File size: 1,291 Bytes
6b870b7 ec8c35b 1c47ee5 9529f85 6b870b7 ec8c35b 6b870b7 ec8c35b 6b870b7 ea2c377 6da139e 6b870b7 6da139e 6b870b7 6da139e 6b870b7 6da139e 6b870b7 6da139e 6b870b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
---
datasets:
- arbml/CIDAR
base_model: google/gemma-2b-it
pipeline_tag: text-generation
language:
- ar
- en
---
# Fine-Tuning-Gemma-2b-it-for-Arabic
<!-- Provide a quick summary of what the model is/does. -->
This model is a fine-tuned version of [google/gemma-2b-it](https://huggingface.co/google/gemma-2b-it) on [arbml/CIDAR](https://huggingface.co/datasets/arbml/CIDAR) Arabic dataset.
It achieves the following results on the evaluation set:
- training_loss=2.281057505607605
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
```python
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "Ruqiya/Fine-Tuning-Gemma-2b-it-for-Arabic"
messages = [{"role": "user", "content": "ما هو الذكاء الاصطناعي؟"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
```
|