / img. ETA=0:03:39 +[01/04 21:48:43] defrcn.evaluation.evaluator INFO: Inference done 400/2500. 0.1021 s / img. ETA=0:03:34 +[01/04 21:48:48] defrcn.evaluation.evaluator INFO: Inference done 450/2500. 0.1021 s / img. ETA=0:03:29 +[01/04 21:48:53] defrcn.evaluation.evaluator INFO: Inference done 500/2500. 0.1021 s / img. ETA=0:03:24 +[01/04 21:48:58] defrcn.evaluation.evaluator INFO: Inference done 550/2500. 0.1020 s / img. ETA=0:03:18 +[01/04 21:49:03] defrcn.evaluation.evaluator INFO: Inference done 600/2500. 0.1020 s / img. ETA=0:03:13 +[01/04 21:49:08] defrcn.evaluation.evaluator INFO: Inference done 650/2500. 0.1021 s / img. ETA=0:03:08 +[01/04 21:49:13] defrcn.evaluation.evaluator INFO: Inference done 700/2500. 0.1019 s / img. ETA=0:03:03 +[01/04 21:49:19] defrcn.evaluation.evaluator INFO: Inference done 750/2500. 0.1023 s / img. ETA=0:02:58 +[01/04 21:49:24] defrcn.evaluation.evaluator INFO: Inference done 800/2500. 0.1024 s / img. ETA=0:02:54 +[01/04 21:49:29] defrcn.evaluation.evaluator INFO: Inference done 850/2500. 0.1024 s / img. ETA=0:02:48 +[01/04 21:49:34] defrcn.evaluation.evaluator INFO: Inference done 900/2500. 0.1026 s / img. ETA=0:02:44 +[01/04 21:49:39] defrcn.evaluation.evaluator INFO: Inference done 950/2500. 0.1025 s / img. ETA=0:02:38 +[01/04 21:49:45] defrcn.evaluation.evaluator INFO: Inference done 1000/2500. 0.1026 s / img. ETA=0:02:33 +[01/04 21:49:50] defrcn.evaluation.evaluator INFO: Inference done 1050/2500. 0.1026 s / img. ETA=0:02:28 +[01/04 21:49:55] defrcn.evaluation.evaluator INFO: Inference done 1100/2500. 0.1026 s / img. ETA=0:02:23 +[01/04 21:50:00] defrcn.evaluation.evaluator INFO: Inference done 1150/2500. 0.1027 s / img. ETA=0:02:18 +[01/04 21:50:05] defrcn.evaluation.evaluator INFO: Inference done 1200/2500. 0.1027 s / img. ETA=0:02:13 +[01/04 21:50:10] defrcn.evaluation.evaluator INFO: Inference done 1250/2500. 0.1027 s / img. ETA=0:02:08 +[01/04 21:50:16] defrcn.evaluation.evaluator INFO: Inference done 1300/2500. 0.1029 s / img. ETA=0:02:03 +[01/04 21:50:21] defrcn.evaluation.evaluator INFO: Inference done 1350/2500. 0.1030 s / img. ETA=0:01:58 +[01/04 21:50:26] defrcn.evaluation.evaluator INFO: Inference done 1400/2500. 0.1031 s / img. ETA=0:01:53 +[01/04 21:50:32] defrcn.evaluation.evaluator INFO: Inference done 1450/2500. 0.1031 s / img. ETA=0:01:48 +[01/04 21:50:37] defrcn.evaluation.evaluator INFO: Inference done 1500/2500. 0.1031 s / img. ETA=0:01:43 +[01/04 21:50:42] defrcn.evaluation.evaluator INFO: Inference done 1550/2500. 0.1031 s / img. ETA=0:01:37 +[01/04 21:50:47] defrcn.evaluation.evaluator INFO: Inference done 1600/2500. 0.1031 s / img. ETA=0:01:32 +[01/04 21:50:52] defrcn.evaluation.evaluator INFO: Inference done 1650/2500. 0.1030 s / img. ETA=0:01:27 +[01/04 21:50:57] defrcn.evaluation.evaluator INFO: Inference done 1700/2500. 0.1031 s / img. ETA=0:01:22 +[01/04 21:51:02] defrcn.evaluation.evaluator INFO: Inference done 1750/2500. 0.1031 s / img. ETA=0:01:17 +[01/04 21:51:08] defrcn.evaluation.evaluator INFO: Inference done 1800/2500. 0.1031 s / img. ETA=0:01:12 +[01/04 21:51:13] defrcn.evaluation.evaluator INFO: Inference done 1850/2500. 0.1030 s / img. ETA=0:01:06 +[01/04 21:51:18] defrcn.evaluation.evaluator INFO: Inference done 1900/2500. 0.1030 s / img. ETA=0:01:01 +[01/04 21:51:23] defrcn.evaluation.evaluator INFO: Inference done 1950/2500. 0.1030 s / img. ETA=0:00:56 +[01/04 21:51:28] defrcn.evaluation.evaluator INFO: Inference done 2000/2500. 0.1030 s / img. ETA=0:00:51 +[01/04 21:51:33] defrcn.evaluation.evaluator INFO: Inference done 2050/2500. 0.1030 s / img. ETA=0:00:46 +[01/04 21:51:38] defrcn.evaluation.evaluator INFO: Inference done 2100/2500. 0.1029 s / img. ETA=0:00:41 +[01/04 21:51:43] defrcn.evaluation.evaluator INFO: Inference done 2150/2500. 0.1030 s / img. ETA=0:00:36 +[01/04 21:51:49] defrcn.evaluation.evaluator INFO: Inference done 2200/2500. 0.1029 s / img. ETA=0:00:30 +[01/04 21:51:54] defrcn.evaluation.evaluator INFO: Inference done 2250/2500. 0.1029 s / img. ETA=0:00:25 +[01/04 21:51:59] defrcn.evaluation.evaluator INFO: Inference done 2300/2500. 0.1030 s / img. ETA=0:00:20 +[01/04 21:52:04] defrcn.evaluation.evaluator INFO: Inference done 2350/2500. 0.1029 s / img. ETA=0:00:15 +[01/04 21:52:09] defrcn.evaluation.evaluator INFO: Inference done 2400/2500. 0.1030 s / img. ETA=0:00:10 +[01/04 21:52:15] defrcn.evaluation.evaluator INFO: Inference done 2450/2500. 0.1030 s / img. ETA=0:00:05 +[01/04 21:52:20] defrcn.evaluation.evaluator INFO: Inference done 2500/2500. 0.1030 s / img. ETA=0:00:00 +[01/04 21:52:20] defrcn.evaluation.evaluator INFO: Total inference time: 0:04:17 (0.103006 s / img per device, on 2 devices) +[01/04 21:52:20] defrcn.evaluation.evaluator INFO: Total inference pure compute time: 0:04:11 (0.100719 s / img per device, on 2 devices) +[01/04 21:52:21] defrcn.evaluation.coco_evaluation INFO: Preparing results for COCO format ... +[01/04 21:52:21] defrcn.evaluation.coco_evaluation INFO: Saving results to checkpoints/coco/10shot_ExAU/inference/coco_instances_results.json +[01/04 21:52:22] defrcn.evaluation.coco_evaluation INFO: Evaluating predictions ... +[01/04 21:52:47] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 32.196 | 51.147 | 34.064 | 16.178 | 36.260 | 46.085 | +[01/04 21:52:47] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:--------------|:-------|:-------------|:-------|:---------------|:-------| +| person | 3.754 | bicycle | 7.178 | car | 22.175 | +| motorcycle | 17.918 | airplane | 39.610 | bus | 51.573 | +| train | 25.594 | truck | 28.379 | boat | 10.681 | +| traffic light | 23.551 | fire hydrant | 63.635 | stop sign | 70.179 | +| parking meter | 36.544 | bench | 14.793 | bird | 14.654 | +| cat | 35.048 | dog | 28.328 | horse | 15.574 | +| sheep | 13.603 | cow | 22.485 | elephant | 64.264 | +| bear | 58.554 | zebra | 56.381 | giraffe | 63.067 | +| backpack | 17.773 | umbrella | 33.630 | handbag | 15.190 | +| tie | 31.459 | suitcase | 35.344 | frisbee | 58.268 | +| skis | 21.492 | snowboard | 34.871 | sports ball | 38.841 | +| kite | 37.985 | baseball bat | 25.187 | baseball glove | 30.024 | +| skateboard | 48.448 | surfboard | 39.878 | tennis racket | 49.032 | +| bottle | 15.533 | wine glass | 30.286 | cup | 34.811 | +| fork | 33.954 | knife | 14.868 | spoon | 18.981 | +| bowl | 35.583 | banana | 22.520 | apple | 17.938 | +| sandwich | 35.830 | orange | 22.080 | broccoli | 25.752 | +| carrot | 24.955 | hot dog | 33.952 | pizza | 44.382 | +| donut | 51.045 | cake | 39.208 | chair | 7.320 | +| couch | 17.470 | potted plant | 2.733 | bed | 41.464 | +| dining table | 5.128 | toilet | 54.179 | tv | 42.288 | +| laptop | 56.556 | mouse | 45.810 | remote | 26.335 | +| keyboard | 50.746 | cell phone | 26.206 | microwave | 52.822 | +| oven | 33.573 | toaster | 30.006 | sink | 29.553 | +| refrigerator | 53.874 | book | 9.065 | clock | 47.004 | +| vase | 33.595 | scissors | 25.028 | teddy bear | 38.861 | +| hair drier | 16.068 | toothbrush | 23.390 | | | +[01/04 21:53:02] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 36.284 | 56.752 | 38.863 | 19.252 | 41.190 | 51.260 | +[01/04 21:53:02] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:---------------|:-------|:--------------|:-------|:-------------|:-------| +| truck | 28.379 | traffic light | 23.551 | fire hydrant | 63.635 | +| stop sign | 70.179 | parking meter | 36.544 | bench | 14.793 | +| elephant | 64.264 | bear | 58.554 | zebra | 56.381 | +| giraffe | 63.067 | backpack | 17.773 | umbrella | 33.630 | +| handbag | 15.190 | tie | 31.459 | suitcase | 35.344 | +| frisbee | 58.268 | skis | 21.492 | snowboard | 34.871 | +| sports ball | 38.841 | kite | 37.985 | baseball bat | 25.187 | +| baseball glove | 30.024 | skateboard | 48.448 | surfboard | 39.878 | +| tennis racket | 49.032 | wine glass | 30.286 | cup | 34.811 | +| fork | 33.954 | knife | 14.868 | spoon | 18.981 | +| bowl | 35.583 | banana | 22.520 | apple | 17.938 | +| sandwich | 35.830 | orange | 22.080 | broccoli | 25.752 | +| carrot | 24.955 | hot dog | 33.952 | pizza | 44.382 | +| donut | 51.045 | cake | 39.208 | bed | 41.464 | +| toilet | 54.179 | laptop | 56.556 | mouse | 45.810 | +| remote | 26.335 | keyboard | 50.746 | cell phone | 26.206 | +| microwave | 52.822 | oven | 33.573 | toaster | 30.006 | +| sink | 29.553 | refrigerator | 53.874 | book | 9.065 | +| clock | 47.004 | vase | 33.595 | scissors | 25.028 | +| teddy bear | 38.861 | hair drier | 16.068 | toothbrush | 23.390 | +[01/04 21:53:12] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:-----:|:------:|:------:| +| 19.932 | 34.331 | 19.668 | 7.107 | 21.470 | 30.559 | +[01/04 21:53:12] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:-------------|:-------|:-----------|:-------|:-------------|:-------| +| person | 3.754 | bicycle | 7.178 | car | 22.175 | +| motorcycle | 17.918 | airplane | 39.610 | bus | 51.573 | +| train | 25.594 | boat | 10.681 | bird | 14.654 | +| cat | 35.048 | dog | 28.328 | horse | 15.574 | +| sheep | 13.603 | cow | 22.485 | bottle | 15.533 | +| chair | 7.320 | couch | 17.470 | potted plant | 2.733 | +| dining table | 5.128 | tv | 42.288 | | | +[01/04 21:53:12] defrcn.engine.defaults INFO: Evaluation results for coco14_test_all in csv format: +[01/04 21:53:12] defrcn.evaluation.testing INFO: copypaste: Task: bbox +[01/04 21:53:12] defrcn.evaluation.testing INFO: copypaste: AP,AP50,AP75,APs,APm,APl,bAP,bAP50,bAP75,bAPs,bAPm,bAPl,nAP,nAP50,nAP75,nAPs,nAPm,nAPl +[01/04 21:53:12] defrcn.evaluation.testing INFO: copypaste: 32.1962,51.1469,34.0639,16.1776,36.2597,46.0849,36.2841,56.7523,38.8626,19.2524,41.1895,51.2604,19.9323,34.3307,19.6679,7.1069,21.4702,30.5585 +[01/04 21:53:12] d2.utils.events INFO: eta: 1:42:56 iter: 3599 total_loss: 0.6022 loss_cls: 0.1096 loss_box_reg: 0.05919 loss_contrast: 0.2198 loss_rpn_cls: 0.04312 loss_rpn_loc: 0.04915 loss_kld: 0.05453 loss_reg_disitll: 0.06454 time: 3.1487 data_time: 0.1388 lr: 0.005 max_mem: 33785M +[01/04 21:54:10] d2.utils.events INFO: eta: 1:41:44 iter: 3619 total_loss: 0.6145 loss_cls: 0.1147 loss_box_reg: 0.05998 loss_contrast: 0.2198 loss_rpn_cls: 0.04382 loss_rpn_loc: 0.04222 loss_kld: 0.05797 loss_reg_disitll: 0.06664 time: 3.1472 data_time: 0.1367 lr: 0.005 max_mem: 33785M +[01/04 21:55:16] d2.utils.events INFO: eta: 1:40:41 iter: 3639 total_loss: 0.601 loss_cls: 0.112 loss_box_reg: 0.06336 loss_contrast: 0.2198 loss_rpn_cls: 0.03876 loss_rpn_loc: 0.04207 loss_kld: 0.06139 loss_reg_disitll: 0.06665 time: 3.1481 data_time: 0.1260 lr: 0.005 max_mem: 33785M +[01/04 21:56:23] d2.utils.events INFO: eta: 1:39:45 iter: 3659 total_loss: 0.5777 loss_cls: 0.1082 loss_box_reg: 0.05399 loss_contrast: 0.2198 loss_rpn_cls: 0.03947 loss_rpn_loc: 0.05073 loss_kld: 0.05348 loss_reg_disitll: 0.05874 time: 3.1491 data_time: 0.1284 lr: 0.005 max_mem: 33785M +[01/04 21:57:23] d2.utils.events INFO: eta: 1:38:42 iter: 3679 total_loss: 0.6042 loss_cls: 0.1108 loss_box_reg: 0.06106 loss_contrast: 0.2198 loss_rpn_cls: 0.0419 loss_rpn_loc: 0.04841 loss_kld: 0.0574 loss_reg_disitll: 0.06908 time: 3.1484 data_time: 0.1385 lr: 0.005 max_mem: 33785M +[01/04 21:58:32] d2.utils.events INFO: eta: 1:37:45 iter: 3699 total_loss: 0.5949 loss_cls: 0.1118 loss_box_reg: 0.06017 loss_contrast: 0.2198 loss_rpn_cls: 0.04232 loss_rpn_loc: 0.04664 loss_kld: 0.05662 loss_reg_disitll: 0.06159 time: 3.1500 data_time: 0.1317 lr: 0.005 max_mem: 33785M +[01/04 21:59:35] d2.utils.events INFO: eta: 1:36:36 iter: 3719 total_loss: 0.5949 loss_cls: 0.1055 loss_box_reg: 0.0578 loss_contrast: 0.2198 loss_rpn_cls: 0.04193 loss_rpn_loc: 0.0483 loss_kld: 0.05885 loss_reg_disitll: 0.06497 time: 3.1499 data_time: 0.1369 lr: 0.005 max_mem: 33785M +[01/04 22:00:41] d2.utils.events INFO: eta: 1:35:38 iter: 3739 total_loss: 0.6025 loss_cls: 0.1124 loss_box_reg: 0.06112 loss_contrast: 0.2198 loss_rpn_cls: 0.04132 loss_rpn_loc: 0.04132 loss_kld: 0.0542 loss_reg_disitll: 0.06784 time: 3.1507 data_time: 0.1337 lr: 0.005 max_mem: 33785M +[01/04 22:01:48] d2.utils.events INFO: eta: 1:34:36 iter: 3759 total_loss: 0.6102 loss_cls: 0.1147 loss_box_reg: 0.06223 loss_contrast: 0.2198 loss_rpn_cls: 0.03895 loss_rpn_loc: 0.0506 loss_kld: 0.05822 loss_reg_disitll: 0.0656 time: 3.1517 data_time: 0.1261 lr: 0.005 max_mem: 33785M +[01/04 22:02:51] d2.utils.events INFO: eta: 1:33:32 iter: 3779 total_loss: 0.6105 loss_cls: 0.1058 loss_box_reg: 0.05665 loss_contrast: 0.2198 loss_rpn_cls: 0.04898 loss_rpn_loc: 0.05056 loss_kld: 0.05617 loss_reg_disitll: 0.0636 time: 3.1517 data_time: 0.1386 lr: 0.005 max_mem: 33785M +[01/04 22:03:54] fvcore.common.checkpoint INFO: Saving checkpoint to checkpoints/coco/10shot_ExAU/model_0003799.pth +[01/04 22:04:10] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 22:04:10] d2.data.common INFO: Serializing 5000 elements to byte tensors and concatenating them all ... +[01/04 22:04:10] d2.data.common INFO: Serialized dataset takes 3.00 MiB +[01/04 22:04:10] defrcn.evaluation.evaluator INFO: Start initializing PCB module, please wait a seconds... +[01/04 22:04:10] defrcn.evaluation.calibration_layer INFO: Loading ImageNet Pre-train Model from ImageNetPretrained/torchvision/resnet101-5d3b4d8f.pth +[01/04 22:04:12] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 22:04:12] d2.data.common INFO: Serializing 402 elements to byte tensors and concatenating them all ... +[01/04 22:04:12] d2.data.common INFO: Serialized dataset takes 0.08 MiB +[01/04 22:04:32] defrcn.evaluation.evaluator INFO: Start inference on 2500 images +[01/04 22:04:44] defrcn.evaluation.evaluator INFO: Inference done 50/2500. 0.1049 s / img. ETA=0:04:16 +[01/04 22:04:49] defrcn.evaluation.evaluator INFO: Inference done 100/2500. 0.1024 s / img. ETA=0:04:05 +[01/04 22:04:55] defrcn.evaluation.evaluator INFO: Inference done 150/2500. 0.1026 s / img. ETA=0:04:01 +[01/04 22:05:00] defrcn.evaluation.evaluator INFO: Inference done 200/2500. 0.1021 s / img. ETA=0:03:54 +[01/04 22:05:05] defrcn.evaluation.evaluator INFO: Inference done 250/2500. 0.1024 s / img. ETA=0:03:50 +[01/04 22:05:10] defrcn.evaluation.evaluator INFO: Inference done 300/2500. 0.1022 s / img. ETA=0:03:44 +[01/04 22:05:15] defrcn.evaluation.evaluator INFO: Inference done 350/2500. 0.1020 s / img. ETA=0:03:39 +[01/04 22:05:20] defrcn.evaluation.evaluator INFO: Inference done 400/2500. 0.1019 s / img. ETA=0:03:34 +[01/04 22:05:25] defrcn.evaluation.evaluator INFO: Inference done 450/2500. 0.1019 s / img. ETA=0:03:28 +[01/04 22:05:30] defrcn.evaluation.evaluator INFO: Inference done 500/2500. 0.1019 s / img. ETA=0:03:23 +[01/04 22:05:35] defrcn.evaluation.evaluator INFO: Inference done 550/2500. 0.1019 s / img. ETA=0:03:18 +[01/04 22:05:40] defrcn.evaluation.evaluator INFO: Inference done 600/2500. 0.1018 s / img. ETA=0:03:13 +[01/04 22:05:45] defrcn.evaluation.evaluator INFO: Inference done 650/2500. 0.1019 s / img. ETA=0:03:08 +[01/04 22:05:50] defrcn.evaluation.evaluator INFO: Inference done 700/2500. 0.1017 s / img. ETA=0:03:03 +[01/04 22:05:56] defrcn.evaluation.evaluator INFO: Inference done 750/2500. 0.1018 s / img. ETA=0:02:58 +[01/04 22:06:01] defrcn.evaluation.evaluator INFO: Inference done 800/2500. 0.1020 s / img. ETA=0:02:53 +[01/04 22:06:06] defrcn.evaluation.evaluator INFO: Inference done 850/2500. 0.1020 s / img. ETA=0:02:48 +[01/04 22:06:11] defrcn.evaluation.evaluator INFO: Inference done 900/2500. 0.1022 s / img. ETA=0:02:43 +[01/04 22:06:16] defrcn.evaluation.evaluator INFO: Inference done 950/2500. 0.1021 s / img. ETA=0:02:38 +[01/04 22:06:21] defrcn.evaluation.evaluator INFO: Inference done 1000/2500. 0.1022 s / img. ETA=0:02:33 +[01/04 22:06:27] defrcn.evaluation.evaluator INFO: Inference done 1050/2500. 0.1022 s / img. ETA=0:02:28 +[01/04 22:06:32] defrcn.evaluation.evaluator INFO: Inference done 1100/2500. 0.1023 s / img. ETA=0:02:23 +[01/04 22:06:37] defrcn.evaluation.evaluator INFO: Inference done 1150/2500. 0.1024 s / img. ETA=0:02:18 +[01/04 22:06:42] defrcn.evaluation.evaluator INFO: Inference done 1200/2500. 0.1024 s / img. ETA=0:02:13 +[01/04 22:06:47] defrcn.evaluation.evaluator INFO: Inference done 1250/2500. 0.1024 s / img. ETA=0:02:07 +[01/04 22:06:52] defrcn.evaluation.evaluator INFO: Inference done 1300/2500. 0.1025 s / img. ETA=0:02:03 +[01/04 22:06:58] defrcn.evaluation.evaluator INFO: Inference done 1350/2500. 0.1027 s / img. ETA=0:01:58 +[01/04 22:07:03] defrcn.evaluation.evaluator INFO: Inference done 1400/2500. 0.1028 s / img. ETA=0:01:53 +[01/04 22:07:08] defrcn.evaluation.evaluator INFO: Inference done 1450/2500. 0.1029 s / img. ETA=0:01:48 +[01/04 22:07:14] defrcn.evaluation.evaluator INFO: Inference done 1500/2500. 0.1030 s / img. ETA=0:01:42 +[01/04 22:07:19] defrcn.evaluation.evaluator INFO: Inference done 1550/2500. 0.1030 s / img. ETA=0:01:37 +[01/04 22:07:24] defrcn.evaluation.evaluator INFO: Inference done 1600/2500. 0.1029 s / img. ETA=0:01:32 +[01/04 22:07:29] defrcn.evaluation.evaluator INFO: Inference done 1650/2500. 0.1028 s / img. ETA=0:01:27 +[01/04 22:07:34] defrcn.evaluation.evaluator INFO: Inference done 1700/2500. 0.1028 s / img. ETA=0:01:22 +[01/04 22:07:39] defrcn.evaluation.evaluator INFO: Inference done 1750/2500. 0.1029 s / img. ETA=0:01:17 +[01/04 22:07:44] defrcn.evaluation.evaluator INFO: Inference done 1800/2500. 0.1028 s / img. ETA=0:01:11 +[01/04 22:07:49] defrcn.evaluation.evaluator INFO: Inference done 1850/2500. 0.1028 s / img. ETA=0:01:06 +[01/04 22:07:55] defrcn.evaluation.evaluator INFO: Inference done 1900/2500. 0.1028 s / img. ETA=0:01:01 +[01/04 22:08:00] defrcn.evaluation.evaluator INFO: Inference done 1950/2500. 0.1028 s / img. ETA=0:00:56 +[01/04 22:08:05] defrcn.evaluation.evaluator INFO: Inference done 2000/2500. 0.1028 s / img. ETA=0:00:51 +[01/04 22:08:10] defrcn.evaluation.evaluator INFO: Inference done 2050/2500. 0.1028 s / img. ETA=0:00:46 +[01/04 22:08:15] defrcn.evaluation.evaluator INFO: Inference done 2100/2500. 0.1027 s / img. ETA=0:00:41 +[01/04 22:08:20] defrcn.evaluation.evaluator INFO: Inference done 2150/2500. 0.1028 s / img. ETA=0:00:35 +[01/04 22:08:25] defrcn.evaluation.evaluator INFO: Inference done 2200/2500. 0.1027 s / img. ETA=0:00:30 +[01/04 22:08:30] defrcn.evaluation.evaluator INFO: Inference done 2250/2500. 0.1027 s / img. ETA=0:00:25 +[01/04 22:08:35] defrcn.evaluation.evaluator INFO: Inference done 2300/2500. 0.1027 s / img. ETA=0:00:20 +[01/04 22:08:41] defrcn.evaluation.evaluator INFO: Inference done 2350/2500. 0.1027 s / img. ETA=0:00:15 +[01/04 22:08:46] defrcn.evaluation.evaluator INFO: Inference done 2400/2500. 0.1028 s / img. ETA=0:00:10 +[01/04 22:08:51] defrcn.evaluation.evaluator INFO: Inference done 2450/2500. 0.1028 s / img. ETA=0:00:05 +[01/04 22:08:56] defrcn.evaluation.evaluator INFO: Inference done 2500/2500. 0.1028 s / img. ETA=0:00:00 +[01/04 22:08:57] defrcn.evaluation.evaluator INFO: Total inference time: 0:04:16 (0.102605 s / img per device, on 2 devices) +[01/04 22:08:57] defrcn.evaluation.evaluator INFO: Total inference pure compute time: 0:04:10 (0.100508 s / img per device, on 2 devices) +[01/04 22:08:58] defrcn.evaluation.coco_evaluation INFO: Preparing results for COCO format ... +[01/04 22:08:58] defrcn.evaluation.coco_evaluation INFO: Saving results to checkpoints/coco/10shot_ExAU/inference/coco_instances_results.json +[01/04 22:08:59] defrcn.evaluation.coco_evaluation INFO: Evaluating predictions ... +[01/04 22:09:23] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 32.240 | 51.085 | 34.095 | 16.403 | 36.156 | 45.868 | +[01/04 22:09:23] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:--------------|:-------|:-------------|:-------|:---------------|:-------| +| person | 3.714 | bicycle | 7.189 | car | 21.449 | +| motorcycle | 18.139 | airplane | 39.228 | bus | 49.919 | +| train | 24.685 | truck | 28.016 | boat | 10.381 | +| traffic light | 23.643 | fire hydrant | 65.241 | stop sign | 71.255 | +| parking meter | 36.400 | bench | 15.584 | bird | 14.916 | +| cat | 35.165 | dog | 29.308 | horse | 15.732 | +| sheep | 14.589 | cow | 22.725 | elephant | 64.773 | +| bear | 59.076 | zebra | 56.263 | giraffe | 63.673 | +| backpack | 17.658 | umbrella | 33.699 | handbag | 15.052 | +| tie | 31.442 | suitcase | 34.341 | frisbee | 57.633 | +| skis | 22.067 | snowboard | 36.052 | sports ball | 39.301 | +| kite | 38.094 | baseball bat | 26.199 | baseball glove | 29.975 | +| skateboard | 47.903 | surfboard | 39.012 | tennis racket | 49.090 | +| bottle | 15.321 | wine glass | 29.967 | cup | 34.921 | +| fork | 33.550 | knife | 15.048 | spoon | 18.566 | +| bowl | 35.674 | banana | 22.144 | apple | 18.415 | +| sandwich | 33.263 | orange | 22.286 | broccoli | 25.658 | +| carrot | 24.960 | hot dog | 33.358 | pizza | 44.711 | +| donut | 51.319 | cake | 38.643 | chair | 7.096 | +| couch | 18.230 | potted plant | 2.770 | bed | 41.392 | +| dining table | 5.423 | toilet | 54.491 | tv | 42.333 | +| laptop | 55.480 | mouse | 45.480 | remote | 26.998 | +| keyboard | 50.259 | cell phone | 26.001 | microwave | 54.007 | +| oven | 34.204 | toaster | 29.076 | sink | 29.680 | +| refrigerator | 54.641 | book | 9.128 | clock | 46.468 | +| vase | 32.934 | scissors | 25.281 | teddy bear | 39.079 | +| hair drier | 19.604 | toothbrush | 22.786 | | | +[01/04 22:09:38] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 36.349 | 56.742 | 38.782 | 19.582 | 41.115 | 50.880 | +[01/04 22:09:38] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:---------------|:-------|:--------------|:-------|:-------------|:-------| +| truck | 28.016 | traffic light | 23.643 | fire hydrant | 65.241 | +| stop sign | 71.255 | parking meter | 36.400 | bench | 15.584 | +| elephant | 64.773 | bear | 59.076 | zebra | 56.263 | +| giraffe | 63.673 | backpack | 17.658 | umbrella | 33.699 | +| handbag | 15.052 | tie | 31.442 | suitcase | 34.341 | +| frisbee | 57.633 | skis | 22.067 | snowboard | 36.052 | +| sports ball | 39.301 | kite | 38.094 | baseball bat | 26.199 | +| baseball glove | 29.975 | skateboard | 47.903 | surfboard | 39.012 | +| tennis racket | 49.090 | wine glass | 29.967 | cup | 34.921 | +| fork | 33.550 | knife | 15.048 | spoon | 18.566 | +| bowl | 35.674 | banana | 22.144 | apple | 18.415 | +| sandwich | 33.263 | orange | 22.286 | broccoli | 25.658 | +| carrot | 24.960 | hot dog | 33.358 | pizza | 44.711 | +| donut | 51.319 | cake | 38.643 | bed | 41.392 | +| toilet | 54.491 | laptop | 55.480 | mouse | 45.480 | +| remote | 26.998 | keyboard | 50.259 | cell phone | 26.001 | +| microwave | 54.007 | oven | 34.204 | toaster | 29.076 | +| sink | 29.680 | refrigerator | 54.641 | book | 9.128 | +| clock | 46.468 | vase | 32.934 | scissors | 25.281 | +| teddy bear | 39.079 | hair drier | 19.604 | toothbrush | 22.786 | +[01/04 22:09:47] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:-----:|:------:|:------:| +| 19.916 | 34.114 | 20.035 | 7.023 | 21.279 | 30.833 | +[01/04 22:09:47] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:-------------|:-------|:-----------|:-------|:-------------|:-------| +| person | 3.714 | bicycle | 7.189 | car | 21.449 | +| motorcycle | 18.139 | airplane | 39.228 | bus | 49.919 | +| train | 24.685 | boat | 10.381 | bird | 14.916 | +| cat | 35.165 | dog | 29.308 | horse | 15.732 | +| sheep | 14.589 | cow | 22.725 | bottle | 15.321 | +| chair | 7.096 | couch | 18.230 | potted plant | 2.770 | +| dining table | 5.423 | tv | 42.333 | | | +[01/04 22:09:48] defrcn.engine.defaults INFO: Evaluation results for coco14_test_all in csv format: +[01/04 22:09:48] defrcn.evaluation.testing INFO: copypaste: Task: bbox +[01/04 22:09:48] defrcn.evaluation.testing INFO: copypaste: AP,AP50,AP75,APs,APm,APl,bAP,bAP50,bAP75,bAPs,bAPm,bAPl,nAP,nAP50,nAP75,nAPs,nAPm,nAPl +[01/04 22:09:48] defrcn.evaluation.testing INFO: copypaste: 32.2404,51.0853,34.0952,16.4028,36.1563,45.8680,36.3486,56.7425,38.7818,19.5824,41.1155,50.8795,19.9158,34.1139,20.0355,7.0231,21.2787,30.8333 +[01/04 22:09:48] d2.utils.events INFO: eta: 1:32:30 iter: 3799 total_loss: 0.5843 loss_cls: 0.1083 loss_box_reg: 0.05698 loss_contrast: 0.2198 loss_rpn_cls: 0.04078 loss_rpn_loc: 0.04362 loss_kld: 0.05626 loss_reg_disitll: 0.06352 time: 3.1516 data_time: 0.1295 lr: 0.005 max_mem: 33785M +[01/04 22:10:52] d2.utils.events INFO: eta: 1:31:27 iter: 3819 total_loss: 0.5909 loss_cls: 0.1095 loss_box_reg: 0.05482 loss_contrast: 0.2198 loss_rpn_cls: 0.04247 loss_rpn_loc: 0.04368 loss_kld: 0.0579 loss_reg_disitll: 0.06318 time: 3.1520 data_time: 0.1369 lr: 0.005 max_mem: 33785M +[01/04 22:11:54] d2.utils.events INFO: eta: 1:30:25 iter: 3839 total_loss: 0.5912 loss_cls: 0.1095 loss_box_reg: 0.05587 loss_contrast: 0.2198 loss_rpn_cls: 0.04037 loss_rpn_loc: 0.04726 loss_kld: 0.05716 loss_reg_disitll: 0.06286 time: 3.1517 data_time: 0.1371 lr: 0.005 max_mem: 33785M +[01/04 22:13:02] d2.utils.events INFO: eta: 1:29:24 iter: 3859 total_loss: 0.6003 loss_cls: 0.1112 loss_box_reg: 0.05921 loss_contrast: 0.2198 loss_rpn_cls: 0.04406 loss_rpn_loc: 0.05152 loss_kld: 0.05527 loss_reg_disitll: 0.06159 time: 3.1530 data_time: 0.1334 lr: 0.005 max_mem: 33785M +[01/04 22:14:05] d2.utils.events INFO: eta: 1:28:22 iter: 3879 total_loss: 0.5879 loss_cls: 0.1069 loss_box_reg: 0.05922 loss_contrast: 0.2198 loss_rpn_cls: 0.04186 loss_rpn_loc: 0.04546 loss_kld: 0.05707 loss_reg_disitll: 0.06659 time: 3.1528 data_time: 0.1408 lr: 0.005 max_mem: 33785M +[01/04 22:15:10] d2.utils.events INFO: eta: 1:27:22 iter: 3899 total_loss: 0.5719 loss_cls: 0.1023 loss_box_reg: 0.0543 loss_contrast: 0.2198 loss_rpn_cls: 0.03792 loss_rpn_loc: 0.04016 loss_kld: 0.05624 loss_reg_disitll: 0.05895 time: 3.1534 data_time: 0.1212 lr: 0.005 max_mem: 33785M +[01/04 22:16:13] d2.utils.events INFO: eta: 1:26:21 iter: 3919 total_loss: 0.586 loss_cls: 0.1119 loss_box_reg: 0.05861 loss_contrast: 0.2197 loss_rpn_cls: 0.04168 loss_rpn_loc: 0.04707 loss_kld: 0.0551 loss_reg_disitll: 0.06339 time: 3.1534 data_time: 0.1458 lr: 0.005 max_mem: 33785M +[01/04 22:17:15] d2.utils.events INFO: eta: 1:25:17 iter: 3939 total_loss: 0.597 loss_cls: 0.1058 loss_box_reg: 0.05741 loss_contrast: 0.2198 loss_rpn_cls: 0.04163 loss_rpn_loc: 0.041 loss_kld: 0.05292 loss_reg_disitll: 0.0666 time: 3.1530 data_time: 0.1144 lr: 0.005 max_mem: 33785M +[01/04 22:18:21] d2.utils.events INFO: eta: 1:24:15 iter: 3959 total_loss: 0.5856 loss_cls: 0.1068 loss_box_reg: 0.05897 loss_contrast: 0.2198 loss_rpn_cls: 0.03993 loss_rpn_loc: 0.03974 loss_kld: 0.05165 loss_reg_disitll: 0.06578 time: 3.1537 data_time: 0.1220 lr: 0.005 max_mem: 33785M +[01/04 22:19:25] d2.utils.events INFO: eta: 1:23:15 iter: 3979 total_loss: 0.5809 loss_cls: 0.105 loss_box_reg: 0.05671 loss_contrast: 0.2198 loss_rpn_cls: 0.03782 loss_rpn_loc: 0.04697 loss_kld: 0.05361 loss_reg_disitll: 0.06113 time: 3.1540 data_time: 0.1425 lr: 0.005 max_mem: 33785M +[01/04 22:20:28] fvcore.common.checkpoint INFO: Saving checkpoint to checkpoints/coco/10shot_ExAU/model_0003999.pth +[01/04 22:20:44] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 22:20:44] d2.data.common INFO: Serializing 5000 elements to byte tensors and concatenating them all ... +[01/04 22:20:44] d2.data.common INFO: Serialized dataset takes 3.00 MiB +[01/04 22:20:44] defrcn.evaluation.evaluator INFO: Start initializing PCB module, please wait a seconds... +[01/04 22:20:44] defrcn.evaluation.calibration_layer INFO: Loading ImageNet Pre-train Model from ImageNetPretrained/torchvision/resnet101-5d3b4d8f.pth +[01/04 22:20:46] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 22:20:46] d2.data.common INFO: Serializing 402 elements to byte tensors and concatenating them all ... +[01/04 22:20:46] d2.data.common INFO: Serialized dataset takes 0.08 MiB +[01/04 22:21:06] defrcn.evaluation.evaluator INFO: Start inference on 2500 images +[01/04 22:21:18] defrcn.evaluation.evaluator INFO: Inference done 50/2500. 0.1045 s / img. ETA=0:04:16 +[01/04 22:21:23] defrcn.evaluation.evaluator INFO: Inference done 100/2500. 0.1023 s / img. ETA=0:04:05 +[01/04 22:21:28] defrcn.evaluation.evaluator INFO: Inference done 150/2500. 0.1022 s / img. ETA=0:04:00 +[01/04 22:21:33] defrcn.evaluation.evaluator INFO: Inference done 200/2500. 0.1018 s / img. ETA=0:03:54 +[01/04 22:21:38] defrcn.evaluation.evaluator INFO: Inference done 250/2500. 0.1020 s / img. ETA=0:03:49 +[01/04 22:21:43] defrcn.evaluation.evaluator INFO: Inference done 300/2500. 0.1019 s / img. ETA=0:03:44 +[01/04 22:21:48] defrcn.evaluation.evaluator INFO: Inference done 350/2500. 0.1016 s / img. ETA=0:03:38 +[01/04 22:21:53] defrcn.evaluation.evaluator INFO: Inference done 400/2500. 0.1016 s / img. ETA=0:03:33 +[01/04 22:21:58] defrcn.evaluation.evaluator INFO: Inference done 450/2500. 0.1016 s / img. ETA=0:03:28 +[01/04 22:22:04] defrcn.evaluation.evaluator INFO: Inference done 500/2500. 0.1016 s / img. ETA=0:03:23 +[01/04 22:22:09] defrcn.evaluation.evaluator INFO: Inference done 550/2500. 0.1016 s / img. ETA=0:03:18 +[01/04 22:22:14] defrcn.evaluation.evaluator INFO: Inference done 600/2500. 0.1016 s / img. ETA=0:03:12 +[01/04 22:22:19] defrcn.evaluation.evaluator INFO: Inference done 650/2500. 0.1017 s / img. ETA=0:03:08 +[01/04 22:22:24] defrcn.evaluation.evaluator INFO: Inference done 700/2500. 0.1014 s / img. ETA=0:03:02 +[01/04 22:22:29] defrcn.evaluation.evaluator INFO: Inference done 750/2500. 0.1015 s / img. ETA=0:02:57 +[01/04 22:22:34] defrcn.evaluation.evaluator INFO: Inference done 800/2500. 0.1017 s / img. ETA=0:02:52 +[01/04 22:22:39] defrcn.evaluation.evaluator INFO: Inference done 850/2500. 0.1017 s / img. ETA=0:02:47 +[01/04 22:22:44] defrcn.evaluation.evaluator INFO: Inference done 900/2500. 0.1019 s / img. ETA=0:02:42 +[01/04 22:22:49] defrcn.evaluation.evaluator INFO: Inference done 950/2500. 0.1018 s / img. ETA=0:02:37 +[01/04 22:22:55] defrcn.evaluation.evaluator INFO: Inference done 1000/2500. 0.1019 s / img. ETA=0:02:32 +[01/04 22:23:00] defrcn.evaluation.evaluator INFO: Inference done 1050/2500. 0.1019 s / img. ETA=0:02:27 +[01/04 22:23:05] defrcn.evaluation.evaluator INFO: Inference done 1100/2500. 0.1020 s / img. ETA=0:02:22 +[01/04 22:23:10] defrcn.evaluation.evaluator INFO: Inference done 1150/2500. 0.1021 s / img. ETA=0:02:17 +[01/04 22:23:15] defrcn.evaluation.evaluator INFO: Inference done 1200/2500. 0.1021 s / img. ETA=0:02:12 +[01/04 22:23:20] defrcn.evaluation.evaluator INFO: Inference done 1250/2500. 0.1021 s / img. ETA=0:02:07 +[01/04 22:23:26] defrcn.evaluation.evaluator INFO: Inference done 1300/2500. 0.1022 s / img. ETA=0:02:02 +[01/04 22:23:31] defrcn.evaluation.evaluator INFO: Inference done 1350/2500. 0.1023 s / img. ETA=0:01:57 +[01/04 22:23:36] defrcn.evaluation.evaluator INFO: Inference done 1400/2500. 0.1024 s / img. ETA=0:01:52 +[01/04 22:23:41] defrcn.evaluation.evaluator INFO: Inference done 1450/2500. 0.1024 s / img. ETA=0:01:47 +[01/04 22:23:46] defrcn.evaluation.evaluator INFO: Inference done 1500/2500. 0.1025 s / img. ETA=0:01:42 +[01/04 22:23:52] defrcn.evaluation.evaluator INFO: Inference done 1550/2500. 0.1024 s / img. ETA=0:01:37 +[01/04 22:23:56] defrcn.evaluation.evaluator INFO: Inference done 1600/2500. 0.1024 s / img. ETA=0:01:32 +[01/04 22:24:01] defrcn.evaluation.evaluator INFO: Inference done 1650/2500. 0.1023 s / img. ETA=0:01:26 +[01/04 22:24:07] defrcn.evaluation.evaluator INFO: Inference done 1700/2500. 0.1023 s / img. ETA=0:01:21 +[01/04 22:24:12] defrcn.evaluation.evaluator INFO: Inference done 1750/2500. 0.1023 s / img. ETA=0:01:16 +[01/04 22:24:17] defrcn.evaluation.evaluator INFO: Inference done 1800/2500. 0.1023 s / img. ETA=0:01:11 +[01/04 22:24:22] defrcn.evaluation.evaluator INFO: Inference done 1850/2500. 0.1023 s / img. ETA=0:01:06 +[01/04 22:24:27] defrcn.evaluation.evaluator INFO: Inference done 1900/2500. 0.1023 s / img. ETA=0:01:01 +[01/04 22:24:32] defrcn.evaluation.evaluator INFO: Inference done 1950/2500. 0.1023 s / img. ETA=0:00:56 +[01/04 22:24:37] defrcn.evaluation.evaluator INFO: Inference done 2000/2500. 0.1023 s / img. ETA=0:00:51 +[01/04 22:24:42] defrcn.evaluation.evaluator INFO: Inference done 2050/2500. 0.1023 s / img. ETA=0:00:46 +[01/04 22:24:47] defrcn.evaluation.evaluator INFO: Inference done 2100/2500. 0.1022 s / img. ETA=0:00:40 +[01/04 22:24:53] defrcn.evaluation.evaluator INFO: Inference done 2150/2500. 0.1023 s / img. ETA=0:00:35 +[01/04 22:24:58] defrcn.evaluation.evaluator INFO: Inference done 2200/2500. 0.1022 s / img. ETA=0:00:30 +[01/04 22:25:03] defrcn.evaluation.evaluator INFO: Inference done 2250/2500. 0.1022 s / img. ETA=0:00:25 +[01/04 22:25:08] defrcn.evaluation.evaluator INFO: Inference done 2300/2500. 0.1023 s / img. ETA=0:00:20 +[01/04 22:25:13] defrcn.evaluation.evaluator INFO: Inference done 2350/2500. 0.1022 s / img. ETA=0:00:15 +[01/04 22:25:18] defrcn.evaluation.evaluator INFO: Inference done 2400/2500. 0.1023 s / img. ETA=0:00:10 +[01/04 22:25:24] defrcn.evaluation.evaluator INFO: Inference done 2450/2500. 0.1024 s / img. ETA=0:00:05 +[01/04 22:25:29] defrcn.evaluation.evaluator INFO: Inference done 2500/2500. 0.1024 s / img. ETA=0:00:00 +[01/04 22:25:29] defrcn.evaluation.evaluator INFO: Total inference time: 0:04:15 (0.102204 s / img per device, on 2 devices) +[01/04 22:25:29] defrcn.evaluation.evaluator INFO: Total inference pure compute time: 0:04:09 (0.100088 s / img per device, on 2 devices) +[01/04 22:25:30] defrcn.evaluation.coco_evaluation INFO: Preparing results for COCO format ... +[01/04 22:25:30] defrcn.evaluation.coco_evaluation INFO: Saving results to checkpoints/coco/10shot_ExAU/inference/coco_instances_results.json +[01/04 22:25:31] defrcn.evaluation.coco_evaluation INFO: Evaluating predictions ... +[01/04 22:25:55] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 32.306 | 51.186 | 34.285 | 16.140 | 36.115 | 46.641 | +[01/04 22:25:55] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:--------------|:-------|:-------------|:-------|:---------------|:-------| +| person | 3.634 | bicycle | 7.716 | car | 21.946 | +| motorcycle | 17.429 | airplane | 40.648 | bus | 51.857 | +| train | 25.249 | truck | 28.519 | boat | 10.061 | +| traffic light | 23.662 | fire hydrant | 64.213 | stop sign | 71.617 | +| parking meter | 37.318 | bench | 15.213 | bird | 14.851 | +| cat | 35.679 | dog | 29.878 | horse | 15.916 | +| sheep | 14.574 | cow | 22.378 | elephant | 64.073 | +| bear | 59.495 | zebra | 56.680 | giraffe | 63.668 | +| backpack | 17.106 | umbrella | 33.352 | handbag | 15.469 | +| tie | 31.105 | suitcase | 34.515 | frisbee | 57.994 | +| skis | 22.177 | snowboard | 34.592 | sports ball | 39.319 | +| kite | 37.707 | baseball bat | 24.710 | baseball glove | 29.436 | +| skateboard | 47.907 | surfboard | 39.063 | tennis racket | 48.970 | +| bottle | 15.250 | wine glass | 30.088 | cup | 34.873 | +| fork | 33.419 | knife | 15.065 | spoon | 18.410 | +| bowl | 36.148 | banana | 21.886 | apple | 18.529 | +| sandwich | 33.981 | orange | 21.909 | broccoli | 25.735 | +| carrot | 25.057 | hot dog | 33.388 | pizza | 45.105 | +| donut | 51.181 | cake | 39.671 | chair | 7.305 | +| couch | 18.320 | potted plant | 2.843 | bed | 42.361 | +| dining table | 4.978 | toilet | 53.965 | tv | 41.410 | +| laptop | 55.985 | mouse | 45.945 | remote | 26.874 | +| keyboard | 50.673 | cell phone | 26.359 | microwave | 53.074 | +| oven | 33.777 | toaster | 30.665 | sink | 29.964 | +| refrigerator | 54.221 | book | 9.222 | clock | 46.549 | +| vase | 33.139 | scissors | 24.789 | teddy bear | 39.138 | +| hair drier | 20.905 | toothbrush | 22.659 | | | +[01/04 22:26:11] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 36.377 | 56.864 | 38.956 | 19.219 | 41.032 | 51.834 | +[01/04 22:26:11] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:---------------|:-------|:--------------|:-------|:-------------|:-------| +| truck | 28.519 | traffic light | 23.662 | fire hydrant | 64.213 | +| stop sign | 71.617 | parking meter | 37.318 | bench | 15.213 | +| elephant | 64.073 | bear | 59.495 | zebra | 56.680 | +| giraffe | 63.668 | backpack | 17.106 | umbrella | 33.352 | +| handbag | 15.469 | tie | 31.105 | suitcase | 34.515 | +| frisbee | 57.994 | skis | 22.177 | snowboard | 34.592 | +| sports ball | 39.319 | kite | 37.707 | baseball bat | 24.710 | +| baseball glove | 29.436 | skateboard | 47.907 | surfboard | 39.063 | +| tennis racket | 48.970 | wine glass | 30.088 | cup | 34.873 | +| fork | 33.419 | knife | 15.065 | spoon | 18.410 | +| bowl | 36.148 | banana | 21.886 | apple | 18.529 | +| sandwich | 33.981 | orange | 21.909 | broccoli | 25.735 | +| carrot | 25.057 | hot dog | 33.388 | pizza | 45.105 | +| donut | 51.181 | cake | 39.671 | bed | 42.361 | +| toilet | 53.965 | laptop | 55.985 | mouse | 45.945 | +| remote | 26.874 | keyboard | 50.673 | cell phone | 26.359 | +| microwave | 53.074 | oven | 33.777 | toaster | 30.665 | +| sink | 29.964 | refrigerator | 54.221 | book | 9.222 | +| clock | 46.549 | vase | 33.139 | scissors | 24.789 | +| teddy bear | 39.138 | hair drier | 20.905 | toothbrush | 22.659 | +[01/04 22:26:21] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:-----:|:------:|:------:| +| 20.096 | 34.151 | 20.273 | 7.055 | 21.363 | 31.064 | +[01/04 22:26:21] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:-------------|:-------|:-----------|:-------|:-------------|:-------| +| person | 3.634 | bicycle | 7.716 | car | 21.946 | +| motorcycle | 17.429 | airplane | 40.648 | bus | 51.857 | +| train | 25.249 | boat | 10.061 | bird | 14.851 | +| cat | 35.679 | dog | 29.878 | horse | 15.916 | +| sheep | 14.574 | cow | 22.378 | bottle | 15.250 | +| chair | 7.305 | couch | 18.320 | potted plant | 2.843 | +| dining table | 4.978 | tv | 41.410 | | | +[01/04 22:26:21] defrcn.engine.defaults INFO: Evaluation results for coco14_test_all in csv format: +[01/04 22:26:21] defrcn.evaluation.testing INFO: copypaste: Task: bbox +[01/04 22:26:21] defrcn.evaluation.testing INFO: copypaste: AP,AP50,AP75,APs,APm,APl,bAP,bAP50,bAP75,bAPs,bAPm,bAPl,nAP,nAP50,nAP75,nAPs,nAPm,nAPl +[01/04 22:26:21] defrcn.evaluation.testing INFO: copypaste: 32.3064,51.1856,34.2852,16.1399,36.1147,46.6414,36.3765,56.8639,38.9559,19.2195,41.0319,51.8339,20.0961,34.1505,20.2732,7.0552,21.3633,31.0642 +[01/04 22:26:21] d2.utils.events INFO: eta: 1:22:09 iter: 3999 total_loss: 0.5957 loss_cls: 0.1097 loss_box_reg: 0.06119 loss_contrast: 0.2198 loss_rpn_cls: 0.0405 loss_rpn_loc: 0.04421 loss_kld: 0.05727 loss_reg_disitll: 0.06673 time: 3.1538 data_time: 0.1350 lr: 0.005 max_mem: 33785M +[01/04 22:27:27] d2.utils.events INFO: eta: 1:21:12 iter: 4019 total_loss: 0.5996 loss_cls: 0.1071 loss_box_reg: 0.05756 loss_contrast: 0.2198 loss_rpn_cls: 0.04175 loss_rpn_loc: 0.04327 loss_kld: 0.0564 loss_reg_disitll: 0.06207 time: 3.1545 data_time: 0.1340 lr: 0.005 max_mem: 33785M +[01/04 22:28:32] d2.utils.events INFO: eta: 1:20:09 iter: 4039 total_loss: 0.5944 loss_cls: 0.1089 loss_box_reg: 0.05673 loss_contrast: 0.2198 loss_rpn_cls: 0.04359 loss_rpn_loc: 0.05206 loss_kld: 0.05446 loss_reg_disitll: 0.06295 time: 3.1551 data_time: 0.1223 lr: 0.005 max_mem: 33785M +[01/04 22:29:37] d2.utils.events INFO: eta: 1:19:07 iter: 4059 total_loss: 0.5794 loss_cls: 0.1048 loss_box_reg: 0.05677 loss_contrast: 0.2198 loss_rpn_cls: 0.04132 loss_rpn_loc: 0.04329 loss_kld: 0.05679 loss_reg_disitll: 0.06229 time: 3.1553 data_time: 0.1337 lr: 0.005 max_mem: 33785M +[01/04 22:30:39] d2.utils.events INFO: eta: 1:18:00 iter: 4079 total_loss: 0.5992 loss_cls: 0.1057 loss_box_reg: 0.0597 loss_contrast: 0.2198 loss_rpn_cls: 0.04039 loss_rpn_loc: 0.04644 loss_kld: 0.05505 loss_reg_disitll: 0.06531 time: 3.1553 data_time: 0.1335 lr: 0.005 max_mem: 33785M +[01/04 22:31:41] d2.utils.events INFO: eta: 1:16:50 iter: 4099 total_loss: 0.5952 loss_cls: 0.1063 loss_box_reg: 0.06135 loss_contrast: 0.2198 loss_rpn_cls: 0.04135 loss_rpn_loc: 0.04504 loss_kld: 0.05682 loss_reg_disitll: 0.06446 time: 3.1549 data_time: 0.1388 lr: 0.005 max_mem: 33785M +[01/04 22:32:41] d2.utils.events INFO: eta: 1:15:45 iter: 4119 total_loss: 0.5774 loss_cls: 0.1058 loss_box_reg: 0.05831 loss_contrast: 0.2198 loss_rpn_cls: 0.04089 loss_rpn_loc: 0.04318 loss_kld: 0.05429 loss_reg_disitll: 0.06581 time: 3.1541 data_time: 0.1304 lr: 0.005 max_mem: 33785M +[01/04 22:33:45] d2.utils.events INFO: eta: 1:14:43 iter: 4139 total_loss: 0.5959 loss_cls: 0.1099 loss_box_reg: 0.05919 loss_contrast: 0.2198 loss_rpn_cls: 0.04228 loss_rpn_loc: 0.04892 loss_kld: 0.05986 loss_reg_disitll: 0.06029 time: 3.1544 data_time: 0.1190 lr: 0.005 max_mem: 33785M +[01/04 22:34:48] d2.utils.events INFO: eta: 1:13:40 iter: 4159 total_loss: 0.6073 loss_cls: 0.1124 loss_box_reg: 0.05931 loss_contrast: 0.2198 loss_rpn_cls: 0.03782 loss_rpn_loc: 0.0414 loss_kld: 0.05713 loss_reg_disitll: 0.06734 time: 3.1543 data_time: 0.1200 lr: 0.005 max_mem: 33785M +[01/04 22:35:54] d2.utils.events INFO: eta: 1:12:41 iter: 4179 total_loss: 0.5755 loss_cls: 0.11 loss_box_reg: 0.05586 loss_contrast: 0.2197 loss_rpn_cls: 0.04499 loss_rpn_loc: 0.0412 loss_kld: 0.0591 loss_reg_disitll: 0.05913 time: 3.1549 data_time: 0.1320 lr: 0.005 max_mem: 33785M +[01/04 22:36:59] fvcore.common.checkpoint INFO: Saving checkpoint to checkpoints/coco/10shot_ExAU/model_0004199.pth +[01/04 22:37:15] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 22:37:15] d2.data.common INFO: Serializing 5000 elements to byte tensors and concatenating them all ... +[01/04 22:37:15] d2.data.common INFO: Serialized dataset takes 3.00 MiB +[01/04 22:37:15] defrcn.evaluation.evaluator INFO: Start initializing PCB module, please wait a seconds... +[01/04 22:37:15] defrcn.evaluation.calibration_layer INFO: Loading ImageNet Pre-train Model from ImageNetPretrained/torchvision/resnet101-5d3b4d8f.pth +[01/04 22:37:17] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 22:37:17] d2.data.common INFO: Serializing 402 elements to byte tensors and concatenating them all ... +[01/04 22:37:17] d2.data.common INFO: Serialized dataset takes 0.08 MiB +[01/04 22:37:37] defrcn.evaluation.evaluator INFO: Start inference on 2500 images +[01/04 22:37:49] defrcn.evaluation.evaluator INFO: Inference done 50/2500. 0.1041 s / img. ETA=0:04:15 +[01/04 22:37:54] defrcn.evaluation.evaluator INFO: Inference done 100/2500. 0.1019 s / img. ETA=0:04:04 +[01/04 22:37:59] defrcn.evaluation.evaluator INFO: Inference done 150/2500. 0.1021 s / img. ETA=0:03:59 +[01/04 22:38:04] defrcn.evaluation.evaluator INFO: Inference done 200/2500. 0.1018 s / img. ETA=0:03:54 +[01/04 22:38:09] defrcn.evaluation.evaluator INFO: Inference done 250/2500. 0.1020 s / img. ETA=0:03:49 +[01/04 22:38:14] defrcn.evaluation.evaluator INFO: Inference done 300/2500. 0.1018 s / img. ETA=0:03:43 +[01/04 22:38:19] defrcn.evaluation.evaluator INFO: Inference done 350/2500. 0.1015 s / img. ETA=0:03:38 +[01/04 22:38:24] defrcn.evaluation.evaluator INFO: Inference done 400/2500. 0.1015 s / img. ETA=0:03:33 +[01/04 22:38:29] defrcn.evaluation.evaluator INFO: Inference done 450/2500. 0.1015 s / img. ETA=0:03:28 +[01/04 22:38:35] defrcn.evaluation.evaluator INFO: Inference done 500/2500. 0.1015 s / img. ETA=0:03:22 +[01/04 22:38:40] defrcn.evaluation.evaluator INFO: Inference done 550/2500. 0.1014 s / img. ETA=0:03:17 +[01/04 22:38:45] defrcn.evaluation.evaluator INFO: Inference done 600/2500. 0.1014 s / img. ETA=0:03:12 +[01/04 22:38:50] defrcn.evaluation.evaluator INFO: Inference done 650/2500. 0.1016 s / img. ETA=0:03:07 +[01/04 22:38:55] defrcn.evaluation.evaluator INFO: Inference done 700/2500. 0.1014 s / img. ETA=0:03:02 +[01/04 22:39:00] defrcn.evaluation.evaluator INFO: Inference done 750/2500. 0.1016 s / img. ETA=0:02:57 +[01/04 22:39:05] defrcn.evaluation.evaluator INFO: Inference done 800/2500. 0.1017 s / img. ETA=0:02:52 +[01/04 22:39:10] defrcn.evaluation.evaluator INFO: Inference done 850/2500. 0.1018 s / img. ETA=0:02:47 +[01/04 22:39:16] defrcn.evaluation.evaluator INFO: Inference done 900/2500. 0.1020 s / img. ETA=0:02:43 +[01/04 22:39:21] defrcn.evaluation.evaluator INFO: Inference done 950/2500. 0.1019 s / img. ETA=0:02:37 +[01/04 22:39:26] defrcn.evaluation.evaluator INFO: Inference done 1000/2500. 0.1020 s / img. ETA=0:02:32 +[01/04 22:39:31] defrcn.evaluation.evaluator INFO: Inference done 1050/2500. 0.1020 s / img. ETA=0:02:27 +[01/04 22:39:36] defrcn.evaluation.evaluator INFO: Inference done 1100/2500. 0.1021 s / img. ETA=0:02:22 +[01/04 22:39:41] defrcn.evaluation.evaluator INFO: Inference done 1150/2500. 0.1021 s / img. ETA=0:02:17 +[01/04 22:39:46] defrcn.evaluation.evaluator INFO: Inference done 1200/2500. 0.1021 s / img. ETA=0:02:12 +[01/04 22:39:51] defrcn.evaluation.evaluator INFO: Inference done 1250/2500. 0.1021 s / img. ETA=0:02:07 +[01/04 22:39:57] defrcn.evaluation.evaluator INFO: Inference done 1300/2500. 0.1023 s / img. ETA=0:02:02 +[01/04 22:40:02] defrcn.evaluation.evaluator INFO: Inference done 1350/2500. 0.1025 s / img. ETA=0:01:57 +[01/04 22:40:07] defrcn.evaluation.evaluator INFO: Inference done 1400/2500. 0.1026 s / img. ETA=0:01:52 +[01/04 22:40:12] defrcn.evaluation.evaluator INFO: Inference done 1450/2500. 0.1026 s / img. ETA=0:01:47 +[01/04 22:40:18] defrcn.evaluation.evaluator INFO: Inference done 1500/2500. 0.1026 s / img. ETA=0:01:42 +[01/04 22:40:23] defrcn.evaluation.evaluator INFO: Inference done 1550/2500. 0.1026 s / img. ETA=0:01:37 +[01/04 22:40:28] defrcn.evaluation.evaluator INFO: Inference done 1600/2500. 0.1025 s / img. ETA=0:01:32 +[01/04 22:40:33] defrcn.evaluation.evaluator INFO: Inference done 1650/2500. 0.1024 s / img. ETA=0:01:27 +[01/04 22:40:38] defrcn.evaluation.evaluator INFO: Inference done 1700/2500. 0.1025 s / img. ETA=0:01:21 +[01/04 22:40:43] defrcn.evaluation.evaluator INFO: Inference done 1750/2500. 0.1025 s / img. ETA=0:01:16 +[01/04 22:40:48] defrcn.evaluation.evaluator INFO: Inference done 1800/2500. 0.1024 s / img. ETA=0:01:11 +[01/04 22:40:53] defrcn.evaluation.evaluator INFO: Inference done 1850/2500. 0.1024 s / img. ETA=0:01:06 +[01/04 22:40:58] defrcn.evaluation.evaluator INFO: Inference done 1900/2500. 0.1024 s / img. ETA=0:01:01 +[01/04 22:41:04] defrcn.evaluation.evaluator INFO: Inference done 1950/2500. 0.1024 s / img. ETA=0:00:56 +[01/04 22:41:09] defrcn.evaluation.evaluator INFO: Inference done 2000/2500. 0.1024 s / img. ETA=0:00:51 +[01/04 22:41:14] defrcn.evaluation.evaluator INFO: Inference done 2050/2500. 0.1023 s / img. ETA=0:00:46 +[01/04 22:41:19] defrcn.evaluation.evaluator INFO: Inference done 2100/2500. 0.1023 s / img. ETA=0:00:40 +[01/04 22:41:24] defrcn.evaluation.evaluator INFO: Inference done 2150/2500. 0.1023 s / img. ETA=0:00:35 +[01/04 22:41:29] defrcn.evaluation.evaluator INFO: Inference done 2200/2500. 0.1023 s / img. ETA=0:00:30 +[01/04 22:41:34] defrcn.evaluation.evaluator INFO: Inference done 2250/2500. 0.1023 s / img. ETA=0:00:25 +[01/04 22:41:39] defrcn.evaluation.evaluator INFO: Inference done 2300/2500. 0.1023 s / img. ETA=0:00:20 +[01/04 22:41:44] defrcn.evaluation.evaluator INFO: Inference done 2350/2500. 0.1023 s / img. ETA=0:00:15 +[01/04 22:41:49] defrcn.evaluation.evaluator INFO: Inference done 2400/2500. 0.1024 s / img. ETA=0:00:10 +[01/04 22:41:55] defrcn.evaluation.evaluator INFO: Inference done 2450/2500. 0.1024 s / img. ETA=0:00:05 +[01/04 22:42:00] defrcn.evaluation.evaluator INFO: Inference done 2500/2500. 0.1024 s / img. ETA=0:00:00 +[01/04 22:42:00] defrcn.evaluation.evaluator INFO: Total inference time: 0:04:15 (0.102204 s / img per device, on 2 devices) +[01/04 22:42:00] defrcn.evaluation.evaluator INFO: Total inference pure compute time: 0:04:09 (0.100044 s / img per device, on 2 devices) +[01/04 22:42:02] defrcn.evaluation.coco_evaluation INFO: Preparing results for COCO format ... +[01/04 22:42:02] defrcn.evaluation.coco_evaluation INFO: Saving results to checkpoints/coco/10shot_ExAU/inference/coco_instances_results.json +[01/04 22:42:02] defrcn.evaluation.coco_evaluation INFO: Evaluating predictions ... +[01/04 22:42:27] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 32.181 | 51.039 | 34.073 | 16.345 | 36.054 | 45.370 | +[01/04 22:42:27] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:--------------|:-------|:-------------|:-------|:---------------|:-------| +| person | 3.696 | bicycle | 7.269 | car | 21.802 | +| motorcycle | 17.993 | airplane | 40.207 | bus | 50.521 | +| train | 25.488 | truck | 27.372 | boat | 10.483 | +| traffic light | 23.720 | fire hydrant | 64.154 | stop sign | 71.568 | +| parking meter | 36.656 | bench | 15.349 | bird | 14.597 | +| cat | 34.583 | dog | 29.868 | horse | 15.886 | +| sheep | 13.121 | cow | 22.050 | elephant | 64.377 | +| bear | 58.991 | zebra | 56.856 | giraffe | 63.533 | +| backpack | 17.773 | umbrella | 33.368 | handbag | 15.855 | +| tie | 31.361 | suitcase | 35.337 | frisbee | 58.015 | +| skis | 22.052 | snowboard | 34.798 | sports ball | 39.127 | +| kite | 37.787 | baseball bat | 25.365 | baseball glove | 29.306 | +| skateboard | 47.631 | surfboard | 39.326 | tennis racket | 49.362 | +| bottle | 14.722 | wine glass | 30.404 | cup | 34.842 | +| fork | 33.554 | knife | 15.531 | spoon | 18.566 | +| bowl | 36.233 | banana | 22.046 | apple | 18.526 | +| sandwich | 34.047 | orange | 21.833 | broccoli | 26.048 | +| carrot | 24.586 | hot dog | 33.487 | pizza | 44.382 | +| donut | 50.982 | cake | 39.301 | chair | 7.116 | +| couch | 18.250 | potted plant | 2.595 | bed | 42.322 | +| dining table | 5.543 | toilet | 54.810 | tv | 41.707 | +| laptop | 56.216 | mouse | 46.601 | remote | 27.189 | +| keyboard | 50.221 | cell phone | 26.629 | microwave | 52.610 | +| oven | 34.176 | toaster | 29.842 | sink | 29.137 | +| refrigerator | 53.939 | book | 9.489 | clock | 46.608 | +| vase | 32.775 | scissors | 24.110 | teddy bear | 39.832 | +| hair drier | 15.050 | toothbrush | 22.025 | | | +[01/04 22:42:43] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 36.283 | 56.802 | 38.736 | 19.496 | 41.021 | 50.292 | +[01/04 22:42:43] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:---------------|:-------|:--------------|:-------|:-------------|:-------| +| truck | 27.372 | traffic light | 23.720 | fire hydrant | 64.154 | +| stop sign | 71.568 | parking meter | 36.656 | bench | 15.349 | +| elephant | 64.377 | bear | 58.991 | zebra | 56.856 | +| giraffe | 63.533 | backpack | 17.773 | umbrella | 33.368 | +| handbag | 15.855 | tie | 31.361 | suitcase | 35.337 | +| frisbee | 58.015 | skis | 22.052 | snowboard | 34.798 | +| sports ball | 39.127 | kite | 37.787 | baseball bat | 25.365 | +| baseball glove | 29.306 | skateboard | 47.631 | surfboard | 39.326 | +| tennis racket | 49.362 | wine glass | 30.404 | cup | 34.842 | +| fork | 33.554 | knife | 15.531 | spoon | 18.566 | +| bowl | 36.233 | banana | 22.046 | apple | 18.526 | +| sandwich | 34.047 | orange | 21.833 | broccoli | 26.048 | +| carrot | 24.586 | hot dog | 33.487 | pizza | 44.382 | +| donut | 50.982 | cake | 39.301 | bed | 42.322 | +| toilet | 54.810 | laptop | 56.216 | mouse | 46.601 | +| remote | 27.189 | keyboard | 50.221 | cell phone | 26.629 | +| microwave | 52.610 | oven | 34.176 | toaster | 29.842 | +| sink | 29.137 | refrigerator | 53.939 | book | 9.489 | +| clock | 46.608 | vase | 32.775 | scissors | 24.110 | +| teddy bear | 39.832 | hair drier | 15.050 | toothbrush | 22.025 | +[01/04 22:42:53] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:-----:|:------:|:------:| +| 19.875 | 33.751 | 20.083 | 7.048 | 21.152 | 30.605 | +[01/04 22:42:53] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:-------------|:-------|:-----------|:-------|:-------------|:-------| +| person | 3.696 | bicycle | 7.269 | car | 21.802 | +| motorcycle | 17.993 | airplane | 40.207 | bus | 50.521 | +| train | 25.488 | boat | 10.483 | bird | 14.597 | +| cat | 34.583 | dog | 29.868 | horse | 15.886 | +| sheep | 13.121 | cow | 22.050 | bottle | 14.722 | +| chair | 7.116 | couch | 18.250 | potted plant | 2.595 | +| dining table | 5.543 | tv | 41.707 | | | +[01/04 22:42:53] defrcn.engine.defaults INFO: Evaluation results for coco14_test_all in csv format: +[01/04 22:42:53] defrcn.evaluation.testing INFO: copypaste: Task: bbox +[01/04 22:42:53] defrcn.evaluation.testing INFO: copypaste: AP,AP50,AP75,APs,APm,APl,bAP,bAP50,bAP75,bAPs,bAPm,bAPl,nAP,nAP50,nAP75,nAPs,nAPm,nAPl +[01/04 22:42:53] defrcn.evaluation.testing INFO: copypaste: 32.1811,51.0393,34.0725,16.3446,36.0541,45.3702,36.2831,56.8021,38.7358,19.4959,41.0214,50.2919,19.8749,33.7508,20.0827,7.0480,21.1521,30.6051 +[01/04 22:42:53] d2.utils.events INFO: eta: 1:11:40 iter: 4199 total_loss: 0.5829 loss_cls: 0.1056 loss_box_reg: 0.05679 loss_contrast: 0.2197 loss_rpn_cls: 0.03896 loss_rpn_loc: 0.04632 loss_kld: 0.05484 loss_reg_disitll: 0.06187 time: 3.1554 data_time: 0.1382 lr: 0.005 max_mem: 33785M +[01/04 22:43:59] d2.utils.events INFO: eta: 1:10:44 iter: 4219 total_loss: 0.5599 loss_cls: 0.1026 loss_box_reg: 0.05467 loss_contrast: 0.2198 loss_rpn_cls: 0.04005 loss_rpn_loc: 0.04047 loss_kld: 0.05144 loss_reg_disitll: 0.05839 time: 3.1560 data_time: 0.1429 lr: 0.005 max_mem: 33785M +[01/04 22:45:08] d2.utils.events INFO: eta: 1:09:40 iter: 4239 total_loss: 0.573 loss_cls: 0.09924 loss_box_reg: 0.0547 loss_contrast: 0.2197 loss_rpn_cls: 0.0399 loss_rpn_loc: 0.04754 loss_kld: 0.05452 loss_reg_disitll: 0.05623 time: 3.1575 data_time: 0.1318 lr: 0.005 max_mem: 33785M +[01/04 22:46:14] d2.utils.events INFO: eta: 1:08:49 iter: 4259 total_loss: 0.584 loss_cls: 0.1075 loss_box_reg: 0.05412 loss_contrast: 0.2197 loss_rpn_cls: 0.04179 loss_rpn_loc: 0.04449 loss_kld: 0.05133 loss_reg_disitll: 0.05967 time: 3.1581 data_time: 0.1197 lr: 0.005 max_mem: 33785M +[01/04 22:47:16] d2.utils.events INFO: eta: 1:07:42 iter: 4279 total_loss: 0.6134 loss_cls: 0.1118 loss_box_reg: 0.0587 loss_contrast: 0.2197 loss_rpn_cls: 0.04878 loss_rpn_loc: 0.05052 loss_kld: 0.05868 loss_reg_disitll: 0.06095 time: 3.1579 data_time: 0.1339 lr: 0.005 max_mem: 33785M +[01/04 22:48:18] d2.utils.events INFO: eta: 1:06:43 iter: 4299 total_loss: 0.5952 loss_cls: 0.1094 loss_box_reg: 0.06007 loss_contrast: 0.2197 loss_rpn_cls: 0.04005 loss_rpn_loc: 0.04564 loss_kld: 0.05714 loss_reg_disitll: 0.06901 time: 3.1575 data_time: 0.1318 lr: 0.005 max_mem: 33785M +[01/04 22:49:23] d2.utils.events INFO: eta: 1:05:36 iter: 4319 total_loss: 0.5865 loss_cls: 0.1112 loss_box_reg: 0.05962 loss_contrast: 0.2197 loss_rpn_cls: 0.04069 loss_rpn_loc: 0.04477 loss_kld: 0.05314 loss_reg_disitll: 0.05984 time: 3.1579 data_time: 0.1398 lr: 0.005 max_mem: 33785M +[01/04 22:50:31] d2.utils.events INFO: eta: 1:04:39 iter: 4339 total_loss: 0.5762 loss_cls: 0.1075 loss_box_reg: 0.05493 loss_contrast: 0.2197 loss_rpn_cls: 0.04257 loss_rpn_loc: 0.0455 loss_kld: 0.05582 loss_reg_disitll: 0.06015 time: 3.1590 data_time: 0.1384 lr: 0.005 max_mem: 33785M +[01/04 22:51:30] d2.utils.events INFO: eta: 1:03:32 iter: 4359 total_loss: 0.5749 loss_cls: 0.09932 loss_box_reg: 0.05075 loss_contrast: 0.2197 loss_rpn_cls: 0.0378 loss_rpn_loc: 0.04409 loss_kld: 0.05822 loss_reg_disitll: 0.05925 time: 3.1582 data_time: 0.1243 lr: 0.005 max_mem: 33785M +[01/04 22:52:37] d2.utils.events INFO: eta: 1:02:36 iter: 4379 total_loss: 0.5902 loss_cls: 0.1126 loss_box_reg: 0.05846 loss_contrast: 0.2197 loss_rpn_cls: 0.03866 loss_rpn_loc: 0.04405 loss_kld: 0.05388 loss_reg_disitll: 0.06293 time: 3.1589 data_time: 0.1340 lr: 0.005 max_mem: 33785M +[01/04 22:53:38] fvcore.common.checkpoint INFO: Saving checkpoint to checkpoints/coco/10shot_ExAU/model_0004399.pth +[01/04 22:53:55] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 22:53:55] d2.data.common INFO: Serializing 5000 elements to byte tensors and concatenating them all ... +[01/04 22:53:55] d2.data.common INFO: Serialized dataset takes 3.00 MiB +[01/04 22:53:55] defrcn.evaluation.evaluator INFO: Start initializing PCB module, please wait a seconds... +[01/04 22:53:55] defrcn.evaluation.calibration_layer INFO: Loading ImageNet Pre-train Model from ImageNetPretrained/torchvision/resnet101-5d3b4d8f.pth +[01/04 22:53:56] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 22:53:56] d2.data.common INFO: Serializing 402 elements to byte tensors and concatenating them all ... +[01/04 22:53:56] d2.data.common INFO: Serialized dataset takes 0.08 MiB +[01/04 22:54:17] defrcn.evaluation.evaluator INFO: Start inference on 2500 images +[01/04 22:54:29] defrcn.evaluation.evaluator INFO: Inference done 50/2500. 0.1055 s / img. ETA=0:04:18 +[01/04 22:54:34] defrcn.evaluation.evaluator INFO: Inference done 100/2500. 0.1032 s / img. ETA=0:04:07 +[01/04 22:54:39] defrcn.evaluation.evaluator INFO: Inference done 150/2500. 0.1033 s / img. ETA=0:04:02 +[01/04 22:54:44] defrcn.evaluation.evaluator INFO: Inference done 200/2500. 0.1027 s / img. ETA=0:03:56 +[01/04 22:54:49] defrcn.evaluation.evaluator INFO: Inference done 250/2500. 0.1028 s / img. ETA=0:03:51 +[01/04 22:54:54] defrcn.evaluation.evaluator INFO: Inference done 300/2500. 0.1026 s / img. ETA=0:03:45 +[01/04 22:54:59] defrcn.evaluation.evaluator INFO: Inference done 350/2500. 0.1023 s / img. ETA=0:03:39 +[01/04 22:55:04] defrcn.evaluation.evaluator INFO: Inference done 400/2500. 0.1023 s / img. ETA=0:03:34 +[01/04 22:55:10] defrcn.evaluation.evaluator INFO: Inference done 450/2500. 0.1023 s / img. ETA=0:03:29 +[01/04 22:55:15] defrcn.evaluation.evaluator INFO: Inference done 500/2500. 0.1022 s / img. ETA=0:03:24 +[01/04 22:55:20] defrcn.evaluation.evaluator INFO: Inference done 550/2500. 0.1021 s / img. ETA=0:03:19 +[01/04 22:55:25] defrcn.evaluation.evaluator INFO: Inference done 600/2500. 0.1020 s / img. ETA=0:03:13 +[01/04 22:55:30] defrcn.evaluation.evaluator INFO: Inference done 650/2500. 0.1022 s / img. ETA=0:03:08 +[01/04 22:55:35] defrcn.evaluation.evaluator INFO: Inference done 700/2500. 0.1019 s / img. ETA=0:03:03 +[01/04 22:55:40] defrcn.evaluation.evaluator INFO: Inference done 750/2500. 0.1020 s / img. ETA=0:02:58 +[01/04 22:55:45] defrcn.evaluation.evaluator INFO: Inference done 800/2500. 0.1021 s / img. ETA=0:02:53 +[01/04 22:55:50] defrcn.evaluation.evaluator INFO: Inference done 850/2500. 0.1022 s / img. ETA=0:02:48 +[01/04 22:55:56] defrcn.evaluation.evaluator INFO: Inference done 900/2500. 0.1024 s / img. ETA=0:02:43 +[01/04 22:56:01] defrcn.evaluation.evaluator INFO: Inference done 950/2500. 0.1023 s / img. ETA=0:02:38 +[01/04 22:56:06] defrcn.evaluation.evaluator INFO: Inference done 1000/2500. 0.1024 s / img. ETA=0:02:33 +[01/04 22:56:11] defrcn.evaluation.evaluator INFO: Inference done 1050/2500. 0.1024 s / img. ETA=0:02:28 +[01/04 22:56:16] defrcn.evaluation.evaluator INFO: Inference done 1100/2500. 0.1025 s / img. ETA=0:02:23 +[01/04 22:56:22] defrcn.evaluation.evaluator INFO: Inference done 1150/2500. 0.1026 s / img. ETA=0:02:18 +[01/04 22:56:27] defrcn.evaluation.evaluator INFO: Inference done 1200/2500. 0.1026 s / img. ETA=0:02:13 +[01/04 22:56:32] defrcn.evaluation.evaluator INFO: Inference done 1250/2500. 0.1026 s / img. ETA=0:02:08 +[01/04 22:56:37] defrcn.evaluation.evaluator INFO: Inference done 1300/2500. 0.1027 s / img. ETA=0:02:03 +[01/04 22:56:42] defrcn.evaluation.evaluator INFO: Inference done 1350/2500. 0.1029 s / img. ETA=0:01:58 +[01/04 22:56:48] defrcn.evaluation.evaluator INFO: Inference done 1400/2500. 0.1030 s / img. ETA=0:01:53 +[01/04 22:56:53] defrcn.evaluation.evaluator INFO: Inference done 1450/2500. 0.1029 s / img. ETA=0:01:48 +[01/04 22:56:58] defrcn.evaluation.evaluator INFO: Inference done 1500/2500. 0.1030 s / img. ETA=0:01:43 +[01/04 22:57:03] defrcn.evaluation.evaluator INFO: Inference done 1550/2500. 0.1030 s / img. ETA=0:01:37 +[01/04 22:57:08] defrcn.evaluation.evaluator INFO: Inference done 1600/2500. 0.1029 s / img. ETA=0:01:32 +[01/04 22:57:13] defrcn.evaluation.evaluator INFO: Inference done 1650/2500. 0.1029 s / img. ETA=0:01:27 +[01/04 22:57:18] defrcn.evaluation.evaluator INFO: Inference done 1700/2500. 0.1029 s / img. ETA=0:01:22 +[01/04 22:57:24] defrcn.evaluation.evaluator INFO: Inference done 1750/2500. 0.1029 s / img. ETA=0:01:17 +[01/04 22:57:29] defrcn.evaluation.evaluator INFO: Inference done 1800/2500. 0.1029 s / img. ETA=0:01:12 +[01/04 22:57:34] defrcn.evaluation.evaluator INFO: Inference done 1850/2500. 0.1029 s / img. ETA=0:01:06 +[01/04 22:57:39] defrcn.evaluation.evaluator INFO: Inference done 1900/2500. 0.1029 s / img. ETA=0:01:01 +[01/04 22:57:44] defrcn.evaluation.evaluator INFO: Inference done 1950/2500. 0.1030 s / img. ETA=0:00:56 +[01/04 22:57:49] defrcn.evaluation.evaluator INFO: Inference done 2000/2500. 0.1029 s / img. ETA=0:00:51 +[01/04 22:57:55] defrcn.evaluation.evaluator INFO: Inference done 2050/2500. 0.1029 s / img. ETA=0:00:46 +[01/04 22:58:00] defrcn.evaluation.evaluator INFO: Inference done 2100/2500. 0.1028 s / img. ETA=0:00:41 +[01/04 22:58:05] defrcn.evaluation.evaluator INFO: Inference done 2150/2500. 0.1029 s / img. ETA=0:00:36 +[01/04 22:58:10] defrcn.evaluation.evaluator INFO: Inference done 2200/2500. 0.1028 s / img. ETA=0:00:30 +[01/04 22:58:15] defrcn.evaluation.evaluator INFO: Inference done 2250/2500. 0.1028 s / img. ETA=0:00:25 +[01/04 22:58:20] defrcn.evaluation.evaluator INFO: Inference done 2300/2500. 0.1029 s / img. ETA=0:00:20 +[01/04 22:58:25] defrcn.evaluation.evaluator INFO: Inference done 2350/2500. 0.1029 s / img. ETA=0:00:15 +[01/04 22:58:31] defrcn.evaluation.evaluator INFO: Inference done 2400/2500. 0.1029 s / img. ETA=0:00:10 +[01/04 22:58:36] defrcn.evaluation.evaluator INFO: Inference done 2450/2500. 0.1030 s / img. ETA=0:00:05 +[01/04 22:58:41] defrcn.evaluation.evaluator INFO: Inference done 2500/2500. 0.1030 s / img. ETA=0:00:00 +[01/04 22:58:41] defrcn.evaluation.evaluator INFO: Total inference time: 0:04:17 (0.103006 s / img per device, on 2 devices) +[01/04 22:58:41] defrcn.evaluation.evaluator INFO: Total inference pure compute time: 0:04:11 (0.100666 s / img per device, on 2 devices) +[01/04 22:58:43] defrcn.evaluation.coco_evaluation INFO: Preparing results for COCO format ... +[01/04 22:58:43] defrcn.evaluation.coco_evaluation INFO: Saving results to checkpoints/coco/10shot_ExAU/inference/coco_instances_results.json +[01/04 22:58:44] defrcn.evaluation.coco_evaluation INFO: Evaluating predictions ... +[01/04 22:59:10] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 32.109 | 51.064 | 34.229 | 16.189 | 36.054 | 46.388 | +[01/04 22:59:10] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:--------------|:-------|:-------------|:-------|:---------------|:-------| +| person | 3.883 | bicycle | 7.527 | car | 20.960 | +| motorcycle | 18.068 | airplane | 39.204 | bus | 50.854 | +| train | 24.930 | truck | 27.124 | boat | 10.146 | +| traffic light | 23.329 | fire hydrant | 64.882 | stop sign | 70.803 | +| parking meter | 36.698 | bench | 14.731 | bird | 14.605 | +| cat | 35.360 | dog | 28.530 | horse | 16.580 | +| sheep | 12.838 | cow | 22.511 | elephant | 64.657 | +| bear | 59.080 | zebra | 56.698 | giraffe | 63.095 | +| backpack | 17.571 | umbrella | 32.917 | handbag | 15.698 | +| tie | 30.575 | suitcase | 34.643 | frisbee | 58.562 | +| skis | 21.925 | snowboard | 34.740 | sports ball | 38.744 | +| kite | 38.360 | baseball bat | 25.218 | baseball glove | 29.496 | +| skateboard | 48.483 | surfboard | 39.330 | tennis racket | 49.587 | +| bottle | 15.283 | wine glass | 30.286 | cup | 35.065 | +| fork | 34.052 | knife | 14.765 | spoon | 18.318 | +| bowl | 36.190 | banana | 22.586 | apple | 18.593 | +| sandwich | 34.914 | orange | 22.240 | broccoli | 25.972 | +| carrot | 24.694 | hot dog | 32.942 | pizza | 43.733 | +| donut | 50.878 | cake | 39.124 | chair | 7.056 | +| couch | 17.675 | potted plant | 2.741 | bed | 41.524 | +| dining table | 5.450 | toilet | 54.601 | tv | 42.093 | +| laptop | 55.691 | mouse | 46.029 | remote | 27.413 | +| keyboard | 50.302 | cell phone | 26.536 | microwave | 53.149 | +| oven | 33.693 | toaster | 28.971 | sink | 28.883 | +| refrigerator | 54.246 | book | 9.227 | clock | 46.012 | +| vase | 32.518 | scissors | 23.041 | teddy bear | 39.112 | +| hair drier | 17.188 | toothbrush | 22.984 | | | +[01/04 22:59:26] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 36.207 | 56.765 | 38.876 | 19.306 | 41.040 | 51.575 | +[01/04 22:59:26] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:---------------|:-------|:--------------|:-------|:-------------|:-------| +| truck | 27.124 | traffic light | 23.329 | fire hydrant | 64.882 | +| stop sign | 70.803 | parking meter | 36.698 | bench | 14.731 | +| elephant | 64.657 | bear | 59.080 | zebra | 56.698 | +| giraffe | 63.095 | backpack | 17.571 | umbrella | 32.917 | +| handbag | 15.698 | tie | 30.575 | suitcase | 34.643 | +| frisbee | 58.562 | skis | 21.925 | snowboard | 34.740 | +| sports ball | 38.744 | kite | 38.360 | baseball bat | 25.218 | +| baseball glove | 29.496 | skateboard | 48.483 | surfboard | 39.330 | +| tennis racket | 49.587 | wine glass | 30.286 | cup | 35.065 | +| fork | 34.052 | knife | 14.765 | spoon | 18.318 | +| bowl | 36.190 | banana | 22.586 | apple | 18.593 | +| sandwich | 34.914 | orange | 22.240 | broccoli | 25.972 | +| carrot | 24.694 | hot dog | 32.942 | pizza | 43.733 | +| donut | 50.878 | cake | 39.124 | bed | 41.524 | +| toilet | 54.601 | laptop | 55.691 | mouse | 46.029 | +| remote | 27.413 | keyboard | 50.302 | cell phone | 26.536 | +| microwave | 53.149 | oven | 33.693 | toaster | 28.971 | +| sink | 28.883 | refrigerator | 54.246 | book | 9.227 | +| clock | 46.012 | vase | 32.518 | scissors | 23.041 | +| teddy bear | 39.112 | hair drier | 17.188 | toothbrush | 22.984 | +[01/04 22:59:36] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:-----:|:------:|:------:| +| 19.815 | 33.959 | 20.287 | 6.994 | 21.098 | 30.829 | +[01/04 22:59:36] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:-------------|:-------|:-----------|:-------|:-------------|:-------| +| person | 3.883 | bicycle | 7.527 | car | 20.960 | +| motorcycle | 18.068 | airplane | 39.204 | bus | 50.854 | +| train | 24.930 | boat | 10.146 | bird | 14.605 | +| cat | 35.360 | dog | 28.530 | horse | 16.580 | +| sheep | 12.838 | cow | 22.511 | bottle | 15.283 | +| chair | 7.056 | couch | 17.675 | potted plant | 2.741 | +| dining table | 5.450 | tv | 42.093 | | | +[01/04 22:59:36] defrcn.engine.defaults INFO: Evaluation results for coco14_test_all in csv format: +[01/04 22:59:36] defrcn.evaluation.testing INFO: copypaste: Task: bbox +[01/04 22:59:36] defrcn.evaluation.testing INFO: copypaste: AP,AP50,AP75,APs,APm,APl,bAP,bAP50,bAP75,bAPs,bAPm,bAPl,nAP,nAP50,nAP75,nAPs,nAPm,nAPl +[01/04 22:59:36] defrcn.evaluation.testing INFO: copypaste: 32.1089,51.0636,34.2288,16.1890,36.0545,46.3882,36.2070,56.7650,38.8761,19.3061,41.0400,51.5746,19.8147,33.9594,20.2871,6.9935,21.0979,30.8293 +[01/04 22:59:36] d2.utils.events INFO: eta: 1:01:33 iter: 4399 total_loss: 0.5916 loss_cls: 0.1081 loss_box_reg: 0.05702 loss_contrast: 0.2197 loss_rpn_cls: 0.03772 loss_rpn_loc: 0.04491 loss_kld: 0.05603 loss_reg_disitll: 0.06417 time: 3.1584 data_time: 0.1342 lr: 0.005 max_mem: 33785M +[01/04 23:00:46] d2.utils.events INFO: eta: 1:00:33 iter: 4419 total_loss: 0.5808 loss_cls: 0.1061 loss_box_reg: 0.05912 loss_contrast: 0.2197 loss_rpn_cls: 0.04126 loss_rpn_loc: 0.043 loss_kld: 0.05869 loss_reg_disitll: 0.05927 time: 3.1599 data_time: 0.1259 lr: 0.005 max_mem: 33785M +[01/04 23:01:46] d2.utils.events INFO: eta: 0:59:28 iter: 4439 total_loss: 0.5918 loss_cls: 0.1086 loss_box_reg: 0.0565 loss_contrast: 0.2197 loss_rpn_cls: 0.03925 loss_rpn_loc: 0.04473 loss_kld: 0.05444 loss_reg_disitll: 0.06289 time: 3.1593 data_time: 0.1282 lr: 0.005 max_mem: 33785M +[01/04 23:02:49] d2.utils.events INFO: eta: 0:58:19 iter: 4459 total_loss: 0.5931 loss_cls: 0.1076 loss_box_reg: 0.06259 loss_contrast: 0.2197 loss_rpn_cls: 0.04468 loss_rpn_loc: 0.04518 loss_kld: 0.05404 loss_reg_disitll: 0.06454 time: 3.1591 data_time: 0.1358 lr: 0.005 max_mem: 33785M +[01/04 23:03:55] d2.utils.events INFO: eta: 0:57:15 iter: 4479 total_loss: 0.5596 loss_cls: 0.09634 loss_box_reg: 0.05218 loss_contrast: 0.2197 loss_rpn_cls: 0.03679 loss_rpn_loc: 0.04606 loss_kld: 0.0537 loss_reg_disitll: 0.05878 time: 3.1598 data_time: 0.1225 lr: 0.005 max_mem: 33785M +[01/04 23:04:59] d2.utils.events INFO: eta: 0:56:15 iter: 4499 total_loss: 0.5856 loss_cls: 0.1064 loss_box_reg: 0.05631 loss_contrast: 0.2197 loss_rpn_cls: 0.03769 loss_rpn_loc: 0.0489 loss_kld: 0.05448 loss_reg_disitll: 0.06225 time: 3.1599 data_time: 0.1302 lr: 0.005 max_mem: 33785M +[01/04 23:06:08] d2.utils.events INFO: eta: 0:55:15 iter: 4519 total_loss: 0.5898 loss_cls: 0.1103 loss_box_reg: 0.06055 loss_contrast: 0.2197 loss_rpn_cls: 0.04221 loss_rpn_loc: 0.04866 loss_kld: 0.05489 loss_reg_disitll: 0.06714 time: 3.1611 data_time: 0.1134 lr: 0.005 max_mem: 33785M +[01/04 23:07:12] d2.utils.events INFO: eta: 0:54:16 iter: 4539 total_loss: 0.5913 loss_cls: 0.1055 loss_box_reg: 0.05478 loss_contrast: 0.2197 loss_rpn_cls: 0.04103 loss_rpn_loc: 0.0473 loss_kld: 0.05417 loss_reg_disitll: 0.05889 time: 3.1613 data_time: 0.1289 lr: 0.005 max_mem: 33785M +[01/04 23:08:14] d2.utils.events INFO: eta: 0:53:12 iter: 4559 total_loss: 0.6021 loss_cls: 0.1084 loss_box_reg: 0.06089 loss_contrast: 0.2197 loss_rpn_cls: 0.04479 loss_rpn_loc: 0.05113 loss_kld: 0.05634 loss_reg_disitll: 0.06769 time: 3.1611 data_time: 0.1352 lr: 0.005 max_mem: 33785M +[01/04 23:09:15] d2.utils.events INFO: eta: 0:52:09 iter: 4579 total_loss: 0.5951 loss_cls: 0.1069 loss_box_reg: 0.05591 loss_contrast: 0.2197 loss_rpn_cls: 0.04028 loss_rpn_loc: 0.04124 loss_kld: 0.05874 loss_reg_disitll: 0.05983 time: 3.1605 data_time: 0.1247 lr: 0.005 max_mem: 33785M +[01/04 23:10:15] fvcore.common.checkpoint INFO: Saving checkpoint to checkpoints/coco/10shot_ExAU/model_0004599.pth +[01/04 23:10:29] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 23:10:29] d2.data.common INFO: Serializing 5000 elements to byte tensors and concatenating them all ... +[01/04 23:10:29] d2.data.common INFO: Serialized dataset takes 3.00 MiB +[01/04 23:10:29] defrcn.evaluation.evaluator INFO: Start initializing PCB module, please wait a seconds... +[01/04 23:10:29] defrcn.evaluation.calibration_layer INFO: Loading ImageNet Pre-train Model from ImageNetPretrained/torchvision/resnet101-5d3b4d8f.pth +[01/04 23:10:30] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 23:10:30] d2.data.common INFO: Serializing 402 elements to byte tensors and concatenating them all ... +[01/04 23:10:30] d2.data.common INFO: Serialized dataset takes 0.08 MiB +[01/04 23:10:51] defrcn.evaluation.evaluator INFO: Start inference on 2500 images +[01/04 23:11:03] defrcn.evaluation.evaluator INFO: Inference done 50/2500. 0.1048 s / img. ETA=0:04:16 +[01/04 23:11:08] defrcn.evaluation.evaluator INFO: Inference done 100/2500. 0.1027 s / img. ETA=0:04:06 +[01/04 23:11:13] defrcn.evaluation.evaluator INFO: Inference done 150/2500. 0.1029 s / img. ETA=0:04:01 +[01/04 23:11:18] defrcn.evaluation.evaluator INFO: Inference done 200/2500. 0.1025 s / img. ETA=0:03:55 +[01/04 23:11:24] defrcn.evaluation.evaluator INFO: Inference done 250/2500. 0.1028 s / img. ETA=0:03:51 +[01/04 23:11:29] defrcn.evaluation.evaluator INFO: Inference done 300/2500. 0.1026 s / img. ETA=0:03:45 +[01/04 23:11:34] defrcn.evaluation.evaluator INFO: Inference done 350/2500. 0.1024 s / img. ETA=0:03:40 +[01/04 23:11:39] defrcn.evaluation.evaluator INFO: Inference done 400/2500. 0.1024 s / img. ETA=0:03:35 +[01/04 23:11:44] defrcn.evaluation.evaluator INFO: Inference done 450/2500. 0.1024 s / img. ETA=0:03:30 +[01/04 23:11:49] defrcn.evaluation.evaluator INFO: Inference done 500/2500. 0.1024 s / img. ETA=0:03:24 +[01/04 23:11:54] defrcn.evaluation.evaluator INFO: Inference done 550/2500. 0.1023 s / img. ETA=0:03:19 +[01/04 23:11:59] defrcn.evaluation.evaluator INFO: Inference done 600/2500. 0.1023 s / img. ETA=0:03:14 +[01/04 23:12:04] defrcn.evaluation.evaluator INFO: Inference done 650/2500. 0.1024 s / img. ETA=0:03:09 +[01/04 23:12:09] defrcn.evaluation.evaluator INFO: Inference done 700/2500. 0.1023 s / img. ETA=0:03:04 +[01/04 23:12:15] defrcn.evaluation.evaluator INFO: Inference done 750/2500. 0.1028 s / img. ETA=0:02:59 +[01/04 23:12:20] defrcn.evaluation.evaluator INFO: Inference done 800/2500. 0.1030 s / img. ETA=0:02:55 +[01/04 23:12:25] defrcn.evaluation.evaluator INFO: Inference done 850/2500. 0.1030 s / img. ETA=0:02:50 +[01/04 23:12:31] defrcn.evaluation.evaluator INFO: Inference done 900/2500. 0.1032 s / img. ETA=0:02:45 +[01/04 23:12:36] defrcn.evaluation.evaluator INFO: Inference done 950/2500. 0.1033 s / img. ETA=0:02:40 +[01/04 23:12:41] defrcn.evaluation.evaluator INFO: Inference done 1000/2500. 0.1033 s / img. ETA=0:02:34 +[01/04 23:12:46] defrcn.evaluation.evaluator INFO: Inference done 1050/2500. 0.1033 s / img. ETA=0:02:29 +[01/04 23:12:52] defrcn.evaluation.evaluator INFO: Inference done 1100/2500. 0.1034 s / img. ETA=0:02:24 +[01/04 23:12:57] defrcn.evaluation.evaluator INFO: Inference done 1150/2500. 0.1034 s / img. ETA=0:02:19 +[01/04 23:13:02] defrcn.evaluation.evaluator INFO: Inference done 1200/2500. 0.1035 s / img. ETA=0:02:14 +[01/04 23:13:07] defrcn.evaluation.evaluator INFO: Inference done 1250/2500. 0.1034 s / img. ETA=0:02:09 +[01/04 23:13:12] defrcn.evaluation.evaluator INFO: Inference done 1300/2500. 0.1035 s / img. ETA=0:02:04 +[01/04 23:13:18] defrcn.evaluation.evaluator INFO: Inference done 1350/2500. 0.1036 s / img. ETA=0:01:59 +[01/04 23:13:23] defrcn.evaluation.evaluator INFO: Inference done 1400/2500. 0.1037 s / img. ETA=0:01:54 +[01/04 23:13:28] defrcn.evaluation.evaluator INFO: Inference done 1450/2500. 0.1037 s / img. ETA=0:01:48 +[01/04 23:13:33] defrcn.evaluation.evaluator INFO: Inference done 1500/2500. 0.1037 s / img. ETA=0:01:43 +[01/04 23:13:39] defrcn.evaluation.evaluator INFO: Inference done 1550/2500. 0.1037 s / img. ETA=0:01:38 +[01/04 23:13:44] defrcn.evaluation.evaluator INFO: Inference done 1600/2500. 0.1036 s / img. ETA=0:01:33 +[01/04 23:13:49] defrcn.evaluation.evaluator INFO: Inference done 1650/2500. 0.1035 s / img. ETA=0:01:27 +[01/04 23:13:54] defrcn.evaluation.evaluator INFO: Inference done 1700/2500. 0.1036 s / img. ETA=0:01:22 +[01/04 23:13:59] defrcn.evaluation.evaluator INFO: Inference done 1750/2500. 0.1036 s / img. ETA=0:01:17 +[01/04 23:14:04] defrcn.evaluation.evaluator INFO: Inference done 1800/2500. 0.1035 s / img. ETA=0:01:12 +[01/04 23:14:09] defrcn.evaluation.evaluator INFO: Inference done 1850/2500. 0.1035 s / img. ETA=0:01:07 +[01/04 23:14:14] defrcn.evaluation.evaluator INFO: Inference done 1900/2500. 0.1035 s / img. ETA=0:01:02 +[01/04 23:14:20] defrcn.evaluation.evaluator INFO: Inference done 1950/2500. 0.1035 s / img. ETA=0:00:56 +[01/04 23:14:25] defrcn.evaluation.evaluator INFO: Inference done 2000/2500. 0.1035 s / img. ETA=0:00:51 +[01/04 23:14:30] defrcn.evaluation.evaluator INFO: Inference done 2050/2500. 0.1034 s / img. ETA=0:00:46 +[01/04 23:14:35] defrcn.evaluation.evaluator INFO: Inference done 2100/2500. 0.1034 s / img. ETA=0:00:41 +[01/04 23:14:40] defrcn.evaluation.evaluator INFO: Inference done 2150/2500. 0.1034 s / img. ETA=0:00:36 +[01/04 23:14:45] defrcn.evaluation.evaluator INFO: Inference done 2200/2500. 0.1033 s / img. ETA=0:00:30 +[01/04 23:14:50] defrcn.evaluation.evaluator INFO: Inference done 2250/2500. 0.1033 s / img. ETA=0:00:25 +[01/04 23:14:56] defrcn.evaluation.evaluator INFO: Inference done 2300/2500. 0.1033 s / img. ETA=0:00:20 +[01/04 23:15:01] defrcn.evaluation.evaluator INFO: Inference done 2350/2500. 0.1033 s / img. ETA=0:00:15 +[01/04 23:15:06] defrcn.evaluation.evaluator INFO: Inference done 2400/2500. 0.1034 s / img. ETA=0:00:10 +[01/04 23:15:11] defrcn.evaluation.evaluator INFO: Inference done 2450/2500. 0.1034 s / img. ETA=0:00:05 +[01/04 23:15:16] defrcn.evaluation.evaluator INFO: Inference done 2500/2500. 0.1034 s / img. ETA=0:00:00 +[01/04 23:15:17] defrcn.evaluation.evaluator INFO: Total inference time: 0:04:18 (0.103407 s / img per device, on 2 devices) +[01/04 23:15:17] defrcn.evaluation.evaluator INFO: Total inference pure compute time: 0:04:11 (0.100918 s / img per device, on 2 devices) +[01/04 23:15:18] defrcn.evaluation.coco_evaluation INFO: Preparing results for COCO format ... +[01/04 23:15:18] defrcn.evaluation.coco_evaluation INFO: Saving results to checkpoints/coco/10shot_ExAU/inference/coco_instances_results.json +[01/04 23:15:19] defrcn.evaluation.coco_evaluation INFO: Evaluating predictions ... +[01/04 23:15:44] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 32.047 | 50.917 | 33.867 | 16.273 | 36.179 | 45.503 | +[01/04 23:15:44] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:--------------|:-------|:-------------|:-------|:---------------|:-------| +| person | 3.612 | bicycle | 7.166 | car | 21.397 | +| motorcycle | 17.986 | airplane | 39.645 | bus | 51.056 | +| train | 24.797 | truck | 27.850 | boat | 10.330 | +| traffic light | 23.746 | fire hydrant | 64.085 | stop sign | 71.519 | +| parking meter | 36.550 | bench | 14.637 | bird | 14.877 | +| cat | 36.502 | dog | 29.514 | horse | 15.910 | +| sheep | 14.428 | cow | 22.346 | elephant | 64.431 | +| bear | 59.061 | zebra | 56.619 | giraffe | 63.330 | +| backpack | 17.506 | umbrella | 33.282 | handbag | 15.043 | +| tie | 31.369 | suitcase | 35.113 | frisbee | 57.589 | +| skis | 21.844 | snowboard | 36.115 | sports ball | 38.504 | +| kite | 37.982 | baseball bat | 24.577 | baseball glove | 29.096 | +| skateboard | 48.237 | surfboard | 39.844 | tennis racket | 49.478 | +| bottle | 14.780 | wine glass | 30.431 | cup | 34.843 | +| fork | 34.196 | knife | 15.192 | spoon | 18.878 | +| bowl | 35.926 | banana | 22.793 | apple | 18.354 | +| sandwich | 34.570 | orange | 22.349 | broccoli | 25.717 | +| carrot | 25.067 | hot dog | 33.850 | pizza | 44.162 | +| donut | 51.473 | cake | 39.239 | chair | 6.814 | +| couch | 17.278 | potted plant | 2.667 | bed | 41.082 | +| dining table | 5.441 | toilet | 54.440 | tv | 41.931 | +| laptop | 54.017 | mouse | 45.355 | remote | 26.790 | +| keyboard | 50.876 | cell phone | 26.591 | microwave | 52.908 | +| oven | 32.981 | toaster | 30.614 | sink | 29.000 | +| refrigerator | 53.403 | book | 9.443 | clock | 46.495 | +| vase | 33.088 | scissors | 22.982 | teddy bear | 39.681 | +| hair drier | 10.495 | toothbrush | 20.563 | | | +[01/04 23:15:59] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 36.088 | 56.579 | 38.434 | 19.517 | 41.214 | 50.308 | +[01/04 23:15:59] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:---------------|:-------|:--------------|:-------|:-------------|:-------| +| truck | 27.850 | traffic light | 23.746 | fire hydrant | 64.085 | +| stop sign | 71.519 | parking meter | 36.550 | bench | 14.637 | +| elephant | 64.431 | bear | 59.061 | zebra | 56.619 | +| giraffe | 63.330 | backpack | 17.506 | umbrella | 33.282 | +| handbag | 15.043 | tie | 31.369 | suitcase | 35.113 | +| frisbee | 57.589 | skis | 21.844 | snowboard | 36.115 | +| sports ball | 38.504 | kite | 37.982 | baseball bat | 24.577 | +| baseball glove | 29.096 | skateboard | 48.237 | surfboard | 39.844 | +| tennis racket | 49.478 | wine glass | 30.431 | cup | 34.843 | +| fork | 34.196 | knife | 15.192 | spoon | 18.878 | +| bowl | 35.926 | banana | 22.793 | apple | 18.354 | +| sandwich | 34.570 | orange | 22.349 | broccoli | 25.717 | +| carrot | 25.067 | hot dog | 33.850 | pizza | 44.162 | +| donut | 51.473 | cake | 39.239 | bed | 41.082 | +| toilet | 54.440 | laptop | 54.017 | mouse | 45.355 | +| remote | 26.790 | keyboard | 50.876 | cell phone | 26.591 | +| microwave | 52.908 | oven | 32.981 | toaster | 30.614 | +| sink | 29.000 | refrigerator | 53.403 | book | 9.443 | +| clock | 46.495 | vase | 33.088 | scissors | 22.982 | +| teddy bear | 39.681 | hair drier | 10.495 | toothbrush | 20.563 | +[01/04 23:16:09] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:-----:|:------:|:------:| +| 19.924 | 33.930 | 20.164 | 6.703 | 21.075 | 31.085 | +[01/04 23:16:09] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:-------------|:-------|:-----------|:-------|:-------------|:-------| +| person | 3.612 | bicycle | 7.166 | car | 21.397 | +| motorcycle | 17.986 | airplane | 39.645 | bus | 51.056 | +| train | 24.797 | boat | 10.330 | bird | 14.877 | +| cat | 36.502 | dog | 29.514 | horse | 15.910 | +| sheep | 14.428 | cow | 22.346 | bottle | 14.780 | +| chair | 6.814 | couch | 17.278 | potted plant | 2.667 | +| dining table | 5.441 | tv | 41.931 | | | +[01/04 23:16:09] defrcn.engine.defaults INFO: Evaluation results for coco14_test_all in csv format: +[01/04 23:16:09] defrcn.evaluation.testing INFO: copypaste: Task: bbox +[01/04 23:16:09] defrcn.evaluation.testing INFO: copypaste: AP,AP50,AP75,APs,APm,APl,bAP,bAP50,bAP75,bAPs,bAPm,bAPl,nAP,nAP50,nAP75,nAPs,nAPm,nAPl +[01/04 23:16:09] defrcn.evaluation.testing INFO: copypaste: 32.0466,50.9166,33.8668,16.2727,36.1795,45.5026,36.0876,56.5790,38.4345,19.5167,41.2144,50.3085,19.9238,33.9295,20.1639,6.7027,21.0747,31.0850 +[01/04 23:16:09] d2.utils.events INFO: eta: 0:51:04 iter: 4599 total_loss: 0.5644 loss_cls: 0.1017 loss_box_reg: 0.05551 loss_contrast: 0.2197 loss_rpn_cls: 0.03339 loss_rpn_loc: 0.04144 loss_kld: 0.05298 loss_reg_disitll: 0.06186 time: 3.1598 data_time: 0.1252 lr: 0.005 max_mem: 33785M +[01/04 23:17:11] d2.utils.events INFO: eta: 0:50:07 iter: 4619 total_loss: 0.5731 loss_cls: 0.1024 loss_box_reg: 0.05604 loss_contrast: 0.2197 loss_rpn_cls: 0.04132 loss_rpn_loc: 0.04372 loss_kld: 0.05426 loss_reg_disitll: 0.06195 time: 3.1596 data_time: 0.1323 lr: 0.005 max_mem: 33785M +[01/04 23:18:17] d2.utils.events INFO: eta: 0:49:04 iter: 4639 total_loss: 0.5916 loss_cls: 0.1044 loss_box_reg: 0.05666 loss_contrast: 0.2197 loss_rpn_cls: 0.04094 loss_rpn_loc: 0.04536 loss_kld: 0.05512 loss_reg_disitll: 0.06127 time: 3.1602 data_time: 0.1345 lr: 0.005 max_mem: 33785M +[01/04 23:19:17] d2.utils.events INFO: eta: 0:47:56 iter: 4659 total_loss: 0.5953 loss_cls: 0.1008 loss_box_reg: 0.05481 loss_contrast: 0.2197 loss_rpn_cls: 0.04006 loss_rpn_loc: 0.04496 loss_kld: 0.05639 loss_reg_disitll: 0.06246 time: 3.1595 data_time: 0.1211 lr: 0.005 max_mem: 33785M +[01/04 23:20:24] d2.utils.events INFO: eta: 0:47:02 iter: 4679 total_loss: 0.5695 loss_cls: 0.101 loss_box_reg: 0.05245 loss_contrast: 0.2197 loss_rpn_cls: 0.03956 loss_rpn_loc: 0.04266 loss_kld: 0.05257 loss_reg_disitll: 0.05795 time: 3.1603 data_time: 0.1297 lr: 0.005 max_mem: 33785M +[01/04 23:21:28] d2.utils.events INFO: eta: 0:45:57 iter: 4699 total_loss: 0.5953 loss_cls: 0.106 loss_box_reg: 0.05836 loss_contrast: 0.2197 loss_rpn_cls: 0.04101 loss_rpn_loc: 0.04306 loss_kld: 0.05772 loss_reg_disitll: 0.06393 time: 3.1604 data_time: 0.1399 lr: 0.005 max_mem: 33785M +[01/04 23:22:29] d2.utils.events INFO: eta: 0:44:54 iter: 4719 total_loss: 0.5825 loss_cls: 0.1004 loss_box_reg: 0.05606 loss_contrast: 0.2197 loss_rpn_cls: 0.04073 loss_rpn_loc: 0.04167 loss_kld: 0.05326 loss_reg_disitll: 0.06257 time: 3.1599 data_time: 0.1318 lr: 0.005 max_mem: 33785M +[01/04 23:23:35] d2.utils.events INFO: eta: 0:43:49 iter: 4739 total_loss: 0.5837 loss_cls: 0.1028 loss_box_reg: 0.05762 loss_contrast: 0.2197 loss_rpn_cls: 0.03689 loss_rpn_loc: 0.03855 loss_kld: 0.05531 loss_reg_disitll: 0.06219 time: 3.1605 data_time: 0.1401 lr: 0.005 max_mem: 33785M +[01/04 23:24:40] d2.utils.events INFO: eta: 0:42:49 iter: 4759 total_loss: 0.5684 loss_cls: 0.1007 loss_box_reg: 0.05572 loss_contrast: 0.2197 loss_rpn_cls: 0.03565 loss_rpn_loc: 0.03866 loss_kld: 0.04965 loss_reg_disitll: 0.06176 time: 3.1609 data_time: 0.1204 lr: 0.005 max_mem: 33785M +[01/04 23:25:40] d2.utils.events INFO: eta: 0:41:48 iter: 4779 total_loss: 0.5866 loss_cls: 0.1038 loss_box_reg: 0.05522 loss_contrast: 0.2197 loss_rpn_cls: 0.0376 loss_rpn_loc: 0.05101 loss_kld: 0.05203 loss_reg_disitll: 0.0618 time: 3.1602 data_time: 0.1235 lr: 0.005 max_mem: 33785M +[01/04 23:26:48] fvcore.common.checkpoint INFO: Saving checkpoint to checkpoints/coco/10shot_ExAU/model_0004799.pth +[01/04 23:27:03] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 23:27:03] d2.data.common INFO: Serializing 5000 elements to byte tensors and concatenating them all ... +[01/04 23:27:03] d2.data.common INFO: Serialized dataset takes 3.00 MiB +[01/04 23:27:03] defrcn.evaluation.evaluator INFO: Start initializing PCB module, please wait a seconds... +[01/04 23:27:03] defrcn.evaluation.calibration_layer INFO: Loading ImageNet Pre-train Model from ImageNetPretrained/torchvision/resnet101-5d3b4d8f.pth +[01/04 23:27:04] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 23:27:04] d2.data.common INFO: Serializing 402 elements to byte tensors and concatenating them all ... +[01/04 23:27:04] d2.data.common INFO: Serialized dataset takes 0.08 MiB +[01/04 23:27:25] defrcn.evaluation.evaluator INFO: Start inference on 2500 images +[01/04 23:27:37] defrcn.evaluation.evaluator INFO: Inference done 50/2500. 0.1047 s / img. ETA=0:04:16 +[01/04 23:27:42] defrcn.evaluation.evaluator INFO: Inference done 100/2500. 0.1024 s / img. ETA=0:04:05 +[01/04 23:27:47] defrcn.evaluation.evaluator INFO: Inference done 150/2500. 0.1027 s / img. ETA=0:04:01 +[01/04 23:27:52] defrcn.evaluation.evaluator INFO: Inference done 200/2500. 0.1023 s / img. ETA=0:03:55 +[01/04 23:27:57] defrcn.evaluation.evaluator INFO: Inference done 250/2500. 0.1026 s / img. ETA=0:03:50 +[01/04 23:28:02] defrcn.evaluation.evaluator INFO: Inference done 300/2500. 0.1025 s / img. ETA=0:03:45 +[01/04 23:28:07] defrcn.evaluation.evaluator INFO: Inference done 350/2500. 0.1023 s / img. ETA=0:03:39 +[01/04 23:28:12] defrcn.evaluation.evaluator INFO: Inference done 400/2500. 0.1022 s / img. ETA=0:03:34 +[01/04 23:28:18] defrcn.evaluation.evaluator INFO: Inference done 450/2500. 0.1023 s / img. ETA=0:03:29 +[01/04 23:28:23] defrcn.evaluation.evaluator INFO: Inference done 500/2500. 0.1023 s / img. ETA=0:03:24 +[01/04 23:28:28] defrcn.evaluation.evaluator INFO: Inference done 550/2500. 0.1023 s / img. ETA=0:03:19 +[01/04 23:28:33] defrcn.evaluation.evaluator INFO: Inference done 600/2500. 0.1023 s / img. ETA=0:03:14 +[01/04 23:28:38] defrcn.evaluation.evaluator INFO: Inference done 650/2500. 0.1024 s / img. ETA=0:03:09 +[01/04 23:28:43] defrcn.evaluation.evaluator INFO: Inference done 700/2500. 0.1021 s / img. ETA=0:03:03 +[01/04 23:28:48] defrcn.evaluation.evaluator INFO: Inference done 750/2500. 0.1023 s / img. ETA=0:02:58 +[01/04 23:28:53] defrcn.evaluation.evaluator INFO: Inference done 800/2500. 0.1024 s / img. ETA=0:02:54 +[01/04 23:28:59] defrcn.evaluation.evaluator INFO: Inference done 850/2500. 0.1025 s / img. ETA=0:02:49 +[01/04 23:29:04] defrcn.evaluation.evaluator INFO: Inference done 900/2500. 0.1026 s / img. ETA=0:02:44 +[01/04 23:29:09] defrcn.evaluation.evaluator INFO: Inference done 950/2500. 0.1026 s / img. ETA=0:02:38 +[01/04 23:29:14] defrcn.evaluation.evaluator INFO: Inference done 1000/2500. 0.1026 s / img. ETA=0:02:33 +[01/04 23:29:19] defrcn.evaluation.evaluator INFO: Inference done 1050/2500. 0.1027 s / img. ETA=0:02:28 +[01/04 23:29:25] defrcn.evaluation.evaluator INFO: Inference done 1100/2500. 0.1027 s / img. ETA=0:02:23 +[01/04 23:29:30] defrcn.evaluation.evaluator INFO: Inference done 1150/2500. 0.1030 s / img. ETA=0:02:19 +[01/04 23:29:35] defrcn.evaluation.evaluator INFO: Inference done 1200/2500. 0.1030 s / img. ETA=0:02:13 +[01/04 23:29:40] defrcn.evaluation.evaluator INFO: Inference done 1250/2500. 0.1030 s / img. ETA=0:02:08 +[01/04 23:29:46] defrcn.evaluation.evaluator INFO: Inference done 1300/2500. 0.1031 s / img. ETA=0:02:03 +[01/04 23:29:51] defrcn.evaluation.evaluator INFO: Inference done 1350/2500. 0.1032 s / img. ETA=0:01:58 +[01/04 23:29:56] defrcn.evaluation.evaluator INFO: Inference done 1400/2500. 0.1033 s / img. ETA=0:01:53 +[01/04 23:30:01] defrcn.evaluation.evaluator INFO: Inference done 1450/2500. 0.1033 s / img. ETA=0:01:48 +[01/04 23:30:07] defrcn.evaluation.evaluator INFO: Inference done 1500/2500. 0.1033 s / img. ETA=0:01:43 +[01/04 23:30:12] defrcn.evaluation.evaluator INFO: Inference done 1550/2500. 0.1033 s / img. ETA=0:01:38 +[01/04 23:30:17] defrcn.evaluation.evaluator INFO: Inference done 1600/2500. 0.1033 s / img. ETA=0:01:32 +[01/04 23:30:22] defrcn.evaluation.evaluator INFO: Inference done 1650/2500. 0.1032 s / img. ETA=0:01:27 +[01/04 23:30:27] defrcn.evaluation.evaluator INFO: Inference done 1700/2500. 0.1032 s / img. ETA=0:01:22 +[01/04 23:30:32] defrcn.evaluation.evaluator INFO: Inference done 1750/2500. 0.1033 s / img. ETA=0:01:17 +[01/04 23:30:37] defrcn.evaluation.evaluator INFO: Inference done 1800/2500. 0.1032 s / img. ETA=0:01:12 +[01/04 23:30:42] defrcn.evaluation.evaluator INFO: Inference done 1850/2500. 0.1032 s / img. ETA=0:01:07 +[01/04 23:30:48] defrcn.evaluation.evaluator INFO: Inference done 1900/2500. 0.1032 s / img. ETA=0:01:01 +[01/04 23:30:53] defrcn.evaluation.evaluator INFO: Inference done 1950/2500. 0.1032 s / img. ETA=0:00:56 +[01/04 23:30:58] defrcn.evaluation.evaluator INFO: Inference done 2000/2500. 0.1032 s / img. ETA=0:00:51 +[01/04 23:31:03] defrcn.evaluation.evaluator INFO: Inference done 2050/2500. 0.1031 s / img. ETA=0:00:46 +[01/04 23:31:08] defrcn.evaluation.evaluator INFO: Inference done 2100/2500. 0.1031 s / img. ETA=0:00:41 +[01/04 23:31:13] defrcn.evaluation.evaluator INFO: Inference done 2150/2500. 0.1031 s / img. ETA=0:00:36 +[01/04 23:31:18] defrcn.evaluation.evaluator INFO: Inference done 2200/2500. 0.1031 s / img. ETA=0:00:30 +[01/04 23:31:23] defrcn.evaluation.evaluator INFO: Inference done 2250/2500. 0.1030 s / img. ETA=0:00:25 +[01/04 23:31:29] defrcn.evaluation.evaluator INFO: Inference done 2300/2500. 0.1031 s / img. ETA=0:00:20 +[01/04 23:31:34] defrcn.evaluation.evaluator INFO: Inference done 2350/2500. 0.1031 s / img. ETA=0:00:15 +[01/04 23:31:39] defrcn.evaluation.evaluator INFO: Inference done 2400/2500. 0.1031 s / img. ETA=0:00:10 +[01/04 23:31:44] defrcn.evaluation.evaluator INFO: Inference done 2450/2500. 0.1032 s / img. ETA=0:00:05 +[01/04 23:31:49] defrcn.evaluation.evaluator INFO: Inference done 2500/2500. 0.1031 s / img. ETA=0:00:00 +[01/04 23:31:50] defrcn.evaluation.evaluator INFO: Total inference time: 0:04:17 (0.103006 s / img per device, on 2 devices) +[01/04 23:31:50] defrcn.evaluation.evaluator INFO: Total inference pure compute time: 0:04:11 (0.100794 s / img per device, on 2 devices) +[01/04 23:31:51] defrcn.evaluation.coco_evaluation INFO: Preparing results for COCO format ... +[01/04 23:31:51] defrcn.evaluation.coco_evaluation INFO: Saving results to checkpoints/coco/10shot_ExAU/inference/coco_instances_results.json +[01/04 23:31:52] defrcn.evaluation.coco_evaluation INFO: Evaluating predictions ... +[01/04 23:32:17] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 32.125 | 51.079 | 33.988 | 16.281 | 36.164 | 46.124 | +[01/04 23:32:17] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:--------------|:-------|:-------------|:-------|:---------------|:-------| +| person | 3.878 | bicycle | 7.691 | car | 20.490 | +| motorcycle | 17.673 | airplane | 37.877 | bus | 50.796 | +| train | 25.017 | truck | 27.324 | boat | 10.624 | +| traffic light | 24.002 | fire hydrant | 64.019 | stop sign | 71.086 | +| parking meter | 37.146 | bench | 14.883 | bird | 14.999 | +| cat | 35.309 | dog | 29.719 | horse | 16.075 | +| sheep | 13.904 | cow | 22.094 | elephant | 64.555 | +| bear | 60.342 | zebra | 56.686 | giraffe | 62.692 | +| backpack | 17.326 | umbrella | 32.889 | handbag | 14.323 | +| tie | 30.580 | suitcase | 34.226 | frisbee | 58.039 | +| skis | 21.400 | snowboard | 34.394 | sports ball | 38.942 | +| kite | 37.919 | baseball bat | 25.571 | baseball glove | 29.302 | +| skateboard | 48.974 | surfboard | 39.499 | tennis racket | 49.319 | +| bottle | 15.200 | wine glass | 29.688 | cup | 34.551 | +| fork | 33.198 | knife | 14.719 | spoon | 18.650 | +| bowl | 35.997 | banana | 22.970 | apple | 18.359 | +| sandwich | 35.235 | orange | 21.895 | broccoli | 25.846 | +| carrot | 24.688 | hot dog | 33.568 | pizza | 43.672 | +| donut | 51.441 | cake | 39.613 | chair | 6.896 | +| couch | 18.083 | potted plant | 2.550 | bed | 41.975 | +| dining table | 5.939 | toilet | 54.352 | tv | 41.917 | +| laptop | 55.258 | mouse | 46.903 | remote | 27.339 | +| keyboard | 51.277 | cell phone | 26.145 | microwave | 51.928 | +| oven | 33.164 | toaster | 31.893 | sink | 29.163 | +| refrigerator | 53.342 | book | 9.443 | clock | 46.375 | +| vase | 32.470 | scissors | 23.035 | teddy bear | 39.391 | +| hair drier | 17.624 | toothbrush | 22.672 | | | +[01/04 23:32:32] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 36.221 | 56.741 | 38.628 | 19.462 | 41.167 | 51.252 | +[01/04 23:32:32] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:---------------|:-------|:--------------|:-------|:-------------|:-------| +| truck | 27.324 | traffic light | 24.002 | fire hydrant | 64.019 | +| stop sign | 71.086 | parking meter | 37.146 | bench | 14.883 | +| elephant | 64.555 | bear | 60.342 | zebra | 56.686 | +| giraffe | 62.692 | backpack | 17.326 | umbrella | 32.889 | +| handbag | 14.323 | tie | 30.580 | suitcase | 34.226 | +| frisbee | 58.039 | skis | 21.400 | snowboard | 34.394 | +| sports ball | 38.942 | kite | 37.919 | baseball bat | 25.571 | +| baseball glove | 29.302 | skateboard | 48.974 | surfboard | 39.499 | +| tennis racket | 49.319 | wine glass | 29.688 | cup | 34.551 | +| fork | 33.198 | knife | 14.719 | spoon | 18.650 | +| bowl | 35.997 | banana | 22.970 | apple | 18.359 | +| sandwich | 35.235 | orange | 21.895 | broccoli | 25.846 | +| carrot | 24.688 | hot dog | 33.568 | pizza | 43.672 | +| donut | 51.441 | cake | 39.613 | bed | 41.975 | +| toilet | 54.352 | laptop | 55.258 | mouse | 46.903 | +| remote | 27.339 | keyboard | 51.277 | cell phone | 26.145 | +| microwave | 51.928 | oven | 33.164 | toaster | 31.893 | +| sink | 29.163 | refrigerator | 53.342 | book | 9.443 | +| clock | 46.375 | vase | 32.470 | scissors | 23.035 | +| teddy bear | 39.391 | hair drier | 17.624 | toothbrush | 22.672 | +[01/04 23:32:42] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:-----:|:------:|:------:| +| 19.837 | 34.095 | 20.067 | 6.900 | 21.155 | 30.741 | +[01/04 23:32:42] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:-------------|:-------|:-----------|:-------|:-------------|:-------| +| person | 3.878 | bicycle | 7.691 | car | 20.490 | +| motorcycle | 17.673 | airplane | 37.877 | bus | 50.796 | +| train | 25.017 | boat | 10.624 | bird | 14.999 | +| cat | 35.309 | dog | 29.719 | horse | 16.075 | +| sheep | 13.904 | cow | 22.094 | bottle | 15.200 | +| chair | 6.896 | couch | 18.083 | potted plant | 2.550 | +| dining table | 5.939 | tv | 41.917 | | | +[01/04 23:32:42] defrcn.engine.defaults INFO: Evaluation results for coco14_test_all in csv format: +[01/04 23:32:42] defrcn.evaluation.testing INFO: copypaste: Task: bbox +[01/04 23:32:42] defrcn.evaluation.testing INFO: copypaste: AP,AP50,AP75,APs,APm,APl,bAP,bAP50,bAP75,bAPs,bAPm,bAPl,nAP,nAP50,nAP75,nAPs,nAPm,nAPl +[01/04 23:32:42] defrcn.evaluation.testing INFO: copypaste: 32.1251,51.0791,33.9879,16.2815,36.1636,46.1239,36.2213,56.7406,38.6282,19.4618,41.1665,51.2515,19.8365,34.0946,20.0669,6.8995,21.1550,30.7410 +[01/04 23:32:42] d2.utils.events INFO: eta: 0:40:50 iter: 4799 total_loss: 0.6029 loss_cls: 0.1098 loss_box_reg: 0.06075 loss_contrast: 0.2197 loss_rpn_cls: 0.04427 loss_rpn_loc: 0.04468 loss_kld: 0.05523 loss_reg_disitll: 0.06658 time: 3.1612 data_time: 0.1297 lr: 0.005 max_mem: 33785M +[01/04 23:33:45] d2.utils.events INFO: eta: 0:39:49 iter: 4819 total_loss: 0.5814 loss_cls: 0.1095 loss_box_reg: 0.06084 loss_contrast: 0.2197 loss_rpn_cls: 0.03555 loss_rpn_loc: 0.04297 loss_kld: 0.05631 loss_reg_disitll: 0.06777 time: 3.1612 data_time: 0.1286 lr: 0.0005 max_mem: 33785M +[01/04 23:34:53] d2.utils.events INFO: eta: 0:38:51 iter: 4839 total_loss: 0.5463 loss_cls: 0.1082 loss_box_reg: 0.0533 loss_contrast: 0.2197 loss_rpn_cls: 0.03983 loss_rpn_loc: 0.03888 loss_kld: 0.05193 loss_reg_disitll: 0.05628 time: 3.1620 data_time: 0.1431 lr: 0.0005 max_mem: 33785M +[01/04 23:35:55] d2.utils.events INFO: eta: 0:37:45 iter: 4859 total_loss: 0.5778 loss_cls: 0.1039 loss_box_reg: 0.05657 loss_contrast: 0.2197 loss_rpn_cls: 0.04077 loss_rpn_loc: 0.04845 loss_kld: 0.04977 loss_reg_disitll: 0.06272 time: 3.1619 data_time: 0.1346 lr: 0.0005 max_mem: 33785M +[01/04 23:37:02] d2.utils.events INFO: eta: 0:36:44 iter: 4879 total_loss: 0.573 loss_cls: 0.1054 loss_box_reg: 0.05794 loss_contrast: 0.2197 loss_rpn_cls: 0.04089 loss_rpn_loc: 0.04727 loss_kld: 0.05323 loss_reg_disitll: 0.06243 time: 3.1627 data_time: 0.1303 lr: 0.0005 max_mem: 33785M +[01/04 23:38:01] d2.utils.events INFO: eta: 0:35:40 iter: 4899 total_loss: 0.5774 loss_cls: 0.1067 loss_box_reg: 0.05561 loss_contrast: 0.2197 loss_rpn_cls: 0.03664 loss_rpn_loc: 0.04109 loss_kld: 0.05447 loss_reg_disitll: 0.06254 time: 3.1618 data_time: 0.1402 lr: 0.0005 max_mem: 33785M +[01/04 23:39:05] d2.utils.events INFO: eta: 0:34:38 iter: 4919 total_loss: 0.6014 loss_cls: 0.1091 loss_box_reg: 0.05529 loss_contrast: 0.2197 loss_rpn_cls: 0.04215 loss_rpn_loc: 0.04918 loss_kld: 0.05329 loss_reg_disitll: 0.05966 time: 3.1620 data_time: 0.1383 lr: 0.0005 max_mem: 33785M +[01/04 23:40:08] d2.utils.events INFO: eta: 0:33:37 iter: 4939 total_loss: 0.5821 loss_cls: 0.1079 loss_box_reg: 0.05744 loss_contrast: 0.2197 loss_rpn_cls: 0.03883 loss_rpn_loc: 0.04114 loss_kld: 0.05355 loss_reg_disitll: 0.06522 time: 3.1618 data_time: 0.1165 lr: 0.0005 max_mem: 33785M +[01/04 23:41:11] d2.utils.events INFO: eta: 0:32:35 iter: 4959 total_loss: 0.5857 loss_cls: 0.1072 loss_box_reg: 0.05709 loss_contrast: 0.2197 loss_rpn_cls: 0.03986 loss_rpn_loc: 0.03995 loss_kld: 0.05297 loss_reg_disitll: 0.06388 time: 3.1617 data_time: 0.1320 lr: 0.0005 max_mem: 33785M +[01/04 23:42:12] d2.utils.events INFO: eta: 0:31:33 iter: 4979 total_loss: 0.5967 loss_cls: 0.1064 loss_box_reg: 0.05708 loss_contrast: 0.2197 loss_rpn_cls: 0.04005 loss_rpn_loc: 0.04929 loss_kld: 0.05596 loss_reg_disitll: 0.06606 time: 3.1614 data_time: 0.1338 lr: 0.0005 max_mem: 33785M +[01/04 23:43:21] fvcore.common.checkpoint INFO: Saving checkpoint to checkpoints/coco/10shot_ExAU/model_0004999.pth +[01/04 23:43:36] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 23:43:36] d2.data.common INFO: Serializing 5000 elements to byte tensors and concatenating them all ... +[01/04 23:43:36] d2.data.common INFO: Serialized dataset takes 3.00 MiB +[01/04 23:43:36] defrcn.evaluation.evaluator INFO: Start initializing PCB module, please wait a seconds... +[01/04 23:43:36] defrcn.evaluation.calibration_layer INFO: Loading ImageNet Pre-train Model from ImageNetPretrained/torchvision/resnet101-5d3b4d8f.pth +[01/04 23:43:37] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/04 23:43:37] d2.data.common INFO: Serializing 402 elements to byte tensors and concatenating them all ... +[01/04 23:43:37] d2.data.common INFO: Serialized dataset takes 0.08 MiB +[01/04 23:43:58] defrcn.evaluation.evaluator INFO: Start inference on 2500 images +[01/04 23:44:10] defrcn.evaluation.evaluator INFO: Inference done 50/2500. 0.1037 s / img. ETA=0:04:14 +[01/04 23:44:15] defrcn.evaluation.evaluator INFO: Inference done 100/2500. 0.1018 s / img. ETA=0:04:04 +[01/04 23:44:20] defrcn.evaluation.evaluator INFO: Inference done 150/2500. 0.1020 s / img. ETA=0:03:59 +[01/04 23:44:25] defrcn.evaluation.evaluator INFO: Inference done 200/2500. 0.1017 s / img. ETA=0:03:53 +[01/04 23:44:30] defrcn.evaluation.evaluator INFO: Inference done 250/2500. 0.1020 s / img. ETA=0:03:49 +[01/04 23:44:35] defrcn.evaluation.evaluator INFO: Inference done 300/2500. 0.1018 s / img. ETA=0:03:44 +[01/04 23:44:40] defrcn.evaluation.evaluator INFO: Inference done 350/2500. 0.1016 s / img. ETA=0:03:38 +[01/04 23:44:45] defrcn.evaluation.evaluator INFO: Inference done 400/2500. 0.1016 s / img. ETA=0:03:33 +[01/04 23:44:50] defrcn.evaluation.evaluator INFO: Inference done 450/2500. 0.1017 s / img. ETA=0:03:28 +[01/04 23:44:55] defrcn.evaluation.evaluator INFO: Inference done 500/2500. 0.1017 s / img. ETA=0:03:23 +[01/04 23:45:00] defrcn.evaluation.evaluator INFO: Inference done 550/2500. 0.1017 s / img. ETA=0:03:18 +[01/04 23:45:06] defrcn.evaluation.evaluator INFO: Inference done 600/2500. 0.1016 s / img. ETA=0:03:13 +[01/04 23:45:11] defrcn.evaluation.evaluator INFO: Inference done 650/2500. 0.1017 s / img. ETA=0:03:08 +[01/04 23:45:16] defrcn.evaluation.evaluator INFO: Inference done 700/2500. 0.1015 s / img. ETA=0:03:02 +[01/04 23:45:21] defrcn.evaluation.evaluator INFO: Inference done 750/2500. 0.1016 s / img. ETA=0:02:57 +[01/04 23:45:26] defrcn.evaluation.evaluator INFO: Inference done 800/2500. 0.1018 s / img. ETA=0:02:53 +[01/04 23:45:31] defrcn.evaluation.evaluator INFO: Inference done 850/2500. 0.1018 s / img. ETA=0:02:48 +[01/04 23:45:36] defrcn.evaluation.evaluator INFO: Inference done 900/2500. 0.1020 s / img. ETA=0:02:43 +[01/04 23:45:41] defrcn.evaluation.evaluator INFO: Inference done 950/2500. 0.1019 s / img. ETA=0:02:37 +[01/04 23:45:47] defrcn.evaluation.evaluator INFO: Inference done 1000/2500. 0.1022 s / img. ETA=0:02:33 +[01/04 23:45:52] defrcn.evaluation.evaluator INFO: Inference done 1050/2500. 0.1022 s / img. ETA=0:02:28 +[01/04 23:45:57] defrcn.evaluation.evaluator INFO: Inference done 1100/2500. 0.1023 s / img. ETA=0:02:23 +[01/04 23:46:02] defrcn.evaluation.evaluator INFO: Inference done 1150/2500. 0.1023 s / img. ETA=0:02:18 +[01/04 23:46:07] defrcn.evaluation.evaluator INFO: Inference done 1200/2500. 0.1023 s / img. ETA=0:02:13 +[01/04 23:46:12] defrcn.evaluation.evaluator INFO: Inference done 1250/2500. 0.1023 s / img. ETA=0:02:07 +[01/04 23:46:18] defrcn.evaluation.evaluator INFO: Inference done 1300/2500. 0.1025 s / img. ETA=0:02:02 +[01/04 23:46:23] defrcn.evaluation.evaluator INFO: Inference done 1350/2500. 0.1026 s / img. ETA=0:01:57 +[01/04 23:46:28] defrcn.evaluation.evaluator INFO: Inference done 1400/2500. 0.1027 s / img. ETA=0:01:52 +[01/04 23:46:33] defrcn.evaluation.evaluator INFO: Inference done 1450/2500. 0.1026 s / img. ETA=0:01:47 +[01/04 23:46:39] defrcn.evaluation.evaluator INFO: Inference done 1500/2500. 0.1027 s / img. ETA=0:01:42 +[01/04 23:46:44] defrcn.evaluation.evaluator INFO: Inference done 1550/2500. 0.1027 s / img. ETA=0:01:37 +[01/04 23:46:49] defrcn.evaluation.evaluator INFO: Inference done 1600/2500. 0.1026 s / img. ETA=0:01:32 +[01/04 23:46:54] defrcn.evaluation.evaluator INFO: Inference done 1650/2500. 0.1025 s / img. ETA=0:01:27 +[01/04 23:46:59] defrcn.evaluation.evaluator INFO: Inference done 1700/2500. 0.1026 s / img. ETA=0:01:22 +[01/04 23:47:04] defrcn.evaluation.evaluator INFO: Inference done 1750/2500. 0.1026 s / img. ETA=0:01:16 +[01/04 23:47:09] defrcn.evaluation.evaluator INFO: Inference done 1800/2500. 0.1026 s / img. ETA=0:01:11 +[01/04 23:47:14] defrcn.evaluation.evaluator INFO: Inference done 1850/2500. 0.1025 s / img. ETA=0:01:06 +[01/04 23:47:19] defrcn.evaluation.evaluator INFO: Inference done 1900/2500. 0.1026 s / img. ETA=0:01:01 +[01/04 23:47:25] defrcn.evaluation.evaluator INFO: Inference done 1950/2500. 0.1026 s / img. ETA=0:00:56 +[01/04 23:47:30] defrcn.evaluation.evaluator INFO: Inference done 2000/2500. 0.1025 s / img. ETA=0:00:51 +[01/04 23:47:35] defrcn.evaluation.evaluator INFO: Inference done 2050/2500. 0.1025 s / img. ETA=0:00:46 +[01/04 23:47:40] defrcn.evaluation.evaluator INFO: Inference done 2100/2500. 0.1024 s / img. ETA=0:00:40 +[01/04 23:47:45] defrcn.evaluation.evaluator INFO: Inference done 2150/2500. 0.1025 s / img. ETA=0:00:35 +[01/04 23:47:50] defrcn.evaluation.evaluator INFO: Inference done 2200/2500. 0.1024 s / img. ETA=0:00:30 +[01/04 23:47:55] defrcn.evaluation.evaluator INFO: Inference done 2250/2500. 0.1024 s / img. ETA=0:00:25 +[01/04 23:48:00] defrcn.evaluation.evaluator INFO: Inference done 2300/2500. 0.1025 s / img. ETA=0:00:20 +[01/04 23:48:05] defrcn.evaluation.evaluator INFO: Inference done 2350/2500. 0.1024 s / img. ETA=0:00:15 +[01/04 23:48:11] defrcn.evaluation.evaluator INFO: Inference done 2400/2500. 0.1025 s / img. ETA=0:00:10 +[01/04 23:48:16] defrcn.evaluation.evaluator INFO: Inference done 2450/2500. 0.1026 s / img. ETA=0:00:05 +[01/04 23:48:21] defrcn.evaluation.evaluator INFO: Inference done 2500/2500. 0.1025 s / img. ETA=0:00:00 +[01/04 23:48:21] defrcn.evaluation.evaluator INFO: Total inference time: 0:04:16 (0.102605 s / img per device, on 2 devices) +[01/04 23:48:21] defrcn.evaluation.evaluator INFO: Total inference pure compute time: 0:04:10 (0.100237 s / img per device, on 2 devices) +[01/04 23:48:23] defrcn.evaluation.coco_evaluation INFO: Preparing results for COCO format ... +[01/04 23:48:23] defrcn.evaluation.coco_evaluation INFO: Saving results to checkpoints/coco/10shot_ExAU/inference/coco_instances_results.json +[01/04 23:48:23] defrcn.evaluation.coco_evaluation INFO: Evaluating predictions ... +[01/04 23:48:49] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 32.204 | 51.040 | 34.165 | 16.240 | 36.159 | 45.861 | +[01/04 23:48:49] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:--------------|:-------|:-------------|:-------|:---------------|:-------| +| person | 3.750 | bicycle | 8.094 | car | 20.499 | +| motorcycle | 18.208 | airplane | 39.112 | bus | 51.633 | +| train | 25.611 | truck | 27.399 | boat | 10.341 | +| traffic light | 23.623 | fire hydrant | 63.866 | stop sign | 71.950 | +| parking meter | 36.710 | bench | 15.213 | bird | 14.981 | +| cat | 35.844 | dog | 29.726 | horse | 15.841 | +| sheep | 14.309 | cow | 22.154 | elephant | 64.158 | +| bear | 60.431 | zebra | 56.073 | giraffe | 62.427 | +| backpack | 17.684 | umbrella | 32.989 | handbag | 14.559 | +| tie | 30.950 | suitcase | 34.616 | frisbee | 57.865 | +| skis | 21.579 | snowboard | 34.767 | sports ball | 39.094 | +| kite | 37.975 | baseball bat | 24.730 | baseball glove | 29.160 | +| skateboard | 48.997 | surfboard | 39.510 | tennis racket | 50.037 | +| bottle | 14.987 | wine glass | 29.701 | cup | 34.950 | +| fork | 33.425 | knife | 14.872 | spoon | 18.500 | +| bowl | 35.966 | banana | 23.018 | apple | 18.434 | +| sandwich | 34.973 | orange | 21.988 | broccoli | 26.076 | +| carrot | 24.685 | hot dog | 33.715 | pizza | 44.189 | +| donut | 51.669 | cake | 39.028 | chair | 6.849 | +| couch | 17.802 | potted plant | 2.740 | bed | 41.502 | +| dining table | 5.642 | toilet | 54.138 | tv | 41.996 | +| laptop | 55.518 | mouse | 46.786 | remote | 26.866 | +| keyboard | 49.640 | cell phone | 26.319 | microwave | 53.201 | +| oven | 33.103 | toaster | 29.802 | sink | 29.859 | +| refrigerator | 54.116 | book | 9.417 | clock | 46.168 | +| vase | 32.798 | scissors | 24.645 | teddy bear | 39.422 | +| hair drier | 18.515 | toothbrush | 22.806 | | | +[01/04 23:49:04] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 36.270 | 56.738 | 38.798 | 19.440 | 41.191 | 50.729 | +[01/04 23:49:04] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:---------------|:-------|:--------------|:-------|:-------------|:-------| +| truck | 27.399 | traffic light | 23.623 | fire hydrant | 63.866 | +| stop sign | 71.950 | parking meter | 36.710 | bench | 15.213 | +| elephant | 64.158 | bear | 60.431 | zebra | 56.073 | +| giraffe | 62.427 | backpack | 17.684 | umbrella | 32.989 | +| handbag | 14.559 | tie | 30.950 | suitcase | 34.616 | +| frisbee | 57.865 | skis | 21.579 | snowboard | 34.767 | +| sports ball | 39.094 | kite | 37.975 | baseball bat | 24.730 | +| baseball glove | 29.160 | skateboard | 48.997 | surfboard | 39.510 | +| tennis racket | 50.037 | wine glass | 29.701 | cup | 34.950 | +| fork | 33.425 | knife | 14.872 | spoon | 18.500 | +| bowl | 35.966 | banana | 23.018 | apple | 18.434 | +| sandwich | 34.973 | orange | 21.988 | broccoli | 26.076 | +| carrot | 24.685 | hot dog | 33.715 | pizza | 44.189 | +| donut | 51.669 | cake | 39.028 | bed | 41.502 | +| toilet | 54.138 | laptop | 55.518 | mouse | 46.786 | +| remote | 26.866 | keyboard | 49.640 | cell phone | 26.319 | +| microwave | 53.201 | oven | 33.103 | toaster | 29.802 | +| sink | 29.859 | refrigerator | 54.116 | book | 9.417 | +| clock | 46.168 | vase | 32.798 | scissors | 24.645 | +| teddy bear | 39.422 | hair drier | 18.515 | toothbrush | 22.806 | +[01/04 23:49:13] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:-----:|:------:|:------:| +| 20.006 | 33.946 | 20.266 | 6.803 | 21.066 | 31.256 | +[01/04 23:49:13] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:-------------|:-------|:-----------|:-------|:-------------|:-------| +| person | 3.750 | bicycle | 8.094 | car | 20.499 | +| motorcycle | 18.208 | airplane | 39.112 | bus | 51.633 | +| train | 25.611 | boat | 10.341 | bird | 14.981 | +| cat | 35.844 | dog | 29.726 | horse | 15.841 | +| sheep | 14.309 | cow | 22.154 | bottle | 14.987 | +| chair | 6.849 | couch | 17.802 | potted plant | 2.740 | +| dining table | 5.642 | tv | 41.996 | | | +[01/04 23:49:13] defrcn.engine.defaults INFO: Evaluation results for coco14_test_all in csv format: +[01/04 23:49:13] defrcn.evaluation.testing INFO: copypaste: Task: bbox +[01/04 23:49:13] defrcn.evaluation.testing INFO: copypaste: AP,AP50,AP75,APs,APm,APl,bAP,bAP50,bAP75,bAPs,bAPm,bAPl,nAP,nAP50,nAP75,nAPs,nAPm,nAPl +[01/04 23:49:13] defrcn.evaluation.testing INFO: copypaste: 32.2036,51.0396,34.1651,16.2404,36.1595,45.8610,36.2695,56.7375,38.7981,19.4396,41.1906,50.7294,20.0058,33.9457,20.2662,6.8029,21.0662,31.2557 +[01/04 23:49:14] d2.utils.events INFO: eta: 0:30:34 iter: 4999 total_loss: 0.5582 loss_cls: 0.104 loss_box_reg: 0.05489 loss_contrast: 0.2197 loss_rpn_cls: 0.03549 loss_rpn_loc: 0.04056 loss_kld: 0.05372 loss_reg_disitll: 0.05767 time: 3.1625 data_time: 0.1371 lr: 0.0005 max_mem: 33785M +[01/04 23:50:16] d2.utils.events INFO: eta: 0:29:33 iter: 5019 total_loss: 0.5839 loss_cls: 0.1075 loss_box_reg: 0.05738 loss_contrast: 0.2197 loss_rpn_cls: 0.03885 loss_rpn_loc: 0.04473 loss_kld: 0.0555 loss_reg_disitll: 0.06395 time: 3.1622 data_time: 0.1275 lr: 0.0005 max_mem: 33785M +[01/04 23:51:19] d2.utils.events INFO: eta: 0:28:31 iter: 5039 total_loss: 0.5757 loss_cls: 0.1031 loss_box_reg: 0.0552 loss_contrast: 0.2197 loss_rpn_cls: 0.03769 loss_rpn_loc: 0.04614 loss_kld: 0.05342 loss_reg_disitll: 0.06067 time: 3.1622 data_time: 0.1367 lr: 0.0005 max_mem: 33785M +[01/04 23:52:22] d2.utils.events INFO: eta: 0:27:30 iter: 5059 total_loss: 0.5993 loss_cls: 0.1129 loss_box_reg: 0.05966 loss_contrast: 0.2197 loss_rpn_cls: 0.04375 loss_rpn_loc: 0.04319 loss_kld: 0.05528 loss_reg_disitll: 0.06375 time: 3.1621 data_time: 0.1271 lr: 0.0005 max_mem: 33785M +[01/04 23:53:27] d2.utils.events INFO: eta: 0:26:30 iter: 5079 total_loss: 0.6082 loss_cls: 0.1067 loss_box_reg: 0.06011 loss_contrast: 0.2197 loss_rpn_cls: 0.04195 loss_rpn_loc: 0.04925 loss_kld: 0.05498 loss_reg_disitll: 0.06705 time: 3.1626 data_time: 0.1319 lr: 0.0005 max_mem: 33785M +[01/04 23:54:37] d2.utils.events INFO: eta: 0:25:31 iter: 5099 total_loss: 0.5607 loss_cls: 0.1057 loss_box_reg: 0.05705 loss_contrast: 0.2197 loss_rpn_cls: 0.03834 loss_rpn_loc: 0.04079 loss_kld: 0.0512 loss_reg_disitll: 0.063 time: 3.1639 data_time: 0.1236 lr: 0.0005 max_mem: 33785M +[01/04 23:55:45] d2.utils.events INFO: eta: 0:24:32 iter: 5119 total_loss: 0.5756 loss_cls: 0.1026 loss_box_reg: 0.05843 loss_contrast: 0.2197 loss_rpn_cls: 0.03761 loss_rpn_loc: 0.04103 loss_kld: 0.0526 loss_reg_disitll: 0.05989 time: 3.1648 data_time: 0.1368 lr: 0.0005 max_mem: 33785M +[01/04 23:56:47] d2.utils.events INFO: eta: 0:23:32 iter: 5139 total_loss: 0.5772 loss_cls: 0.1039 loss_box_reg: 0.05341 loss_contrast: 0.2197 loss_rpn_cls: 0.04415 loss_rpn_loc: 0.0435 loss_kld: 0.05667 loss_reg_disitll: 0.06126 time: 3.1645 data_time: 0.1245 lr: 0.0005 max_mem: 33785M +[01/04 23:57:52] d2.utils.events INFO: eta: 0:22:30 iter: 5159 total_loss: 0.5755 loss_cls: 0.1072 loss_box_reg: 0.05867 loss_contrast: 0.2197 loss_rpn_cls: 0.03841 loss_rpn_loc: 0.04425 loss_kld: 0.05386 loss_reg_disitll: 0.06408 time: 3.1649 data_time: 0.1304 lr: 0.0005 max_mem: 33785M +[01/04 23:58:55] d2.utils.events INFO: eta: 0:21:26 iter: 5179 total_loss: 0.5736 loss_cls: 0.1027 loss_box_reg: 0.05685 loss_contrast: 0.2197 loss_rpn_cls: 0.04101 loss_rpn_loc: 0.04461 loss_kld: 0.05243 loss_reg_disitll: 0.06054 time: 3.1648 data_time: 0.1268 lr: 0.0005 max_mem: 33785M +[01/04 23:59:56] fvcore.common.checkpoint INFO: Saving checkpoint to checkpoints/coco/10shot_ExAU/model_0005199.pth +[01/05 00:00:11] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/05 00:00:11] d2.data.common INFO: Serializing 5000 elements to byte tensors and concatenating them all ... +[01/05 00:00:11] d2.data.common INFO: Serialized dataset takes 3.00 MiB +[01/05 00:00:12] defrcn.evaluation.evaluator INFO: Start initializing PCB module, please wait a seconds... +[01/05 00:00:12] defrcn.evaluation.calibration_layer INFO: Loading ImageNet Pre-train Model from ImageNetPretrained/torchvision/resnet101-5d3b4d8f.pth +[01/05 00:00:13] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/05 00:00:13] d2.data.common INFO: Serializing 402 elements to byte tensors and concatenating them all ... +[01/05 00:00:13] d2.data.common INFO: Serialized dataset takes 0.08 MiB +[01/05 00:00:34] defrcn.evaluation.evaluator INFO: Start inference on 2500 images +[01/05 00:00:46] defrcn.evaluation.evaluator INFO: Inference done 50/2500. 0.1046 s / img. ETA=0:04:16 +[01/05 00:00:51] defrcn.evaluation.evaluator INFO: Inference done 100/2500. 0.1026 s / img. ETA=0:04:06 +[01/05 00:00:56] defrcn.evaluation.evaluator INFO: Inference done 150/2500. 0.1029 s / img. ETA=0:04:01 +[01/05 00:01:01] defrcn.evaluation.evaluator INFO: Inference done 200/2500. 0.1025 s / img. ETA=0:03:55 +[01/05 00:01:07] defrcn.evaluation.evaluator INFO: Inference done 250/2500. 0.1028 s / img. ETA=0:03:51 +[01/05 00:01:12] defrcn.evaluation.evaluator INFO: Inference done 300/2500. 0.1026 s / img. ETA=0:03:45 +[01/05 00:01:17] defrcn.evaluation.evaluator INFO: Inference done 350/2500. 0.1024 s / img. ETA=0:03:40 +[01/05 00:01:22] defrcn.evaluation.evaluator INFO: Inference done 400/2500. 0.1024 s / img. ETA=0:03:35 +[01/05 00:01:27] defrcn.evaluation.evaluator INFO: Inference done 450/2500. 0.1025 s / img. ETA=0:03:30 +[01/05 00:01:32] defrcn.evaluation.evaluator INFO: Inference done 500/2500. 0.1025 s / img. ETA=0:03:24 +[01/05 00:01:37] defrcn.evaluation.evaluator INFO: Inference done 550/2500. 0.1025 s / img. ETA=0:03:19 +[01/05 00:01:42] defrcn.evaluation.evaluator INFO: Inference done 600/2500. 0.1025 s / img. ETA=0:03:14 +[01/05 00:01:48] defrcn.evaluation.evaluator INFO: Inference done 650/2500. 0.1026 s / img. ETA=0:03:09 +[01/05 00:01:53] defrcn.evaluation.evaluator INFO: Inference done 700/2500. 0.1023 s / img. ETA=0:03:04 +[01/05 00:01:58] defrcn.evaluation.evaluator INFO: Inference done 750/2500. 0.1025 s / img. ETA=0:02:59 +[01/05 00:02:03] defrcn.evaluation.evaluator INFO: Inference done 800/2500. 0.1026 s / img. ETA=0:02:54 +[01/05 00:02:08] defrcn.evaluation.evaluator INFO: Inference done 850/2500. 0.1027 s / img. ETA=0:02:49 +[01/05 00:02:14] defrcn.evaluation.evaluator INFO: Inference done 900/2500. 0.1030 s / img. ETA=0:02:44 +[01/05 00:02:19] defrcn.evaluation.evaluator INFO: Inference done 950/2500. 0.1029 s / img. ETA=0:02:39 +[01/05 00:02:24] defrcn.evaluation.evaluator INFO: Inference done 1000/2500. 0.1030 s / img. ETA=0:02:34 +[01/05 00:02:29] defrcn.evaluation.evaluator INFO: Inference done 1050/2500. 0.1030 s / img. ETA=0:02:29 +[01/05 00:02:34] defrcn.evaluation.evaluator INFO: Inference done 1100/2500. 0.1031 s / img. ETA=0:02:24 +[01/05 00:02:40] defrcn.evaluation.evaluator INFO: Inference done 1150/2500. 0.1031 s / img. ETA=0:02:19 +[01/05 00:02:45] defrcn.evaluation.evaluator INFO: Inference done 1200/2500. 0.1031 s / img. ETA=0:02:14 +[01/05 00:02:50] defrcn.evaluation.evaluator INFO: Inference done 1250/2500. 0.1032 s / img. ETA=0:02:08 +[01/05 00:02:55] defrcn.evaluation.evaluator INFO: Inference done 1300/2500. 0.1033 s / img. ETA=0:02:03 +[01/05 00:03:01] defrcn.evaluation.evaluator INFO: Inference done 1350/2500. 0.1034 s / img. ETA=0:01:58 +[01/05 00:03:06] defrcn.evaluation.evaluator INFO: Inference done 1400/2500. 0.1035 s / img. ETA=0:01:53 +[01/05 00:03:11] defrcn.evaluation.evaluator INFO: Inference done 1450/2500. 0.1035 s / img. ETA=0:01:48 +[01/05 00:03:16] defrcn.evaluation.evaluator INFO: Inference done 1500/2500. 0.1036 s / img. ETA=0:01:43 +[01/05 00:03:21] defrcn.evaluation.evaluator INFO: Inference done 1550/2500. 0.1036 s / img. ETA=0:01:38 +[01/05 00:03:27] defrcn.evaluation.evaluator INFO: Inference done 1600/2500. 0.1035 s / img. ETA=0:01:33 +[01/05 00:03:32] defrcn.evaluation.evaluator INFO: Inference done 1650/2500. 0.1034 s / img. ETA=0:01:27 +[01/05 00:03:37] defrcn.evaluation.evaluator INFO: Inference done 1700/2500. 0.1035 s / img. ETA=0:01:22 +[01/05 00:03:42] defrcn.evaluation.evaluator INFO: Inference done 1750/2500. 0.1035 s / img. ETA=0:01:17 +[01/05 00:03:47] defrcn.evaluation.evaluator INFO: Inference done 1800/2500. 0.1035 s / img. ETA=0:01:12 +[01/05 00:03:52] defrcn.evaluation.evaluator INFO: Inference done 1850/2500. 0.1034 s / img. ETA=0:01:07 +[01/05 00:03:58] defrcn.evaluation.evaluator INFO: Inference done 1900/2500. 0.1035 s / img. ETA=0:01:02 +[01/05 00:04:03] defrcn.evaluation.evaluator INFO: Inference done 1950/2500. 0.1035 s / img. ETA=0:00:56 +[01/05 00:04:08] defrcn.evaluation.evaluator INFO: Inference done 2000/2500. 0.1035 s / img. ETA=0:00:51 +[01/05 00:04:13] defrcn.evaluation.evaluator INFO: Inference done 2050/2500. 0.1034 s / img. ETA=0:00:46 +[01/05 00:04:18] defrcn.evaluation.evaluator INFO: Inference done 2100/2500. 0.1034 s / img. ETA=0:00:41 +[01/05 00:04:23] defrcn.evaluation.evaluator INFO: Inference done 2150/2500. 0.1034 s / img. ETA=0:00:36 +[01/05 00:04:28] defrcn.evaluation.evaluator INFO: Inference done 2200/2500. 0.1034 s / img. ETA=0:00:31 +[01/05 00:04:33] defrcn.evaluation.evaluator INFO: Inference done 2250/2500. 0.1033 s / img. ETA=0:00:25 +[01/05 00:04:39] defrcn.evaluation.evaluator INFO: Inference done 2300/2500. 0.1034 s / img. ETA=0:00:20 +[01/05 00:04:44] defrcn.evaluation.evaluator INFO: Inference done 2350/2500. 0.1034 s / img. ETA=0:00:15 +[01/05 00:04:49] defrcn.evaluation.evaluator INFO: Inference done 2400/2500. 0.1034 s / img. ETA=0:00:10 +[01/05 00:04:54] defrcn.evaluation.evaluator INFO: Inference done 2450/2500. 0.1035 s / img. ETA=0:00:05 +[01/05 00:05:00] defrcn.evaluation.evaluator INFO: Inference done 2500/2500. 0.1034 s / img. ETA=0:00:00 +[01/05 00:05:00] defrcn.evaluation.evaluator INFO: Total inference time: 0:04:18 (0.103407 s / img per device, on 2 devices) +[01/05 00:05:00] defrcn.evaluation.evaluator INFO: Total inference pure compute time: 0:04:12 (0.101065 s / img per device, on 2 devices) +[01/05 00:05:01] defrcn.evaluation.coco_evaluation INFO: Preparing results for COCO format ... +[01/05 00:05:01] defrcn.evaluation.coco_evaluation INFO: Saving results to checkpoints/coco/10shot_ExAU/inference/coco_instances_results.json +[01/05 00:05:02] defrcn.evaluation.coco_evaluation INFO: Evaluating predictions ... +[01/05 00:05:28] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 32.155 | 51.004 | 34.035 | 16.314 | 36.119 | 45.951 | +[01/05 00:05:28] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:--------------|:-------|:-------------|:-------|:---------------|:-------| +| person | 3.748 | bicycle | 7.668 | car | 20.631 | +| motorcycle | 17.956 | airplane | 38.804 | bus | 51.467 | +| train | 25.331 | truck | 27.242 | boat | 10.480 | +| traffic light | 23.732 | fire hydrant | 64.183 | stop sign | 72.062 | +| parking meter | 36.967 | bench | 15.248 | bird | 14.848 | +| cat | 35.737 | dog | 29.475 | horse | 15.772 | +| sheep | 14.124 | cow | 21.679 | elephant | 64.089 | +| bear | 60.098 | zebra | 55.496 | giraffe | 62.383 | +| backpack | 17.748 | umbrella | 33.165 | handbag | 14.449 | +| tie | 31.095 | suitcase | 34.859 | frisbee | 57.844 | +| skis | 21.909 | snowboard | 35.431 | sports ball | 39.066 | +| kite | 37.942 | baseball bat | 24.867 | baseball glove | 28.395 | +| skateboard | 48.841 | surfboard | 39.197 | tennis racket | 50.161 | +| bottle | 15.007 | wine glass | 29.795 | cup | 34.938 | +| fork | 33.419 | knife | 14.972 | spoon | 18.736 | +| bowl | 35.709 | banana | 22.946 | apple | 18.355 | +| sandwich | 34.862 | orange | 22.409 | broccoli | 26.146 | +| carrot | 24.565 | hot dog | 33.860 | pizza | 43.866 | +| donut | 51.461 | cake | 38.914 | chair | 6.835 | +| couch | 18.270 | potted plant | 2.926 | bed | 40.935 | +| dining table | 5.629 | toilet | 54.597 | tv | 42.202 | +| laptop | 55.020 | mouse | 46.567 | remote | 27.002 | +| keyboard | 50.192 | cell phone | 26.580 | microwave | 52.894 | +| oven | 32.919 | toaster | 28.801 | sink | 29.460 | +| refrigerator | 53.715 | book | 9.344 | clock | 46.168 | +| vase | 32.988 | scissors | 23.963 | teddy bear | 38.786 | +| hair drier | 20.149 | toothbrush | 22.290 | | | +[01/05 00:05:43] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 36.230 | 56.671 | 38.642 | 19.555 | 41.121 | 50.951 | +[01/05 00:05:43] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:---------------|:-------|:--------------|:-------|:-------------|:-------| +| truck | 27.242 | traffic light | 23.732 | fire hydrant | 64.183 | +| stop sign | 72.062 | parking meter | 36.967 | bench | 15.248 | +| elephant | 64.089 | bear | 60.098 | zebra | 55.496 | +| giraffe | 62.383 | backpack | 17.748 | umbrella | 33.165 | +| handbag | 14.449 | tie | 31.095 | suitcase | 34.859 | +| frisbee | 57.844 | skis | 21.909 | snowboard | 35.431 | +| sports ball | 39.066 | kite | 37.942 | baseball bat | 24.867 | +| baseball glove | 28.395 | skateboard | 48.841 | surfboard | 39.197 | +| tennis racket | 50.161 | wine glass | 29.795 | cup | 34.938 | +| fork | 33.419 | knife | 14.972 | spoon | 18.736 | +| bowl | 35.709 | banana | 22.946 | apple | 18.355 | +| sandwich | 34.862 | orange | 22.409 | broccoli | 26.146 | +| carrot | 24.565 | hot dog | 33.860 | pizza | 43.866 | +| donut | 51.461 | cake | 38.914 | bed | 40.935 | +| toilet | 54.597 | laptop | 55.020 | mouse | 46.567 | +| remote | 27.002 | keyboard | 50.192 | cell phone | 26.580 | +| microwave | 52.894 | oven | 32.919 | toaster | 28.801 | +| sink | 29.460 | refrigerator | 53.715 | book | 9.344 | +| clock | 46.168 | vase | 32.988 | scissors | 23.963 | +| teddy bear | 38.786 | hair drier | 20.149 | toothbrush | 22.290 | +[01/05 00:05:53] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:-----:|:------:|:------:| +| 19.929 | 34.002 | 20.216 | 6.753 | 21.115 | 30.954 | +[01/05 00:05:53] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:-------------|:-------|:-----------|:-------|:-------------|:-------| +| person | 3.748 | bicycle | 7.668 | car | 20.631 | +| motorcycle | 17.956 | airplane | 38.804 | bus | 51.467 | +| train | 25.331 | boat | 10.480 | bird | 14.848 | +| cat | 35.737 | dog | 29.475 | horse | 15.772 | +| sheep | 14.124 | cow | 21.679 | bottle | 15.007 | +| chair | 6.835 | couch | 18.270 | potted plant | 2.926 | +| dining table | 5.629 | tv | 42.202 | | | +[01/05 00:05:53] defrcn.engine.defaults INFO: Evaluation results for coco14_test_all in csv format: +[01/05 00:05:53] defrcn.evaluation.testing INFO: copypaste: Task: bbox +[01/05 00:05:53] defrcn.evaluation.testing INFO: copypaste: AP,AP50,AP75,APs,APm,APl,bAP,bAP50,bAP75,bAPs,bAPm,bAPl,nAP,nAP50,nAP75,nAPs,nAPm,nAPl +[01/05 00:05:53] defrcn.evaluation.testing INFO: copypaste: 32.1548,51.0041,34.0352,16.3143,36.1192,45.9514,36.2299,56.6713,38.6415,19.5554,41.1206,50.9505,19.9294,34.0025,20.2163,6.7531,21.1149,30.9542 +[01/05 00:05:53] d2.utils.events INFO: eta: 0:20:24 iter: 5199 total_loss: 0.5679 loss_cls: 0.09821 loss_box_reg: 0.05118 loss_contrast: 0.2197 loss_rpn_cls: 0.04009 loss_rpn_loc: 0.04451 loss_kld: 0.05474 loss_reg_disitll: 0.05879 time: 3.1644 data_time: 0.1336 lr: 0.0005 max_mem: 33785M +[01/05 00:06:58] d2.utils.events INFO: eta: 0:19:22 iter: 5219 total_loss: 0.5839 loss_cls: 0.1053 loss_box_reg: 0.05462 loss_contrast: 0.2197 loss_rpn_cls: 0.04477 loss_rpn_loc: 0.04803 loss_kld: 0.05514 loss_reg_disitll: 0.06085 time: 3.1647 data_time: 0.1383 lr: 0.0005 max_mem: 33785M +[01/05 00:08:03] d2.utils.events INFO: eta: 0:18:21 iter: 5239 total_loss: 0.585 loss_cls: 0.1039 loss_box_reg: 0.05565 loss_contrast: 0.2197 loss_rpn_cls: 0.04477 loss_rpn_loc: 0.04569 loss_kld: 0.05302 loss_reg_disitll: 0.06039 time: 3.1651 data_time: 0.1313 lr: 0.0005 max_mem: 33785M +[01/05 00:09:09] d2.utils.events INFO: eta: 0:17:20 iter: 5259 total_loss: 0.5744 loss_cls: 0.1013 loss_box_reg: 0.05476 loss_contrast: 0.2197 loss_rpn_cls: 0.03585 loss_rpn_loc: 0.04217 loss_kld: 0.05333 loss_reg_disitll: 0.06049 time: 3.1656 data_time: 0.1351 lr: 0.0005 max_mem: 33785M +[01/05 00:10:11] d2.utils.events INFO: eta: 0:16:19 iter: 5279 total_loss: 0.5807 loss_cls: 0.1065 loss_box_reg: 0.05528 loss_contrast: 0.2197 loss_rpn_cls: 0.03939 loss_rpn_loc: 0.03996 loss_kld: 0.05402 loss_reg_disitll: 0.06152 time: 3.1653 data_time: 0.1298 lr: 0.0005 max_mem: 33785M +[01/05 00:11:20] d2.utils.events INFO: eta: 0:15:18 iter: 5299 total_loss: 0.5762 loss_cls: 0.1056 loss_box_reg: 0.05733 loss_contrast: 0.2197 loss_rpn_cls: 0.0395 loss_rpn_loc: 0.04075 loss_kld: 0.05577 loss_reg_disitll: 0.06356 time: 3.1664 data_time: 0.1290 lr: 0.0005 max_mem: 33785M +[01/05 00:12:24] d2.utils.events INFO: eta: 0:14:17 iter: 5319 total_loss: 0.5872 loss_cls: 0.1135 loss_box_reg: 0.05723 loss_contrast: 0.2197 loss_rpn_cls: 0.04226 loss_rpn_loc: 0.04291 loss_kld: 0.05265 loss_reg_disitll: 0.06316 time: 3.1665 data_time: 0.1330 lr: 0.0005 max_mem: 33785M +[01/05 00:13:25] d2.utils.events INFO: eta: 0:13:14 iter: 5339 total_loss: 0.5822 loss_cls: 0.1029 loss_box_reg: 0.05579 loss_contrast: 0.2197 loss_rpn_cls: 0.03956 loss_rpn_loc: 0.04391 loss_kld: 0.05648 loss_reg_disitll: 0.06263 time: 3.1660 data_time: 0.1281 lr: 0.0005 max_mem: 33785M +[01/05 00:14:31] d2.utils.events INFO: eta: 0:12:14 iter: 5359 total_loss: 0.5805 loss_cls: 0.102 loss_box_reg: 0.05533 loss_contrast: 0.2197 loss_rpn_cls: 0.04382 loss_rpn_loc: 0.04594 loss_kld: 0.04974 loss_reg_disitll: 0.05798 time: 3.1665 data_time: 0.1204 lr: 0.0005 max_mem: 33785M +[01/05 00:15:34] d2.utils.events INFO: eta: 0:11:12 iter: 5379 total_loss: 0.587 loss_cls: 0.1087 loss_box_reg: 0.05594 loss_contrast: 0.2197 loss_rpn_cls: 0.03992 loss_rpn_loc: 0.04751 loss_kld: 0.0514 loss_reg_disitll: 0.06017 time: 3.1664 data_time: 0.1345 lr: 0.0005 max_mem: 33785M +[01/05 00:16:33] fvcore.common.checkpoint INFO: Saving checkpoint to checkpoints/coco/10shot_ExAU/model_0005399.pth +[01/05 00:16:49] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/05 00:16:49] d2.data.common INFO: Serializing 5000 elements to byte tensors and concatenating them all ... +[01/05 00:16:49] d2.data.common INFO: Serialized dataset takes 3.00 MiB +[01/05 00:16:50] defrcn.evaluation.evaluator INFO: Start initializing PCB module, please wait a seconds... +[01/05 00:16:50] defrcn.evaluation.calibration_layer INFO: Loading ImageNet Pre-train Model from ImageNetPretrained/torchvision/resnet101-5d3b4d8f.pth +[01/05 00:16:51] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/05 00:16:51] d2.data.common INFO: Serializing 402 elements to byte tensors and concatenating them all ... +[01/05 00:16:51] d2.data.common INFO: Serialized dataset takes 0.08 MiB +[01/05 00:17:11] defrcn.evaluation.evaluator INFO: Start inference on 2500 images +[01/05 00:17:23] defrcn.evaluation.evaluator INFO: Inference done 50/2500. 0.1033 s / img. ETA=0:04:13 +[01/05 00:17:28] defrcn.evaluation.evaluator INFO: Inference done 100/2500. 0.1014 s / img. ETA=0:04:03 +[01/05 00:17:33] defrcn.evaluation.evaluator INFO: Inference done 150/2500. 0.1017 s / img. ETA=0:03:58 +[01/05 00:17:38] defrcn.evaluation.evaluator INFO: Inference done 200/2500. 0.1014 s / img. ETA=0:03:53 +[01/05 00:17:43] defrcn.evaluation.evaluator INFO: Inference done 250/2500. 0.1018 s / img. ETA=0:03:48 +[01/05 00:17:48] defrcn.evaluation.evaluator INFO: Inference done 300/2500. 0.1016 s / img. ETA=0:03:43 +[01/05 00:17:54] defrcn.evaluation.evaluator INFO: Inference done 350/2500. 0.1015 s / img. ETA=0:03:38 +[01/05 00:17:59] defrcn.evaluation.evaluator INFO: Inference done 400/2500. 0.1014 s / img. ETA=0:03:33 +[01/05 00:18:04] defrcn.evaluation.evaluator INFO: Inference done 450/2500. 0.1015 s / img. ETA=0:03:28 +[01/05 00:18:09] defrcn.evaluation.evaluator INFO: Inference done 500/2500. 0.1015 s / img. ETA=0:03:22 +[01/05 00:18:14] defrcn.evaluation.evaluator INFO: Inference done 550/2500. 0.1015 s / img. ETA=0:03:17 +[01/05 00:18:19] defrcn.evaluation.evaluator INFO: Inference done 600/2500. 0.1015 s / img. ETA=0:03:12 +[01/05 00:18:24] defrcn.evaluation.evaluator INFO: Inference done 650/2500. 0.1016 s / img. ETA=0:03:07 +[01/05 00:18:29] defrcn.evaluation.evaluator INFO: Inference done 700/2500. 0.1013 s / img. ETA=0:03:02 +[01/05 00:18:34] defrcn.evaluation.evaluator INFO: Inference done 750/2500. 0.1017 s / img. ETA=0:02:58 +[01/05 00:18:39] defrcn.evaluation.evaluator INFO: Inference done 800/2500. 0.1019 s / img. ETA=0:02:53 +[01/05 00:18:45] defrcn.evaluation.evaluator INFO: Inference done 850/2500. 0.1019 s / img. ETA=0:02:48 +[01/05 00:18:50] defrcn.evaluation.evaluator INFO: Inference done 900/2500. 0.1020 s / img. ETA=0:02:43 +[01/05 00:18:55] defrcn.evaluation.evaluator INFO: Inference done 950/2500. 0.1020 s / img. ETA=0:02:38 +[01/05 00:19:00] defrcn.evaluation.evaluator INFO: Inference done 1000/2500. 0.1020 s / img. ETA=0:02:33 +[01/05 00:19:05] defrcn.evaluation.evaluator INFO: Inference done 1050/2500. 0.1021 s / img. ETA=0:02:27 +[01/05 00:19:10] defrcn.evaluation.evaluator INFO: Inference done 1100/2500. 0.1021 s / img. ETA=0:02:22 +[01/05 00:19:16] defrcn.evaluation.evaluator INFO: Inference done 1150/2500. 0.1022 s / img. ETA=0:02:17 +[01/05 00:19:21] defrcn.evaluation.evaluator INFO: Inference done 1200/2500. 0.1022 s / img. ETA=0:02:12 +[01/05 00:19:26] defrcn.evaluation.evaluator INFO: Inference done 1250/2500. 0.1022 s / img. ETA=0:02:07 +[01/05 00:19:31] defrcn.evaluation.evaluator INFO: Inference done 1300/2500. 0.1023 s / img. ETA=0:02:02 +[01/05 00:19:36] defrcn.evaluation.evaluator INFO: Inference done 1350/2500. 0.1024 s / img. ETA=0:01:57 +[01/05 00:19:41] defrcn.evaluation.evaluator INFO: Inference done 1400/2500. 0.1025 s / img. ETA=0:01:52 +[01/05 00:19:47] defrcn.evaluation.evaluator INFO: Inference done 1450/2500. 0.1025 s / img. ETA=0:01:47 +[01/05 00:19:52] defrcn.evaluation.evaluator INFO: Inference done 1500/2500. 0.1025 s / img. ETA=0:01:42 +[01/05 00:19:57] defrcn.evaluation.evaluator INFO: Inference done 1550/2500. 0.1025 s / img. ETA=0:01:37 +[01/05 00:20:02] defrcn.evaluation.evaluator INFO: Inference done 1600/2500. 0.1024 s / img. ETA=0:01:32 +[01/05 00:20:07] defrcn.evaluation.evaluator INFO: Inference done 1650/2500. 0.1024 s / img. ETA=0:01:27 +[01/05 00:20:12] defrcn.evaluation.evaluator INFO: Inference done 1700/2500. 0.1024 s / img. ETA=0:01:21 +[01/05 00:20:17] defrcn.evaluation.evaluator INFO: Inference done 1750/2500. 0.1024 s / img. ETA=0:01:16 +[01/05 00:20:22] defrcn.evaluation.evaluator INFO: Inference done 1800/2500. 0.1024 s / img. ETA=0:01:11 +[01/05 00:20:27] defrcn.evaluation.evaluator INFO: Inference done 1850/2500. 0.1024 s / img. ETA=0:01:06 +[01/05 00:20:33] defrcn.evaluation.evaluator INFO: Inference done 1900/2500. 0.1024 s / img. ETA=0:01:01 +[01/05 00:20:38] defrcn.evaluation.evaluator INFO: Inference done 1950/2500. 0.1024 s / img. ETA=0:00:56 +[01/05 00:20:43] defrcn.evaluation.evaluator INFO: Inference done 2000/2500. 0.1024 s / img. ETA=0:00:51 +[01/05 00:20:48] defrcn.evaluation.evaluator INFO: Inference done 2050/2500. 0.1024 s / img. ETA=0:00:46 +[01/05 00:20:53] defrcn.evaluation.evaluator INFO: Inference done 2100/2500. 0.1023 s / img. ETA=0:00:40 +[01/05 00:20:58] defrcn.evaluation.evaluator INFO: Inference done 2150/2500. 0.1024 s / img. ETA=0:00:35 +[01/05 00:21:03] defrcn.evaluation.evaluator INFO: Inference done 2200/2500. 0.1023 s / img. ETA=0:00:30 +[01/05 00:21:08] defrcn.evaluation.evaluator INFO: Inference done 2250/2500. 0.1023 s / img. ETA=0:00:25 +[01/05 00:21:13] defrcn.evaluation.evaluator INFO: Inference done 2300/2500. 0.1024 s / img. ETA=0:00:20 +[01/05 00:21:18] defrcn.evaluation.evaluator INFO: Inference done 2350/2500. 0.1023 s / img. ETA=0:00:15 +[01/05 00:21:24] defrcn.evaluation.evaluator INFO: Inference done 2400/2500. 0.1024 s / img. ETA=0:00:10 +[01/05 00:21:29] defrcn.evaluation.evaluator INFO: Inference done 2450/2500. 0.1025 s / img. ETA=0:00:05 +[01/05 00:21:34] defrcn.evaluation.evaluator INFO: Inference done 2500/2500. 0.1024 s / img. ETA=0:00:00 +[01/05 00:21:34] defrcn.evaluation.evaluator INFO: Total inference time: 0:04:15 (0.102204 s / img per device, on 2 devices) +[01/05 00:21:34] defrcn.evaluation.evaluator INFO: Total inference pure compute time: 0:04:09 (0.100121 s / img per device, on 2 devices) +[01/05 00:21:36] defrcn.evaluation.coco_evaluation INFO: Preparing results for COCO format ... +[01/05 00:21:36] defrcn.evaluation.coco_evaluation INFO: Saving results to checkpoints/coco/10shot_ExAU/inference/coco_instances_results.json +[01/05 00:21:37] defrcn.evaluation.coco_evaluation INFO: Evaluating predictions ... +[01/05 00:22:02] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 32.230 | 51.039 | 34.220 | 16.288 | 36.218 | 46.005 | +[01/05 00:22:02] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:--------------|:-------|:-------------|:-------|:---------------|:-------| +| person | 3.690 | bicycle | 7.742 | car | 20.660 | +| motorcycle | 17.978 | airplane | 38.429 | bus | 52.335 | +| train | 25.544 | truck | 27.642 | boat | 10.554 | +| traffic light | 23.789 | fire hydrant | 64.290 | stop sign | 72.029 | +| parking meter | 37.194 | bench | 15.130 | bird | 14.795 | +| cat | 35.440 | dog | 29.666 | horse | 15.762 | +| sheep | 14.563 | cow | 21.781 | elephant | 64.191 | +| bear | 59.266 | zebra | 55.564 | giraffe | 63.744 | +| backpack | 17.673 | umbrella | 32.925 | handbag | 14.655 | +| tie | 31.445 | suitcase | 34.607 | frisbee | 57.842 | +| skis | 21.769 | snowboard | 35.206 | sports ball | 39.138 | +| kite | 37.953 | baseball bat | 24.510 | baseball glove | 28.870 | +| skateboard | 48.777 | surfboard | 39.399 | tennis racket | 49.901 | +| bottle | 15.039 | wine glass | 29.864 | cup | 34.882 | +| fork | 33.498 | knife | 14.887 | spoon | 18.799 | +| bowl | 35.985 | banana | 22.901 | apple | 18.503 | +| sandwich | 34.393 | orange | 21.936 | broccoli | 26.054 | +| carrot | 24.952 | hot dog | 33.398 | pizza | 43.849 | +| donut | 51.818 | cake | 39.267 | chair | 6.831 | +| couch | 18.395 | potted plant | 2.856 | bed | 40.560 | +| dining table | 5.555 | toilet | 54.726 | tv | 42.330 | +| laptop | 55.418 | mouse | 46.393 | remote | 26.798 | +| keyboard | 49.955 | cell phone | 26.790 | microwave | 52.913 | +| oven | 33.832 | toaster | 28.973 | sink | 29.729 | +| refrigerator | 54.038 | book | 9.461 | clock | 46.060 | +| vase | 33.051 | scissors | 25.376 | teddy bear | 38.833 | +| hair drier | 20.149 | toothbrush | 22.892 | | | +[01/05 00:22:17] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 36.307 | 56.741 | 38.867 | 19.510 | 41.224 | 50.978 | +[01/05 00:22:17] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:---------------|:-------|:--------------|:-------|:-------------|:-------| +| truck | 27.642 | traffic light | 23.789 | fire hydrant | 64.290 | +| stop sign | 72.029 | parking meter | 37.194 | bench | 15.130 | +| elephant | 64.191 | bear | 59.266 | zebra | 55.564 | +| giraffe | 63.744 | backpack | 17.673 | umbrella | 32.925 | +| handbag | 14.655 | tie | 31.445 | suitcase | 34.607 | +| frisbee | 57.842 | skis | 21.769 | snowboard | 35.206 | +| sports ball | 39.138 | kite | 37.953 | baseball bat | 24.510 | +| baseball glove | 28.870 | skateboard | 48.777 | surfboard | 39.399 | +| tennis racket | 49.901 | wine glass | 29.864 | cup | 34.882 | +| fork | 33.498 | knife | 14.887 | spoon | 18.799 | +| bowl | 35.985 | banana | 22.901 | apple | 18.503 | +| sandwich | 34.393 | orange | 21.936 | broccoli | 26.054 | +| carrot | 24.952 | hot dog | 33.398 | pizza | 43.849 | +| donut | 51.818 | cake | 39.267 | bed | 40.560 | +| toilet | 54.726 | laptop | 55.418 | mouse | 46.393 | +| remote | 26.798 | keyboard | 49.955 | cell phone | 26.790 | +| microwave | 52.913 | oven | 33.832 | toaster | 28.973 | +| sink | 29.729 | refrigerator | 54.038 | book | 9.461 | +| clock | 46.060 | vase | 33.051 | scissors | 25.376 | +| teddy bear | 38.833 | hair drier | 20.149 | toothbrush | 22.892 | +[01/05 00:22:26] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:-----:|:------:|:------:| +| 19.997 | 33.931 | 20.280 | 6.784 | 21.199 | 31.087 | +[01/05 00:22:26] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:-------------|:-------|:-----------|:-------|:-------------|:-------| +| person | 3.690 | bicycle | 7.742 | car | 20.660 | +| motorcycle | 17.978 | airplane | 38.429 | bus | 52.335 | +| train | 25.544 | boat | 10.554 | bird | 14.795 | +| cat | 35.440 | dog | 29.666 | horse | 15.762 | +| sheep | 14.563 | cow | 21.781 | bottle | 15.039 | +| chair | 6.831 | couch | 18.395 | potted plant | 2.856 | +| dining table | 5.555 | tv | 42.330 | | | +[01/05 00:22:27] defrcn.engine.defaults INFO: Evaluation results for coco14_test_all in csv format: +[01/05 00:22:27] defrcn.evaluation.testing INFO: copypaste: Task: bbox +[01/05 00:22:27] defrcn.evaluation.testing INFO: copypaste: AP,AP50,AP75,APs,APm,APl,bAP,bAP50,bAP75,bAPs,bAPm,bAPl,nAP,nAP50,nAP75,nAPs,nAPm,nAPl +[01/05 00:22:27] defrcn.evaluation.testing INFO: copypaste: 32.2299,51.0388,34.2200,16.2883,36.2175,46.0053,36.3074,56.7414,38.8668,19.5102,41.2237,50.9782,19.9973,33.9310,20.2797,6.7838,21.1991,31.0866 +[01/05 00:22:27] d2.utils.events INFO: eta: 0:10:10 iter: 5399 total_loss: 0.5798 loss_cls: 0.09972 loss_box_reg: 0.05502 loss_contrast: 0.2197 loss_rpn_cls: 0.03851 loss_rpn_loc: 0.03898 loss_kld: 0.05422 loss_reg_disitll: 0.06154 time: 3.1657 data_time: 0.1396 lr: 0.0005 max_mem: 33785M +[01/05 00:23:32] d2.utils.events INFO: eta: 0:09:09 iter: 5419 total_loss: 0.5745 loss_cls: 0.1045 loss_box_reg: 0.05817 loss_contrast: 0.2197 loss_rpn_cls: 0.04064 loss_rpn_loc: 0.0442 loss_kld: 0.05488 loss_reg_disitll: 0.0627 time: 3.1661 data_time: 0.1324 lr: 0.0005 max_mem: 33785M +[01/05 00:24:32] d2.utils.events INFO: eta: 0:08:07 iter: 5439 total_loss: 0.5935 loss_cls: 0.1061 loss_box_reg: 0.05946 loss_contrast: 0.2197 loss_rpn_cls: 0.04355 loss_rpn_loc: 0.04746 loss_kld: 0.05499 loss_reg_disitll: 0.06695 time: 3.1655 data_time: 0.1417 lr: 0.0005 max_mem: 33785M +[01/05 00:25:37] d2.utils.events INFO: eta: 0:07:06 iter: 5459 total_loss: 0.5782 loss_cls: 0.1051 loss_box_reg: 0.05407 loss_contrast: 0.2197 loss_rpn_cls: 0.04002 loss_rpn_loc: 0.04384 loss_kld: 0.05714 loss_reg_disitll: 0.05866 time: 3.1657 data_time: 0.1348 lr: 0.0005 max_mem: 33785M +[01/05 00:26:40] d2.utils.events INFO: eta: 0:06:05 iter: 5479 total_loss: 0.5766 loss_cls: 0.1012 loss_box_reg: 0.05314 loss_contrast: 0.2197 loss_rpn_cls: 0.03823 loss_rpn_loc: 0.04594 loss_kld: 0.05447 loss_reg_disitll: 0.06066 time: 3.1656 data_time: 0.1428 lr: 0.0005 max_mem: 33785M +[01/05 00:27:42] d2.utils.events INFO: eta: 0:05:04 iter: 5499 total_loss: 0.5772 loss_cls: 0.1044 loss_box_reg: 0.05595 loss_contrast: 0.2197 loss_rpn_cls: 0.04087 loss_rpn_loc: 0.04016 loss_kld: 0.05242 loss_reg_disitll: 0.06194 time: 3.1653 data_time: 0.1345 lr: 0.0005 max_mem: 33785M +[01/05 00:28:45] d2.utils.events INFO: eta: 0:04:03 iter: 5519 total_loss: 0.5773 loss_cls: 0.1014 loss_box_reg: 0.05615 loss_contrast: 0.2197 loss_rpn_cls: 0.03859 loss_rpn_loc: 0.0453 loss_kld: 0.05181 loss_reg_disitll: 0.05821 time: 3.1652 data_time: 0.1359 lr: 0.0005 max_mem: 33785M +[01/05 00:29:55] d2.utils.events INFO: eta: 0:03:02 iter: 5539 total_loss: 0.5603 loss_cls: 0.1038 loss_box_reg: 0.05382 loss_contrast: 0.2197 loss_rpn_cls: 0.04122 loss_rpn_loc: 0.04235 loss_kld: 0.05356 loss_reg_disitll: 0.05654 time: 3.1664 data_time: 0.1344 lr: 0.0005 max_mem: 33785M +[01/05 00:31:07] d2.utils.events INFO: eta: 0:02:01 iter: 5559 total_loss: 0.5693 loss_cls: 0.09975 loss_box_reg: 0.0551 loss_contrast: 0.2197 loss_rpn_cls: 0.03927 loss_rpn_loc: 0.04211 loss_kld: 0.05189 loss_reg_disitll: 0.05642 time: 3.1680 data_time: 0.1281 lr: 0.0005 max_mem: 33785M +[01/05 00:32:11] d2.utils.events INFO: eta: 0:01:00 iter: 5579 total_loss: 0.5772 loss_cls: 0.1066 loss_box_reg: 0.05797 loss_contrast: 0.2197 loss_rpn_cls: 0.03515 loss_rpn_loc: 0.04249 loss_kld: 0.05296 loss_reg_disitll: 0.06442 time: 3.1681 data_time: 0.1369 lr: 0.0005 max_mem: 33785M +[01/05 00:33:13] fvcore.common.checkpoint INFO: Saving checkpoint to checkpoints/coco/10shot_ExAU/model_0005599.pth +[01/05 00:33:28] fvcore.common.checkpoint INFO: Saving checkpoint to checkpoints/coco/10shot_ExAU/model_final.pth +[01/05 00:33:43] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/05 00:33:43] d2.data.common INFO: Serializing 5000 elements to byte tensors and concatenating them all ... +[01/05 00:33:43] d2.data.common INFO: Serialized dataset takes 3.00 MiB +[01/05 00:33:44] defrcn.evaluation.evaluator INFO: Start initializing PCB module, please wait a seconds... +[01/05 00:33:44] defrcn.evaluation.calibration_layer INFO: Loading ImageNet Pre-train Model from ImageNetPretrained/torchvision/resnet101-5d3b4d8f.pth +[01/05 00:33:45] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/05 00:33:45] d2.data.common INFO: Serializing 402 elements to byte tensors and concatenating them all ... +[01/05 00:33:45] d2.data.common INFO: Serialized dataset takes 0.08 MiB +[01/05 00:34:05] defrcn.evaluation.evaluator INFO: Start inference on 2500 images +[01/05 00:34:17] defrcn.evaluation.evaluator INFO: Inference done 50/2500. 0.1037 s / img. ETA=0:04:14 +[01/05 00:34:22] defrcn.evaluation.evaluator INFO: Inference done 100/2500. 0.1017 s / img. ETA=0:04:04 +[01/05 00:34:27] defrcn.evaluation.evaluator INFO: Inference done 150/2500. 0.1020 s / img. ETA=0:03:59 +[01/05 00:34:32] defrcn.evaluation.evaluator INFO: Inference done 200/2500. 0.1016 s / img. ETA=0:03:53 +[01/05 00:34:37] defrcn.evaluation.evaluator INFO: Inference done 250/2500. 0.1019 s / img. ETA=0:03:49 +[01/05 00:34:42] defrcn.evaluation.evaluator INFO: Inference done 300/2500. 0.1017 s / img. ETA=0:03:43 +[01/05 00:34:47] defrcn.evaluation.evaluator INFO: Inference done 350/2500. 0.1015 s / img. ETA=0:03:38 +[01/05 00:34:52] defrcn.evaluation.evaluator INFO: Inference done 400/2500. 0.1015 s / img. ETA=0:03:33 +[01/05 00:34:57] defrcn.evaluation.evaluator INFO: Inference done 450/2500. 0.1016 s / img. ETA=0:03:28 +[01/05 00:35:02] defrcn.evaluation.evaluator INFO: Inference done 500/2500. 0.1016 s / img. ETA=0:03:23 +[01/05 00:35:07] defrcn.evaluation.evaluator INFO: Inference done 550/2500. 0.1016 s / img. ETA=0:03:18 +[01/05 00:35:12] defrcn.evaluation.evaluator INFO: Inference done 600/2500. 0.1016 s / img. ETA=0:03:12 +[01/05 00:35:18] defrcn.evaluation.evaluator INFO: Inference done 650/2500. 0.1017 s / img. ETA=0:03:08 +[01/05 00:35:22] defrcn.evaluation.evaluator INFO: Inference done 700/2500. 0.1015 s / img. ETA=0:03:02 +[01/05 00:35:28] defrcn.evaluation.evaluator INFO: Inference done 750/2500. 0.1016 s / img. ETA=0:02:57 +[01/05 00:35:33] defrcn.evaluation.evaluator INFO: Inference done 800/2500. 0.1018 s / img. ETA=0:02:52 +[01/05 00:35:38] defrcn.evaluation.evaluator INFO: Inference done 850/2500. 0.1018 s / img. ETA=0:02:47 +[01/05 00:35:43] defrcn.evaluation.evaluator INFO: Inference done 900/2500. 0.1021 s / img. ETA=0:02:43 +[01/05 00:35:48] defrcn.evaluation.evaluator INFO: Inference done 950/2500. 0.1020 s / img. ETA=0:02:38 +[01/05 00:35:53] defrcn.evaluation.evaluator INFO: Inference done 1000/2500. 0.1021 s / img. ETA=0:02:33 +[01/05 00:35:59] defrcn.evaluation.evaluator INFO: Inference done 1050/2500. 0.1021 s / img. ETA=0:02:28 +[01/05 00:36:04] defrcn.evaluation.evaluator INFO: Inference done 1100/2500. 0.1021 s / img. ETA=0:02:23 +[01/05 00:36:09] defrcn.evaluation.evaluator INFO: Inference done 1150/2500. 0.1022 s / img. ETA=0:02:17 +[01/05 00:36:14] defrcn.evaluation.evaluator INFO: Inference done 1200/2500. 0.1022 s / img. ETA=0:02:12 +[01/05 00:36:19] defrcn.evaluation.evaluator INFO: Inference done 1250/2500. 0.1022 s / img. ETA=0:02:07 +[01/05 00:36:24] defrcn.evaluation.evaluator INFO: Inference done 1300/2500. 0.1023 s / img. ETA=0:02:02 +[01/05 00:36:30] defrcn.evaluation.evaluator INFO: Inference done 1350/2500. 0.1024 s / img. ETA=0:01:57 +[01/05 00:36:35] defrcn.evaluation.evaluator INFO: Inference done 1400/2500. 0.1025 s / img. ETA=0:01:52 +[01/05 00:36:40] defrcn.evaluation.evaluator INFO: Inference done 1450/2500. 0.1025 s / img. ETA=0:01:47 +[01/05 00:36:45] defrcn.evaluation.evaluator INFO: Inference done 1500/2500. 0.1026 s / img. ETA=0:01:42 +[01/05 00:36:50] defrcn.evaluation.evaluator INFO: Inference done 1550/2500. 0.1025 s / img. ETA=0:01:37 +[01/05 00:36:55] defrcn.evaluation.evaluator INFO: Inference done 1600/2500. 0.1025 s / img. ETA=0:01:32 +[01/05 00:37:00] defrcn.evaluation.evaluator INFO: Inference done 1650/2500. 0.1024 s / img. ETA=0:01:27 +[01/05 00:37:06] defrcn.evaluation.evaluator INFO: Inference done 1700/2500. 0.1024 s / img. ETA=0:01:21 +[01/05 00:37:11] defrcn.evaluation.evaluator INFO: Inference done 1750/2500. 0.1025 s / img. ETA=0:01:16 +[01/05 00:37:16] defrcn.evaluation.evaluator INFO: Inference done 1800/2500. 0.1025 s / img. ETA=0:01:11 +[01/05 00:37:21] defrcn.evaluation.evaluator INFO: Inference done 1850/2500. 0.1024 s / img. ETA=0:01:06 +[01/05 00:37:26] defrcn.evaluation.evaluator INFO: Inference done 1900/2500. 0.1024 s / img. ETA=0:01:01 +[01/05 00:37:31] defrcn.evaluation.evaluator INFO: Inference done 1950/2500. 0.1024 s / img. ETA=0:00:56 +[01/05 00:37:36] defrcn.evaluation.evaluator INFO: Inference done 2000/2500. 0.1024 s / img. ETA=0:00:51 +[01/05 00:37:41] defrcn.evaluation.evaluator INFO: Inference done 2050/2500. 0.1024 s / img. ETA=0:00:46 +[01/05 00:37:46] defrcn.evaluation.evaluator INFO: Inference done 2100/2500. 0.1023 s / img. ETA=0:00:40 +[01/05 00:37:51] defrcn.evaluation.evaluator INFO: Inference done 2150/2500. 0.1024 s / img. ETA=0:00:35 +[01/05 00:37:56] defrcn.evaluation.evaluator INFO: Inference done 2200/2500. 0.1023 s / img. ETA=0:00:30 +[01/05 00:38:02] defrcn.evaluation.evaluator INFO: Inference done 2250/2500. 0.1023 s / img. ETA=0:00:25 +[01/05 00:38:07] defrcn.evaluation.evaluator INFO: Inference done 2300/2500. 0.1024 s / img. ETA=0:00:20 +[01/05 00:38:12] defrcn.evaluation.evaluator INFO: Inference done 2350/2500. 0.1023 s / img. ETA=0:00:15 +[01/05 00:38:17] defrcn.evaluation.evaluator INFO: Inference done 2400/2500. 0.1024 s / img. ETA=0:00:10 +[01/05 00:38:22] defrcn.evaluation.evaluator INFO: Inference done 2450/2500. 0.1025 s / img. ETA=0:00:05 +[01/05 00:38:28] defrcn.evaluation.evaluator INFO: Inference done 2500/2500. 0.1024 s / img. ETA=0:00:00 +[01/05 00:38:28] defrcn.evaluation.evaluator INFO: Total inference time: 0:04:15 (0.102204 s / img per device, on 2 devices) +[01/05 00:38:28] defrcn.evaluation.evaluator INFO: Total inference pure compute time: 0:04:09 (0.100191 s / img per device, on 2 devices) +[01/05 00:38:29] defrcn.evaluation.coco_evaluation INFO: Preparing results for COCO format ... +[01/05 00:38:29] defrcn.evaluation.coco_evaluation INFO: Saving results to checkpoints/coco/10shot_ExAU/inference/coco_instances_results.json +[01/05 00:38:30] defrcn.evaluation.coco_evaluation INFO: Evaluating predictions ... +[01/05 00:38:55] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 32.205 | 51.060 | 34.108 | 16.330 | 36.314 | 45.953 | +[01/05 00:38:55] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:--------------|:-------|:-------------|:-------|:---------------|:-------| +| person | 3.745 | bicycle | 7.610 | car | 20.778 | +| motorcycle | 17.565 | airplane | 38.803 | bus | 51.873 | +| train | 25.309 | truck | 27.637 | boat | 10.480 | +| traffic light | 23.602 | fire hydrant | 64.252 | stop sign | 72.289 | +| parking meter | 37.145 | bench | 15.358 | bird | 14.781 | +| cat | 35.217 | dog | 29.434 | horse | 15.907 | +| sheep | 13.851 | cow | 21.666 | elephant | 64.313 | +| bear | 59.078 | zebra | 56.328 | giraffe | 63.953 | +| backpack | 17.811 | umbrella | 32.823 | handbag | 14.605 | +| tie | 31.293 | suitcase | 35.013 | frisbee | 57.736 | +| skis | 21.863 | snowboard | 35.524 | sports ball | 39.549 | +| kite | 37.815 | baseball bat | 24.856 | baseball glove | 28.676 | +| skateboard | 48.749 | surfboard | 39.310 | tennis racket | 49.644 | +| bottle | 14.971 | wine glass | 30.060 | cup | 35.020 | +| fork | 33.551 | knife | 15.000 | spoon | 19.082 | +| bowl | 35.844 | banana | 22.792 | apple | 18.455 | +| sandwich | 34.603 | orange | 22.410 | broccoli | 25.949 | +| carrot | 25.183 | hot dog | 33.273 | pizza | 43.691 | +| donut | 51.279 | cake | 39.207 | chair | 6.828 | +| couch | 18.261 | potted plant | 3.009 | bed | 39.821 | +| dining table | 5.449 | toilet | 54.128 | tv | 42.180 | +| laptop | 54.619 | mouse | 46.597 | remote | 27.009 | +| keyboard | 50.314 | cell phone | 26.740 | microwave | 52.938 | +| oven | 33.406 | toaster | 29.868 | sink | 29.612 | +| refrigerator | 53.555 | book | 9.357 | clock | 45.989 | +| vase | 32.757 | scissors | 25.488 | teddy bear | 38.589 | +| hair drier | 20.149 | toothbrush | 23.118 | | | +[01/05 00:39:10] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 36.311 | 56.785 | 38.796 | 19.549 | 41.366 | 50.978 | +[01/05 00:39:10] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:---------------|:-------|:--------------|:-------|:-------------|:-------| +| truck | 27.637 | traffic light | 23.602 | fire hydrant | 64.252 | +| stop sign | 72.289 | parking meter | 37.145 | bench | 15.358 | +| elephant | 64.313 | bear | 59.078 | zebra | 56.328 | +| giraffe | 63.953 | backpack | 17.811 | umbrella | 32.823 | +| handbag | 14.605 | tie | 31.293 | suitcase | 35.013 | +| frisbee | 57.736 | skis | 21.863 | snowboard | 35.524 | +| sports ball | 39.549 | kite | 37.815 | baseball bat | 24.856 | +| baseball glove | 28.676 | skateboard | 48.749 | surfboard | 39.310 | +| tennis racket | 49.644 | wine glass | 30.060 | cup | 35.020 | +| fork | 33.551 | knife | 15.000 | spoon | 19.082 | +| bowl | 35.844 | banana | 22.792 | apple | 18.455 | +| sandwich | 34.603 | orange | 22.410 | broccoli | 25.949 | +| carrot | 25.183 | hot dog | 33.273 | pizza | 43.691 | +| donut | 51.279 | cake | 39.207 | bed | 39.821 | +| toilet | 54.128 | laptop | 54.619 | mouse | 46.597 | +| remote | 27.009 | keyboard | 50.314 | cell phone | 26.740 | +| microwave | 52.938 | oven | 33.406 | toaster | 29.868 | +| sink | 29.612 | refrigerator | 53.555 | book | 9.357 | +| clock | 45.989 | vase | 32.757 | scissors | 25.488 | +| teddy bear | 38.589 | hair drier | 20.149 | toothbrush | 23.118 | +[01/05 00:39:19] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:-----:|:------:|:------:| +| 19.886 | 33.886 | 20.045 | 6.832 | 21.158 | 30.879 | +[01/05 00:39:19] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:-------------|:-------|:-----------|:-------|:-------------|:-------| +| person | 3.745 | bicycle | 7.610 | car | 20.778 | +| motorcycle | 17.565 | airplane | 38.803 | bus | 51.873 | +| train | 25.309 | boat | 10.480 | bird | 14.781 | +| cat | 35.217 | dog | 29.434 | horse | 15.907 | +| sheep | 13.851 | cow | 21.666 | bottle | 14.971 | +| chair | 6.828 | couch | 18.261 | potted plant | 3.009 | +| dining table | 5.449 | tv | 42.180 | | | +[01/05 00:39:19] defrcn.engine.defaults INFO: Evaluation results for coco14_test_all in csv format: +[01/05 00:39:19] defrcn.evaluation.testing INFO: copypaste: Task: bbox +[01/05 00:39:19] defrcn.evaluation.testing INFO: copypaste: AP,AP50,AP75,APs,APm,APl,bAP,bAP50,bAP75,bAPs,bAPm,bAPl,nAP,nAP50,nAP75,nAPs,nAPm,nAPl +[01/05 00:39:19] defrcn.evaluation.testing INFO: copypaste: 32.2049,51.0598,34.1079,16.3297,36.3142,45.9534,36.3113,56.7846,38.7956,19.5493,41.3664,50.9783,19.8858,33.8856,20.0446,6.8322,21.1575,30.8786 +[01/05 00:39:19] d2.utils.events INFO: eta: 0:00:00 iter: 5599 total_loss: 0.5639 loss_cls: 0.09765 loss_box_reg: 0.05303 loss_contrast: 0.2197 loss_rpn_cls: 0.04023 loss_rpn_loc: 0.03914 loss_kld: 0.05445 loss_reg_disitll: 0.06046 time: 3.1678 data_time: 0.1287 lr: 0.0005 max_mem: 33785M +[01/05 00:39:19] d2.engine.hooks INFO: Overall training speed: 5597 iterations in 4:55:30 (3.1679 s / it) +[01/05 00:39:19] d2.engine.hooks INFO: Total training time: 7:40:10 (2:44:39 on hooks) +[01/05 00:39:20] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/05 00:39:20] d2.data.common INFO: Serializing 5000 elements to byte tensors and concatenating them all ... +[01/05 00:39:20] d2.data.common INFO: Serialized dataset takes 3.00 MiB +[01/05 00:39:21] defrcn.evaluation.evaluator INFO: Start initializing PCB module, please wait a seconds... +[01/05 00:39:21] defrcn.evaluation.calibration_layer INFO: Loading ImageNet Pre-train Model from ImageNetPretrained/torchvision/resnet101-5d3b4d8f.pth +[01/05 00:39:22] defrcn.dataloader.dataset_mapper INFO: [DatasetMapper] Augmentations used in inference: [ResizeShortestEdge(short_edge_length=(800, 800), max_size=1333, sample_style='choice')] +[01/05 00:39:22] d2.data.common INFO: Serializing 402 elements to byte tensors and concatenating them all ... +[01/05 00:39:22] d2.data.common INFO: Serialized dataset takes 0.08 MiB +[01/05 00:39:42] defrcn.evaluation.evaluator INFO: Start inference on 2500 images +[01/05 00:39:54] defrcn.evaluation.evaluator INFO: Inference done 50/2500. 0.1045 s / img. ETA=0:04:16 +[01/05 00:39:59] defrcn.evaluation.evaluator INFO: Inference done 100/2500. 0.1023 s / img. ETA=0:04:05 +[01/05 00:40:04] defrcn.evaluation.evaluator INFO: Inference done 150/2500. 0.1024 s / img. ETA=0:04:00 +[01/05 00:40:09] defrcn.evaluation.evaluator INFO: Inference done 200/2500. 0.1021 s / img. ETA=0:03:54 +[01/05 00:40:14] defrcn.evaluation.evaluator INFO: Inference done 250/2500. 0.1023 s / img. ETA=0:03:50 +[01/05 00:40:19] defrcn.evaluation.evaluator INFO: Inference done 300/2500. 0.1021 s / img. ETA=0:03:44 +[01/05 00:40:24] defrcn.evaluation.evaluator INFO: Inference done 350/2500. 0.1019 s / img. ETA=0:03:39 +[01/05 00:40:29] defrcn.evaluation.evaluator INFO: Inference done 400/2500. 0.1019 s / img. ETA=0:03:33 +[01/05 00:40:34] defrcn.evaluation.evaluator INFO: Inference done 450/2500. 0.1019 s / img. ETA=0:03:28 +[01/05 00:40:39] defrcn.evaluation.evaluator INFO: Inference done 500/2500. 0.1019 s / img. ETA=0:03:23 +[01/05 00:40:44] defrcn.evaluation.evaluator INFO: Inference done 550/2500. 0.1019 s / img. ETA=0:03:18 +[01/05 00:40:50] defrcn.evaluation.evaluator INFO: Inference done 600/2500. 0.1019 s / img. ETA=0:03:13 +[01/05 00:40:55] defrcn.evaluation.evaluator INFO: Inference done 650/2500. 0.1020 s / img. ETA=0:03:08 +[01/05 00:41:00] defrcn.evaluation.evaluator INFO: Inference done 700/2500. 0.1017 s / img. ETA=0:03:03 +[01/05 00:41:05] defrcn.evaluation.evaluator INFO: Inference done 750/2500. 0.1019 s / img. ETA=0:02:58 +[01/05 00:41:10] defrcn.evaluation.evaluator INFO: Inference done 800/2500. 0.1020 s / img. ETA=0:02:53 +[01/05 00:41:15] defrcn.evaluation.evaluator INFO: Inference done 850/2500. 0.1021 s / img. ETA=0:02:48 +[01/05 00:41:20] defrcn.evaluation.evaluator INFO: Inference done 900/2500. 0.1022 s / img. ETA=0:02:43 +[01/05 00:41:26] defrcn.evaluation.evaluator INFO: Inference done 950/2500. 0.1023 s / img. ETA=0:02:38 +[01/05 00:41:31] defrcn.evaluation.evaluator INFO: Inference done 1000/2500. 0.1024 s / img. ETA=0:02:33 +[01/05 00:41:36] defrcn.evaluation.evaluator INFO: Inference done 1050/2500. 0.1024 s / img. ETA=0:02:28 +[01/05 00:41:41] defrcn.evaluation.evaluator INFO: Inference done 1100/2500. 0.1025 s / img. ETA=0:02:23 +[01/05 00:41:46] defrcn.evaluation.evaluator INFO: Inference done 1150/2500. 0.1025 s / img. ETA=0:02:18 +[01/05 00:41:51] defrcn.evaluation.evaluator INFO: Inference done 1200/2500. 0.1025 s / img. ETA=0:02:13 +[01/05 00:41:57] defrcn.evaluation.evaluator INFO: Inference done 1250/2500. 0.1026 s / img. ETA=0:02:08 +[01/05 00:42:02] defrcn.evaluation.evaluator INFO: Inference done 1300/2500. 0.1027 s / img. ETA=0:02:03 +[01/05 00:42:07] defrcn.evaluation.evaluator INFO: Inference done 1350/2500. 0.1028 s / img. ETA=0:01:58 +[01/05 00:42:12] defrcn.evaluation.evaluator INFO: Inference done 1400/2500. 0.1029 s / img. ETA=0:01:53 +[01/05 00:42:18] defrcn.evaluation.evaluator INFO: Inference done 1450/2500. 0.1029 s / img. ETA=0:01:48 +[01/05 00:42:23] defrcn.evaluation.evaluator INFO: Inference done 1500/2500. 0.1030 s / img. ETA=0:01:42 +[01/05 00:42:28] defrcn.evaluation.evaluator INFO: Inference done 1550/2500. 0.1029 s / img. ETA=0:01:37 +[01/05 00:42:33] defrcn.evaluation.evaluator INFO: Inference done 1600/2500. 0.1029 s / img. ETA=0:01:32 +[01/05 00:42:38] defrcn.evaluation.evaluator INFO: Inference done 1650/2500. 0.1028 s / img. ETA=0:01:27 +[01/05 00:42:43] defrcn.evaluation.evaluator INFO: Inference done 1700/2500. 0.1028 s / img. ETA=0:01:22 +[01/05 00:42:48] defrcn.evaluation.evaluator INFO: Inference done 1750/2500. 0.1029 s / img. ETA=0:01:17 +[01/05 00:42:54] defrcn.evaluation.evaluator INFO: Inference done 1800/2500. 0.1029 s / img. ETA=0:01:11 +[01/05 00:42:59] defrcn.evaluation.evaluator INFO: Inference done 1850/2500. 0.1028 s / img. ETA=0:01:06 +[01/05 00:43:04] defrcn.evaluation.evaluator INFO: Inference done 1900/2500. 0.1028 s / img. ETA=0:01:01 +[01/05 00:43:09] defrcn.evaluation.evaluator INFO: Inference done 1950/2500. 0.1028 s / img. ETA=0:00:56 +[01/05 00:43:14] defrcn.evaluation.evaluator INFO: Inference done 2000/2500. 0.1028 s / img. ETA=0:00:51 +[01/05 00:43:19] defrcn.evaluation.evaluator INFO: Inference done 2050/2500. 0.1028 s / img. ETA=0:00:46 +[01/05 00:43:24] defrcn.evaluation.evaluator INFO: Inference done 2100/2500. 0.1027 s / img. ETA=0:00:41 +[01/05 00:43:29] defrcn.evaluation.evaluator INFO: Inference done 2150/2500. 0.1028 s / img. ETA=0:00:35 +[01/05 00:43:34] defrcn.evaluation.evaluator INFO: Inference done 2200/2500. 0.1027 s / img. ETA=0:00:30 +[01/05 00:43:39] defrcn.evaluation.evaluator INFO: Inference done 2250/2500. 0.1027 s / img. ETA=0:00:25 +[01/05 00:43:45] defrcn.evaluation.evaluator INFO: Inference done 2300/2500. 0.1028 s / img. ETA=0:00:20 +[01/05 00:43:50] defrcn.evaluation.evaluator INFO: Inference done 2350/2500. 0.1027 s / img. ETA=0:00:15 +[01/05 00:43:55] defrcn.evaluation.evaluator INFO: Inference done 2400/2500. 0.1028 s / img. ETA=0:00:10 +[01/05 00:44:00] defrcn.evaluation.evaluator INFO: Inference done 2450/2500. 0.1029 s / img. ETA=0:00:05 +[01/05 00:44:06] defrcn.evaluation.evaluator INFO: Inference done 2500/2500. 0.1028 s / img. ETA=0:00:00 +[01/05 00:44:06] defrcn.evaluation.evaluator INFO: Total inference time: 0:04:17 (0.103006 s / img per device, on 2 devices) +[01/05 00:44:06] defrcn.evaluation.evaluator INFO: Total inference pure compute time: 0:04:10 (0.100549 s / img per device, on 2 devices) +[01/05 00:44:07] defrcn.evaluation.coco_evaluation INFO: Preparing results for COCO format ... +[01/05 00:44:07] defrcn.evaluation.coco_evaluation INFO: Saving results to checkpoints/coco/10shot_ExAU/inference/coco_instances_results.json +[01/05 00:44:08] defrcn.evaluation.coco_evaluation INFO: Evaluating predictions ... +[01/05 00:44:34] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 32.205 | 51.060 | 34.108 | 16.330 | 36.314 | 45.953 | +[01/05 00:44:34] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:--------------|:-------|:-------------|:-------|:---------------|:-------| +| person | 3.745 | bicycle | 7.610 | car | 20.778 | +| motorcycle | 17.565 | airplane | 38.803 | bus | 51.873 | +| train | 25.309 | truck | 27.637 | boat | 10.480 | +| traffic light | 23.602 | fire hydrant | 64.252 | stop sign | 72.289 | +| parking meter | 37.145 | bench | 15.358 | bird | 14.781 | +| cat | 35.217 | dog | 29.434 | horse | 15.907 | +| sheep | 13.851 | cow | 21.666 | elephant | 64.313 | +| bear | 59.078 | zebra | 56.328 | giraffe | 63.953 | +| backpack | 17.811 | umbrella | 32.823 | handbag | 14.605 | +| tie | 31.293 | suitcase | 35.013 | frisbee | 57.736 | +| skis | 21.863 | snowboard | 35.524 | sports ball | 39.549 | +| kite | 37.815 | baseball bat | 24.856 | baseball glove | 28.676 | +| skateboard | 48.749 | surfboard | 39.310 | tennis racket | 49.644 | +| bottle | 14.971 | wine glass | 30.060 | cup | 35.020 | +| fork | 33.551 | knife | 15.000 | spoon | 19.082 | +| bowl | 35.844 | banana | 22.792 | apple | 18.455 | +| sandwich | 34.603 | orange | 22.410 | broccoli | 25.949 | +| carrot | 25.183 | hot dog | 33.273 | pizza | 43.691 | +| donut | 51.279 | cake | 39.207 | chair | 6.828 | +| couch | 18.261 | potted plant | 3.009 | bed | 39.821 | +| dining table | 5.449 | toilet | 54.128 | tv | 42.180 | +| laptop | 54.619 | mouse | 46.597 | remote | 27.009 | +| keyboard | 50.314 | cell phone | 26.740 | microwave | 52.938 | +| oven | 33.406 | toaster | 29.868 | sink | 29.612 | +| refrigerator | 53.555 | book | 9.357 | clock | 45.989 | +| vase | 32.757 | scissors | 25.488 | teddy bear | 38.589 | +| hair drier | 20.149 | toothbrush | 23.118 | | | +[01/05 00:44:49] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:------:|:------:|:------:| +| 36.311 | 56.785 | 38.796 | 19.549 | 41.366 | 50.978 | +[01/05 00:44:49] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:---------------|:-------|:--------------|:-------|:-------------|:-------| +| truck | 27.637 | traffic light | 23.602 | fire hydrant | 64.252 | +| stop sign | 72.289 | parking meter | 37.145 | bench | 15.358 | +| elephant | 64.313 | bear | 59.078 | zebra | 56.328 | +| giraffe | 63.953 | backpack | 17.811 | umbrella | 32.823 | +| handbag | 14.605 | tie | 31.293 | suitcase | 35.013 | +| frisbee | 57.736 | skis | 21.863 | snowboard | 35.524 | +| sports ball | 39.549 | kite | 37.815 | baseball bat | 24.856 | +| baseball glove | 28.676 | skateboard | 48.749 | surfboard | 39.310 | +| tennis racket | 49.644 | wine glass | 30.060 | cup | 35.020 | +| fork | 33.551 | knife | 15.000 | spoon | 19.082 | +| bowl | 35.844 | banana | 22.792 | apple | 18.455 | +| sandwich | 34.603 | orange | 22.410 | broccoli | 25.949 | +| carrot | 25.183 | hot dog | 33.273 | pizza | 43.691 | +| donut | 51.279 | cake | 39.207 | bed | 39.821 | +| toilet | 54.128 | laptop | 54.619 | mouse | 46.597 | +| remote | 27.009 | keyboard | 50.314 | cell phone | 26.740 | +| microwave | 52.938 | oven | 33.406 | toaster | 29.868 | +| sink | 29.612 | refrigerator | 53.555 | book | 9.357 | +| clock | 45.989 | vase | 32.757 | scissors | 25.488 | +| teddy bear | 38.589 | hair drier | 20.149 | toothbrush | 23.118 | +[01/05 00:44:58] defrcn.evaluation.coco_evaluation INFO: Evaluation results for bbox: +| AP | AP50 | AP75 | APs | APm | APl | +|:------:|:------:|:------:|:-----:|:------:|:------:| +| 19.886 | 33.886 | 20.045 | 6.832 | 21.158 | 30.879 | +[01/05 00:44:58] defrcn.evaluation.coco_evaluation INFO: Per-category bbox AP: +| category | AP | category | AP | category | AP | +|:-------------|:-------|:-----------|:-------|:-------------|:-------| +| person | 3.745 | bicycle | 7.610 | car | 20.778 | +| motorcycle | 17.565 | airplane | 38.803 | bus | 51.873 | +| train | 25.309 | boat | 10.480 | bird | 14.781 | +| cat | 35.217 | dog | 29.434 | horse | 15.907 | +| sheep | 13.851 | cow | 21.666 | bottle | 14.971 | +| chair | 6.828 | couch | 18.261 | potted plant | 3.009 | +| dining table | 5.449 | tv | 42.180 | | | +[01/05 00:44:58] defrcn.engine.defaults INFO: Evaluation results for coco14_test_all in csv format: +[01/05 00:44:58] defrcn.evaluation.testing INFO: copypaste: Task: bbox +[01/05 00:44:58] defrcn.evaluation.testing INFO: copypaste: AP,AP50,AP75,APs,APm,APl,bAP,bAP50,bAP75,bAPs,bAPm,bAPl,nAP,nAP50,nAP75,nAPs,nAPm,nAPl +[01/05 00:44:58] defrcn.evaluation.testing INFO: copypaste: 32.2049,51.0598,34.1079,16.3297,36.3142,45.9534,36.3113,56.7846,38.7956,19.5493,41.3664,50.9783,19.8858,33.8856,20.0446,6.8322,21.1575,30.8786