Rustamshry commited on
Commit
2673e95
·
verified ·
1 Parent(s): a5b9360

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -166
README.md CHANGED
@@ -1,202 +1,101 @@
1
  ---
2
  base_model: unsloth/Qwen3-0.6B
3
  library_name: peft
 
 
 
 
 
 
 
 
4
  ---
5
 
6
  # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
 
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
-
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
  ## How to Get Started with the Model
71
 
72
  Use the code below to get started with the model.
73
 
74
- [More Information Needed]
75
-
76
- ## Training Details
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77
 
78
  ### Training Data
79
 
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
200
  ### Framework versions
201
 
202
  - PEFT 0.14.0
 
1
  ---
2
  base_model: unsloth/Qwen3-0.6B
3
  library_name: peft
4
+ license: mit
5
+ datasets:
6
+ - ituperceptron/turkish-math-186k
7
+ language:
8
+ - tr
9
+ pipeline_tag: question-answering
10
+ tags:
11
+ - math
12
  ---
13
 
14
  # Model Card for Model ID
15
 
16
+ This model was fine-tuned on 80,000 Turkish math problems, targeting better understanding and generation of mathematically structured responses in Turkish.
17
+ The dataset covers arithmetic, algebra, word problems, and other foundational math skills, allowing the model to serve as a multilingual math tutor or reasoning engine in Turkish.
18
 
19
 
20
  ## Model Details
21
 
22
  ### Model Description
23
 
24
+ - **Language(s) (NLP):** Turkish
25
+ - **License:** MIT
26
+ - **Finetuned from model:** unsloth/Qwen3-0.6B
27
+ - **Domain**: Mathematical Reasoning
 
 
 
 
 
 
 
 
 
28
 
 
 
 
 
 
29
 
30
  ## Uses
31
 
 
 
32
  ### Direct Use
33
 
34
+ - 🧮 Math problem solving in Turkish
35
+ Can assist users in understanding and solving elementary to intermediate math problems written in Turkish.
36
+ - 📚 Educational tools and tutoring systems
37
+ Suitable for integration into digital tutors, math practice apps, or classroom AI assistants for Turkish-speaking students.
38
+ - 💬 Multilingual reasoning research
39
+ Can be used to evaluate Turkish-language mathematical reasoning tasks in LLM benchmarks.
 
40
 
 
 
 
 
 
 
 
41
 
42
  ## Bias, Risks, and Limitations
43
 
44
+ 🌐 Language bias
45
+ Performance is limited to Turkish; multilingual or code-mixed input may confuse the model.
 
 
 
 
 
 
 
46
 
47
  ## How to Get Started with the Model
48
 
49
  Use the code below to get started with the model.
50
 
51
+ ```python
52
+ from huggingface_hub import login
53
+ from transformers import AutoTokenizer, AutoModelForCausalLM
54
+ from peft import PeftModel
55
+
56
+ login(token="")
57
+
58
+ tokenizer = AutoTokenizer.from_pretrained("unsloth/Qwen3-0.6B",)
59
+ base_model = AutoModelForCausalLM.from_pretrained(
60
+ "unsloth/Qwen3-0.6B",
61
+ device_map={"": 0}, token=""
62
+ )
63
+
64
+ model = PeftModel.from_pretrained(base_model,"Rustamshry/Qwen3-0.6B-turkish-math-reasoning-90K")
65
+
66
+
67
+ question = """
68
+ Problem 2. $a, b$ iki farklı gerçel sayı ve $c$ öyle bir pozitif gerçel sayı olsun ki
69
+ $$ a^{4}-2019 a=b^{4}-2019 b=c. $$ $-\sqrt{c}<a b<0$ olduğunu kanıtlayın.
70
+ """
71
+
72
+ messages = [
73
+ {"role" : "user", "content" : question}
74
+ ]
75
+ text = tokenizer.apply_chat_template(
76
+ messages,
77
+ tokenize = False,
78
+ add_generation_prompt = True,
79
+ enable_thinking = True,
80
+ )
81
+ from transformers import TextStreamer
82
+ _ = model.generate(
83
+ **tokenizer(text, return_tensors = "pt").to("cuda"),
84
+ max_new_tokens = 3000,
85
+ temperature = 0.6,
86
+ top_p = 0.95,
87
+ top_k = 20,
88
+ streamer = TextStreamer(tokenizer, skip_prompt = True),
89
+ )
90
+ ```
91
 
92
  ### Training Data
93
 
94
+ The dataset ituperceptron/turkish-math-186k is a Turkish-language collection designed for training and evaluating language models on mathematical reasoning tasks.
95
+ It comprises approximately 186,000 entries, each containing structured fields such as instruction, input, and output.
96
+ The dataset is available in Parquet format and is intended for text generation tasks, particularly focusing on mathematical problem-solving in Turkish.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97
 
 
98
 
 
99
  ### Framework versions
100
 
101
  - PEFT 0.14.0